Time evolution and the fluctuation spectrum:

Recall:
- We assume the system is in the state \(|0\rangle \) which is the vacuum at \(\eta_0 \).
- \(\Rightarrow \) The system is always in the state \(|0\rangle \) (Heisenberg picture).
- We solve the QFT with \(\hat{F}_k(\eta) = a(\eta) \hat{\phi}_k(\eta) \) and the ansatz

\[
\hat{C}_k(\eta) = \frac{1}{\sqrt{2}} \left(v_k^+(\eta) a_k + v_k(\eta) a_k^+ \right)
\]

when for convenience we choose the mode functions \(v_k(\eta) \), so that \(a_0 |0\rangle = 0 \).
- The technical challenge will be:
 - Identify \(|0\rangle \), i.e., identify the initial conditions for the \(V_k \) at \(\eta_0 \).
 - Solve the K.G. eqn for the \(V_k(\eta) \).

Benefit:
- State \(|0\rangle \) known
- Operators \(\hat{F}_k(\eta) \) known \(\forall \eta > \eta_0 \).

\(\Rightarrow \) We can calculate all predictions for all times, even, e.g., at times of nonadiabaticity or inverted potential!

In particular, we can calculate for all \(\eta > \eta_0 \):

\[
\delta \phi_k(\eta) = k^{3/2} \frac{v_k(\eta)}{a(\eta)}
\]

We observe: The dynamics of \(|v_k(\eta)| \) crucially affects \(\delta \phi_k(\eta) \).

Q: In which circumstances does \(v_k(\eta) \) grow most?
Answer: The most efficient mechanism to enlarge ϕ occurs when the mode is nonadiabatically evolving in the sense that the mode oscillator is inverted:

$$\frac{d^2}{dx^2} \psi(x) + \omega^2 \psi(x) = 0$$

In such a time period, the Klein-Gordon equation's solutions are not oscillatory because $\omega(x)$ is imaginary:

$$\omega(x) = \sqrt{k^2 + m^2} \left| a(x) \right|^2 - \frac{\omega'(x)}{a(x)}$$

This term may be large enough to make the discriminant negative.

* Instead, there will be one exponentially decaying and one exponentially growing solution. Inverting a harmonic oscillator is an efficient way to increase $\Delta \phi$:

\[\text{Notice that this argument applies to } \psi \text{ limit } \phi = \frac{1}{\alpha} \psi. \]

Thus, ϕ's growth is slower than that of ψ.

Recall: The equation of motion of ϕ has a friction-type term.
Before we calculate the fluctuation amplification explicitly:

Relationship of fluctuation amplification to particle creation

1. Assume that at a later time, \(\eta \), the evolution is adiabatic for mode \(k \) (i.e., its \(u_k \) changes slowly).

 \[\Rightarrow \text{We can identify} \ |\text{vac}_\eta> \]

 Using the adiabatic vacuum identification criterion, we find the mode function \(\tilde{v}_k \) for which:

 \[|\tilde{\eta}> = |\text{vac}_\eta> \]

2. **Case 1:** The evolution of mode \(k \) was adiabatic from \(\eta_0 \) to \(\eta \).

 * Therefore:

 \[v_k = \tilde{v}_k \quad \text{and} \quad |\tilde{\eta}> \equiv |\tilde{\eta}>(\eta) \]

 * Therefore:

 The state of the system, \(|\tilde{\eta}> \equiv |\tilde{\eta}(\eta)> \), is still the vacuum state at time \(\eta_0 \):

 \[|\tilde{\eta}(\eta_0)> = |\tilde{\eta}(\eta)> \]

 * There is no particle creation.

 * But since \(u_k = \frac{1}{\sqrt{\omega_k}} e^{i\chi_k} A_k \), in general:

 \[|V_k(\eta)> \neq |V_k(\eta_0)> \quad \text{namely} \quad |V_k(\eta)> = |V_k(\eta_0)> \]

 \[\Rightarrow \text{the fluctuations, which depend on} \ |V_k(\eta)> \]

 can be affected even if there is no particle creation.
Case 2: The evolution was not always adiabatic between \(\eta \), and \(\eta_i \).

* Then, \(V_\eta \neq \bar{V}_\eta \)

* but since both are in the same 2-dimensional solution space to the K.G. equation, there exist \(d_\beta, \beta_\beta \):

\[
V_\eta(\eta) = d_\beta \bar{V}_\beta(\eta) + \beta_\beta \bar{V}_\eta(\eta)
\]

* Substitute in the fluctuations equation:

\[
\delta \Phi_\beta(\eta) = \alpha^2(\eta) k^3 |V_\eta(\eta)|^2
\]

\[
= \alpha^2(\eta) k^3 |d_\beta \bar{V}_\beta(\eta) + \beta_\beta \bar{V}_\eta(\eta)|^2
\]

* For clarity, assume that the nonadiabatic period is one by \(\eta_i \).

* Also, assume that spacetime is again Minkowski around \(\eta_i \). (Thus, we focus on nonadiabatic effects only)

* In this case:

\[
\bar{V}_\eta(\eta) = \frac{1}{\omega(\eta)} e^{i \omega(\eta) \eta} \quad \text{for all } \eta \approx \eta_i
\]

\[
\Rightarrow \delta \Phi^2(\eta) = \alpha^2(\eta) \frac{k^3}{\omega(\eta)^2} (d_\beta^2 + |\beta_\beta|^2 - 2 \text{Re}(d_\beta \beta_\beta e^{2i \omega(\eta) \eta}))
\]

* We use: \(|d_\beta|^2 - |\beta_\beta|^2 = 1 \) \((W)\)
\[\delta \phi_k^2(\tau) = a^{-2}(\tau) \frac{k^3}{1 + 2|\beta_1|^2} (1 + 2|\beta_1|^2) \quad (T) \]

\[\text{This term is only seen if } \text{the evaporation of quark in the reheating.} \]

\[\text{This term is only seen if } \text{the evaporation of quark in the reheating.} \]

* Notice: |\phi_1| and |\phi_2| can both become very large. This is consistent with the Wronskian condition, (W).

* Particle production:

Recall that the expected number of created particles is also given by |\phi_k|^2:

\[\overline{N}_k(\tau) = \langle \Omega | \hat{N}_k | \Omega \rangle = \ldots \]

\[= |\phi_k|^2 \]

\[\overline{N}_k = \overline{a}_k^* \overline{a}_k \]

* Remark:

But (T) holds even if \(w_0 < 0 \) at \(\tau_0 \). We know what we mean by field fluctuations even when we do not have a concept of vacuum and particles.

\[\text{"Quantum fields more fundamental than quantum particles."} \]

\[\sum \text{Fluctuations in proper coordinates as opposed to comoving coordinates} \]

* We have: \(d = a(\tau) L \), \(p = \frac{1}{a(\tau)} k \)

\[\text{proper length} \quad \text{comoving} \quad \text{proper} \quad \text{comoving} \quad \text{momentum} \quad \text{momentum} \]

* Therefore, \(S\phi_k^2(\tau) = a^{-2}(\tau) \frac{k^3}{1 + 2|\beta_1|^2} (1 + 2|\beta_1|^2) \) becomes:
\[\delta \Phi_0(z) = a^{-2} \frac{a^3 p^3}{1 + 2 |p_a|^2} (1 + 2 |p_a|^2) \]

\[= \frac{p^3}{\sqrt{p^2 + m^2}} \left(1 + 2 |p_a|^2 \right) \quad \text{(same as earlier)} \]

* Note: The nonadiabatic term depends on \(p \).

* Note: This was the case when we ended in a Minkowski space. We see that in this case we must get back the original Minkowski spectrum if the evolution from \(\eta_0 \) to \(\eta \) was adiabatic.

* Note: Also in thermodynamics, "adiabatic" processes are reversible processes.

Application to specific cosmological models

The standard model of cosmology holds that the very early universe underwent a short period of almost exponential expansion, "inflation".

- Begin by studying QFT in de Sitter spacetime:

The de Sitter FRW spacetime can be defined through

\[\alpha(t) := e^{Ht} \quad \text{for all } t \in \mathbb{R} \]

Here: \(H > 0 \) is a constant, the "Hubble constant".

Exercise: Read Mukhanov's comments on de Sitter space.

Notes: * \(t \) is the time in a conveniently chosen unit which * begins at \(\eta \) of deep acceleration.
The de Sitter horizon

Proposition: (in particle picture) (Note: long $H \to$ small horizon d_{H})

Objects (or any observers) who are further apart than a proper distance of $d_{H} = \frac{1}{H}$
can never meet, and cannot communicate.

Proof: * Consider an observer in a galaxy A. Let us choose the origin of the comoving coordinate system(s)
to be where this observer sits.

* Now suppose that, at some arbitrary time, t_{s}, this observer sends a radio signal towards another galaxy, B.

* The signal travels in a small time Δt

the small comoving distance Δx:

\[
\frac{a(t) \Delta x}{\Delta t} \approx c = 1
\]

\[
\Rightarrow \quad \frac{dx}{dt} = a^{-1}(t) \text{ i.e.: } \frac{dx}{dt} = e^{-Ht}
\]

\[
\Rightarrow \quad x(t) = -\frac{1}{H} e^{-Ht} + C'
\]

Fix the integration constant C' so that $x(t_{s}) = 0 \Rightarrow C' = \frac{1}{H} e^{-Ht_{s}}$

[Recall: x is proper distance towards A; $d_{S}(t) = a(t) x(t)$]

\[
\Rightarrow \quad x(t) = -\frac{1}{H} e^{-Ht} + \frac{e^{-Ht_{s}}}{H}
\]

\[
\Rightarrow \quad \text{As } t \to \infty \text{ we have } x(t) \to \frac{e^{-Ht_{s}}}{H}.
\]

Thus, any galaxy B if comoving distance is at most $d_{c} = \frac{e^{-Ht_{s}}}{H}$.

Q: Proper distance d_{p} of such B from A at t_{s}?

A: $d_{s} = a(t) d_{c} \Rightarrow d_{s} = e^{+Ht_{s}} \frac{e^{-Ht_{s}}}{H} = \frac{1}{H}$
Recall: This holds for arbitrary t.

\Rightarrow A signal sent by A at any time t_s can only ever reach B if at the time of sending, t_s, the proper distance between A and B is at most $\frac{1}{H}$.

\Rightarrow Any two observers further apart than a proper distance of $\frac{1}{H}$ cannot communicate.

Interpretation: In the case where a de Sitter exponential expansion lasts forever, between any objects of proper distance $> \frac{1}{H}$, space is being created faster than what can be crossed when travelling with the speed of light.

Remark: Notice that the proper size of the de Sitter horizon is constant in time.

Proposition: (in wave picture)

Klein Gordon modes oscillate while their proper wavelength obey $\lambda < \frac{1}{H}$ but stop oscillating and possess instead an imaginary frequency when their proper wavelength has grown beyond, i.e., when $\lambda > \frac{1}{H}$, assuming that their mass is small: $m << H$.

Proof: 1) Let us switch to conformal time: (Thus, need $a(\eta)$!)

\square Recall: $\gamma(t) := \int_{a(t')}^t \frac{1}{a(t')} dt'$

here: $\gamma(t) = \int_{a(t')}^t e^{-Ht'} dt'$

$= -\frac{1}{H} e^{-Ht} + C$
Notice:

- As $t \to -\infty$ we have $\eta \to -\infty$.
- But as $t \to +\infty$ we have $\eta \to 0$.

Choose $C' = 0$:

$$\Rightarrow \eta(t) = -\frac{1}{H} a(t)$$

$$a(t) = -\frac{1}{H \eta(t)}$$

i.e.:

$$a(\eta) = -\frac{1}{H \eta}$$

2) Introduce $\hat{X}_v(\eta) := a(\eta) \hat{\phi}_v(\eta)$:

- We have: $\hat{X}_v(\eta) = -\frac{1}{H \eta} \hat{\phi}_v(\eta)$
- \hat{X}_v obeys this Klein Gordon equation

$$\hat{X}_v''(\eta) + \omega_v^2(\eta) \hat{X}_v(\eta) = 0$$

with:

$$\omega_v^2(\eta) = k^2 + m^2 a^2(\eta) - \frac{a''(\eta)}{a(\eta)}$$

Exercise: Show that in the de Sitter case this yields:

$$\omega_v^2(\eta) = k^2 + \frac{m^2}{H^2 \eta^2} - \frac{2}{\eta^2}$$
3.) Check for imaginary frequencies. \(\frac{m^2}{H^2 \eta^2} - \frac{2}{\eta^2} < 0 \)

- Recall: We are assuming \(m << H \).

- Thus, in \(\omega_k^2(\eta) = k^2 + \frac{m^2}{H^2 \eta^2} - \frac{2}{\eta^2} \)

 we have: \(\omega_k^2(\eta) < 0 \)

- Therefore: For each mode \(k \) there comes a time when \(\omega_k^2 \) becomes negative!

 The case relevant in cosmology: \(m = 0 \) (we'll assume this)

 \[\Rightarrow \text{The time when a mode } k \text{ crosses the horizon is given by:} \]

 \[\eta_{\text{hor}}(k) \approx -\frac{\sqrt{2}}{k} \]

4.) Conclusion:

- A mode oscillates as long as:

 Recall: \(\eta \in (-\infty, 0) \)

 i.e. \(|\eta| \gg \frac{1}{k} \) means early times.

 \[|\eta| \approx \frac{1}{k} \]

 i.e., while \(|\eta|k \gg 1 \) \(\quad \text{(used that } k \text{ and } \eta \text{ are of same order of magnitude)} \)

- A mode has imaginary frequency from when

 \(|\eta| \ll \frac{1}{k} \) i.e., from when \(|\eta|k \ll 1 \)

 This is late time, i.e. when \(\eta \approx 0 \).

- Re-expressed in terms of proper wavelength?

 Noting \(|\eta| = \frac{1}{Ha} \) and multiplying it with \(k \approx 2\pi \) we obtain:

 \[|\eta|k = \frac{1}{Ha} \frac{2\pi}{L} \]

 \(\text{-comoving wavelength} \)
Transforming to the proper wavelength, \(\lambda = a(q) b \), we obtain:

\[
|q| k = \frac{2\pi}{H \lambda} \quad \text{Thus, the proper wavelength } \lambda, \text{ of } q \text{ fixed}
\]

\[
|q| k = \frac{2\pi}{H |q|} \quad \text{commoving mode } |k| \text{, always:}
\]

Thus, finally, the two cases, (a) and (b) become:

(a) A mode oscillates as long as: \(|q| k \gg 1\)

\[\text{i.e., as long as } \frac{2\pi}{H |q|} \gg 1 \quad \text{i.e.: } \lambda \ll \frac{1}{H} \]

(b) A mode has imaginary frequency when:

\[\text{from when } \lambda \gg \frac{1}{H} \]

This is what we had set out to show.