Recall: The nontrivial shape of a manifold reveals itself in several ways:

1. Violation of angle sum law, \(\angle + \beta + 90^\circ \neq 180^\circ \).
 \(\Rightarrow \) Can encode shape through defiend angles (used in some quantum gravity approaches).

2. Violation of Pythagorean law, \(a^2 + b^2 \neq c^2 \).
 \(\Rightarrow \) Can encode shape through metric distances: \((M, g)\).

 \(\Rightarrow \) Can encode shape through affine connection: \((M, \nabla)\).

Observe: Such local descriptions carry redundant information!

Why? Two (pseudo-)Riemannian manifolds \((M, g), (M, g')\) must be considered equivalent, i.e., they are describing the same space-time, if there exists an isometric, i.e., metric-preserving, isomorphism:

\[\phi: (M, g) \rightarrow (M, g') \]

Recall: \(\phi \) is called metric-preserving if, under the pull-back map

\[T\phi^*: T_p(M)_2 \rightarrow T_p(M)_2 \]

the metric stays:

\[T\phi^*_p(g) = g' \]
Interpretation: \(\xi \) can then be considered to be a mere change of chart:

Observe: Every diffeomorphism \(\xi : M \to M \) of a manifold and its fields (via pullback etc) while staying in one chart, \(\varphi \),

\[
\begin{array}{ccc}
(M, g) & \xrightarrow{\varphi} & \mathbb{R}^n \\
\text{(A)} & \xrightarrow{\xi} & \text{R}
\end{array}
\]

is equivalent to a change of chart from \(\varphi \) to \(\psi \):

\[
\begin{array}{ccc}
(M, g) & \xrightarrow{\psi} & \mathbb{R}^n \\
\text{(A)} & \xrightarrow{\varphi} & \text{R}
\end{array}
\]

where \(\psi = \varphi \circ \xi \).

Vice versa: Every change of chart \(\varphi = \psi \circ \varphi^{-1} : \mathbb{R}^n \to \mathbb{R}^n \)

\[
\begin{array}{ccc}
(M, g) & \xrightarrow{\psi} & \mathbb{R}^n \\
\text{(A)} & \xrightarrow{\varphi} & \text{R}
\end{array}
\]

is equivalent to \(\varphi^{-1} \) followed by a diffeomorphism \(\psi : M \to M \), followed by the old chart map \(\varphi \)

\[
\begin{array}{ccc}
(M, g) & \xrightarrow{\psi} & \mathbb{R}^n \\
\text{(A)} & \xrightarrow{\varphi^{-1}} & \text{R}
\end{array}
\]

with \(\psi \circ \varphi^{-1} = \psi \) i.e. with \(\varphi = \psi \circ \varphi^{-1} \) \((\psi = \varphi^{-1} \circ \psi) \).

Remark: Thus, \(\log T \) is also rate of change under chart change induced by \(\xi \).
Intuition: $(M,g), (M,g')$ that are related by an isometric diffeomorphism are more or less the same shape.

Definition: A (pseudo-) Riemannian structure, say \mathcal{E}, is an equivalence class of (pseudo-) Riemannian manifolds which can be mapped into each other via metric-preserving diffeomorphisms, i.e., via changes of coordinates.

\Rightarrow Space(time) will need to be modelled as a (pseudo-) Riemannian structure, \mathcal{E}, i.e., as an equivalence class of pairs (M,g).

Problem: These equiv. classes are hard to handle because absence or existence of \mathcal{E} is hard to check!

\Rightarrow One would like to be able to reliably identify exactly one representative (M,g) per class \mathcal{E}.

- This would be called a “fixing of gauge”.
- Why would this be useful?

A key example of when gauge fixing needed: **Quantum gravity**

We discussed detecting and describing shape through:

- Defining angles
- Nontrivial metric distances (M,g)
- Nontrivial parallel transport (M,Γ)
Recall: Quantum theory can be formulated in path integral form.

Applied to gravity:

Expect to have to handle path integrals of the type:

\[\int e^{iS(\Xi)} D\Xi \]

"all Riemannian structures \(\Xi \)"

But what we initially have is, roughly of the form:

\[\int e^{iS(g)} \delta(?) Dg \quad \text{or} \quad \int e^{iS(\Xi)} \delta(?) D\Xi \]

"all \(g \)" or "all \(\Xi \)"

Here, \(\delta(?) \) should be such that from each equivalence class of the \(g \)'s or the \(\Xi \)'s only exactly one contributes to the path integral.

Much of Quantum Gravity research is concerned with working out suitable \(\delta(?) \) for \(g \)'s or \(\Xi \)'s or other variables formed from them, such as the frame fields (see "loop quantum gravity").

Q: Can one detect and describe a (pseudo-) Riemannian structure \(\Xi \) directly?

A: Possibly yes, using "Spectral Geometry":

\[\text{Independent of coordinate systems!} \]

Idea: A manifold's vibration spectrum \(\{ \lambda_n \} \) depends only on \(\Xi \)!

Key question of the field of spectral geometry: (Weyl 1911)

Does the spectrum \(\{ \lambda_n \} \) encode all about the shape, i.e., \(\Xi \)?
Remarks:

- It cannot, if M has infinite volume, because then the spectrum of Δ will become (almost) completely continuous.
- The spectral geometry of pseudo-Riemannian manifolds is still very little developed.

Theorem:

- Assume (M, g) is a compact Riemannian manifold without boundary, $\partial M = \emptyset$.
- Then, each $\text{spec}(\Delta_p)$ is discrete, with finite degeneracies and without accumulation points.

In practice: We can describe any arbitrarily large part of the universe by a compact Riemannian manifold, (M, g) without boundary, $\partial M = \emptyset$.

This allows us to describe, e.g., 3-dim. space at any fixed time (or also 4-dim. spacetime after so-called Wick rotation).

Types of waves (incl. sounds) on M:

- Consider p-form fields $\omega(x)$ on M, with time evolution, e.g.:
 1. Schrödinger equation: $i \hbar \partial_t \omega(x,t) = -\frac{\hbar^2}{2m} \Delta_p \omega(x,t)$
 2. Heat equation: $\partial_t \omega(x,t) = -\Lambda_p \omega(x,t)$
 3. Klein-Gordon (and acoustic) eqn: $-\partial^2_t \omega(x,t) = \beta \Delta_p \omega(x,t)$
Each of them can be solved via separation of variables:

Assume we find an eigenform $\tilde{\phi}(x)$ of Δ on M:

$$\Delta_p \tilde{\phi}(x) = \lambda \tilde{\phi}(x)$$

They exist: Each Δ is self-adjoint, w.r.t. the inner product $(\phi, \psi) = \int_M \phi \overline{\psi} dV$.

Then: Schrödinger eqn solved by: $\phi(x,t) = e^{i \frac{\lambda}{2m} t} \tilde{\phi}(x)$

Heat eqn solved by: $\phi(x,t) = e^{-d \lambda t} \tilde{\phi}(x)$

Klein Gordon eqn solved by: $\phi_t(x,t) = e^{\pm i \sqrt{\lambda} t} \tilde{\phi}(x)$

\Rightarrow The spectrum $\text{spec}(\Delta_p)$ is the overtime spectrum of p-form type waves on the manifold M.

Properties of $\text{spec}(\Delta_p)$:

- **Expectation:**
 The spectra $\text{spec}(\Delta_p)$ for different p carry different information about M.

 E.g., scalar and vector seismic waves travel (and reflect) differently.

- **But recall also:**
 a) $[\Delta, \ast] = 0$
 b) $[\Delta, \delta] = 0$
 c) $[\Delta, \delta] = 0$

 This will relate $\text{spec}(\Delta_p)$ to $\text{spec}(\Delta_{m,p}), \text{spec}(\Delta_{p+1})$ and $\text{spec}(\Delta_{p-1})$.
Use $[\Delta, \tau] = 0$:

Assume: $\omega \in \Lambda_p$ and $\Delta \omega = \lambda \omega$.

Define: $\nu := \tau \omega \in \Lambda_{n-p}$

Then:

$\Delta \nu = \Delta \tau \omega = \tau \Delta \omega = \tau \lambda \omega = \lambda \nu$

$\Rightarrow \text{spec}(\Delta_p) = \text{spec}(\Delta_{n-p})$

Next:

Careful utilization of $[\Delta, \delta] = 0$ and $[\Delta, \delta] = 0$ yields much more information about these spectra!

Notice that Δ maps exact forms $\omega = d\lambda$ into exact forms:

$\Delta \omega = \Delta d\lambda = d\Delta \lambda$

i.e.:

$\Delta : d\Lambda_r \rightarrow d\Lambda_r$

Analogously, Δ maps co-exact forms $\omega = \delta \beta$ into co-exact forms:

$\Delta \omega = \delta \Delta \beta = \Delta \delta \beta$

i.e.:

$\Delta : \delta \Lambda_r \rightarrow \delta \Lambda_r$

Also: Δ can map forms into 0, namely its eigenspace with eigenvalue 0, denoted Λ^0_r. Λ^0_r is called the space of “harmonic” p-forms:

$\Delta : \Lambda^0_r \rightarrow 0$
Thus: Δ maps $d\Lambda_r$ and $\delta\Lambda_r$ and Λ^0_r into themselves.

Are there any other forms that Δ could act on? No!

Proposition ("Hodge decomposition"):

$$\Lambda^r = d\Lambda_{r-1} \oplus \delta\Lambda_{r+1} \oplus \Lambda^0_r$$

(Recall that \oplus implies that the three spaces are orthogonal!)

Q: Why useful?

A: It means that every eigenvector of Δ_r is either in $d\Lambda_{r-1}$, or in $\delta\Lambda_{r+1}$, or in Λ^0_r but is never a linear combination of vectors in these spaces.

Proof: It is clear that $d\Lambda_{r-1} \subset \Lambda^r$ and $\delta\Lambda_{r+1} \subset \Lambda^r$. We need to show the orthogonalities and completeness:

- Show that $d\Lambda_{r-1} \perp \delta\Lambda_{r+1}$:

 Indeed, assume $\omega = d\nu \in \Lambda^r$ and $d\beta = \delta\beta \in \Lambda^r$.

 Then: $$(\omega, d\beta) = (d\nu, \delta\beta) = \int d^r\nu \int d\beta = 0 \checkmark$$

- Show that if $\omega \in \Lambda^r$ and $\omega \perp d\Lambda_{r-1}$ and $\omega \perp \delta\Lambda_{r+1}$ then: $\omega \in \Lambda^0_r$.

 Indeed, assume $\omega \perp d\Lambda_{r-1}$ and $\omega \perp \delta\Lambda_{r+1}$. Then:

 $\forall \delta: (d\delta, \omega) = 0$ i.e. $- (\delta, d\omega) = 0 \Rightarrow d\omega = 0$ i.e. ω is "co-exact";

 $\forall \beta: (\delta\beta, \omega) = 0$ i.e. $-(\beta, d\omega) = 0 \Rightarrow d\omega = 0$ i.e. ω is exact;

 $\Rightarrow \Delta\omega = (d\delta + \delta d)\omega = 0 \Rightarrow \omega \in \Lambda^0_r \checkmark$
Show that if \(\omega \in \Lambda^p \) then \(\omega \perp d\Lambda^p \), and \(\omega \perp \delta \Lambda^{p+1} \).

Assume \(\omega \in \Lambda^p \), i.e., \(\Delta \omega = 0 \), i.e., \((\delta \lrcorner d + d \lrcorner \delta) \omega = 0 \).

\[
\Rightarrow (\omega, (d \delta + \delta d) \omega) = 0
\]

\[
\Rightarrow \delta \omega = \delta (\omega, \delta \omega) + (d \omega, d \omega) = 0 \Rightarrow \delta \omega = 0 \text{ and } d \omega = 0.
\]

(i.e., harmonic forms are closed and co-closed but not exact or co-exact)

Thus, \(B_p := \dim (\Lambda^p) \text{ measures topological non-triviality.} \)

The \(B_p \) are called the "Betti numbers."

\[
\Rightarrow \forall \delta \in \Lambda^p, \quad (\delta, \delta \omega) = 0, \text{ i.e., } (d \delta, \omega) = 0.
\]

\[
\Rightarrow \omega \perp d \Lambda^p, \quad \checkmark
\]

Also: \(\forall \beta \in \Lambda^{p+1}, \quad (\beta, d \omega) = 0, \text{ i.e., } (\delta \beta, \omega) = 0. \)

\[
\Rightarrow \omega \perp \delta \Lambda^{p+1}, \quad \checkmark
\]

Conclusion so far:

In the Hodge decomposition, \(\Lambda_{p-1} = d \Lambda_{p-2} \oplus \delta \Lambda_p \oplus \Lambda^p \).

\(\Delta \) maps every term into itself, i.e., \(\Delta \) can be diagonalized in each \(d \Lambda_p, \delta \Lambda_p, \Lambda^p \) separately.

\[
\Rightarrow \Delta \text{ has eigenvalues and } \lambda \text{ on each of these subspaces, for all } \lambda:
\]

\[
\text{spec}(\Delta|_{d \Lambda_p}) , \text{ spec}(\Delta|_{\delta \Lambda_p}) , \text{ spec}(\Lambda^p) = \{0\} \ldots
\]

These spectra are related!
Proposition: \(\text{spec} \left(\frac{\Delta}{d \Lambda_r} \right) = \text{spec} \left(\Delta \big|_{\delta \Lambda_{r+1}} \right) \)

and for each eigenvector in one there is one in the other.

This means:

\[\Lambda_{p-1} = d \Lambda_{p-2} \oplus \delta \Lambda_p \oplus \Lambda_{p-1} \]

\[\Lambda_p = d \Lambda_{p-1} \oplus \delta \Lambda_{p+1} \oplus \Lambda_p \]

\[\Lambda_{p+1} = d \Lambda_p \oplus \delta \Lambda_{p+2} \oplus \Lambda_{p+1} \]

\[\vdots \]

Proof:

Assume: \(\lambda \in \text{spec} \left(\frac{\Delta}{d \Lambda_r} \right) \) with eigenvector \(\omega \in d \Lambda_r \).

Define: \(v := \delta \omega \in \delta \Lambda_{r+1} \).

Then: \(\Delta v = \Delta \delta \omega = \delta \Delta \omega = \lambda \delta \omega = \lambda v \)

\(\Rightarrow \lambda \in \text{spec} \left(\Delta \big|_{\delta \Lambda_{r+1}} \right) \) and \(v \) is the eigenvector.

Conversely:

Assume: \(\lambda \in \text{spec} \left(\Delta \big|_{\delta \Lambda_{r+1}} \right) \) with eigenvector \(\omega \in \delta \Lambda_{r+1} \).

Define: \(v := d \omega \in d \Lambda_r \).

Then: \(\Delta v = \Delta d \omega = d \Delta \omega = \lambda d \omega = \lambda v \)

\(\Rightarrow \lambda \in \text{spec} \left(\frac{\Delta}{d \Lambda_r} \right) \) and \(v \) is the eigenvector. \(\checkmark \)
Re-use $[\Delta, \star] = 0$:

\[
\begin{array}{c}
\Lambda_{p+1} \\
\Lambda_{n-r-1}
\end{array}
\]

Proposition:
\[
\star: d \Lambda_r \rightarrow \delta \Lambda_{n-r}
\]

i.e.: \star exact forms \rightarrow co-exact $n-r$-forms

Proof: Assume $\omega = d \delta \in d \Lambda_r$

Define $\nu = \star \omega$

\[
\Rightarrow \nu = \star d \delta = (-1)^{r(n-r)} \star d \star \star \delta
\]

\[
= \delta \delta \in \delta \Lambda_{n-r} \text{ for } d = (-1)^{r(n-r)} \star \delta
\]

Proposition:
\[
\delta \Lambda_r \rightarrow d \Lambda_{n-r}
\]

Proof: Exercise.

Recall: \star preserves the spectrum of Δ as we showed already.

Summary:

\[
\begin{align*}
\Lambda_{p-1} &= d \Lambda_{p-2} \oplus \delta \Lambda_{p} \oplus \Lambda_{p-1} \\
\Lambda_{p} &= d \Lambda_{p-1} \oplus \delta \Lambda_{p+1} \oplus \Lambda_{p} \\
\Lambda_{p+1} &= d \Lambda_{p} \oplus \delta \Lambda_{p+2} \oplus \Lambda_{p+1} \\
&\vdots \\
\Lambda_{n-p} &= d \Lambda_{n-p-1} \oplus \delta \Lambda_{n-p+1} \oplus \Lambda_{n-p}
\end{align*}
\]

Now we also found:

\[
\begin{align*}
\Lambda_{p} &= d \Lambda_{p-1} \oplus \delta \Lambda_{p+1} \oplus \Lambda_{p} \\
&\vdots \\
\Lambda_{n-p} &= d \Lambda_{n-p-1} \oplus \delta \Lambda_{n-p+1} \oplus \Lambda_{n-p}
\end{align*}
\]
Example: \(\dim(M) = 3 \)

\[
\Lambda_0 = \delta \Lambda_1 \oplus \Lambda_0
\]

\[
\Lambda_1 = d \Lambda_0 \oplus \delta \Lambda_2 \oplus \Lambda_1
\]

\[
\Lambda_2 = d \Lambda_1 \oplus \delta \Lambda_3 \oplus \Lambda_2
\]

\[
\Lambda_3 = d \Lambda_2 \oplus \Lambda_3
\]

Same color means same spectrum of \(\Delta \).

Conclusion: There is relatively little independent information in the spectra of p-form waves on \(M \).

E.g., when \(\dim(M) = 3 \), then the spectrum of co-vector waves \(\text{spec}(\Delta_{\Lambda_1}) \) has already all information of all these spectra.

Literature: (neglecting literature on detecting boundary shapes from spectra)

Indeed: The spectra of \(\Delta \) do not contain sufficient information in general to uniquely identify the Riemannian structure from the spectra alone.

Examples: Cases have been found of pairs \((M, g), (\tilde{M}, \tilde{g}) \) that are isospectral for \(\Delta \) on all \(\Lambda_p \) but that are not diffeomorphically isometric!

Nevertheless: All examples are of limited significance:

- manifolds that are locally if not globally isometric, or
- manifolds that are isospectral only w.r.t. some \(\Delta \) or
- manifolds that are discrete pairs (e.g. mirror images).
Fresh approach to spectral geometry (AK)

Strategy: Iterate infinitesimal inverse spectral geometry

Assume both, the manifold and its spectra are given:

\[(M, g)\]

A compact Riemannian manifold \((M, g)\) without boundary

The spectra \(\{\lambda^{(i)}_m\}\) of\n
\(\Delta^{(i)}\) on the manifold.

Could be Laplacians not only on forms but also on general tensors

Perturbation:

Now change the shape of \((M, g)\) slightly, through:

\[g \rightarrow g + h\]

This will slightly change the spectra to:

\[\{\lambda^{(i)}_m\} \rightarrow \{\lambda^{(i)}_m + \mu^{(i)}_m\}\]

Why is this linearization useful?

- One can define a self-adjoint Laplacian \(\Delta^{(m)}\) on \(T^*_2(M)\), with Hilbert basis \(\{b_m(x)\}\) and eigenvalues \(\{\lambda^{(m)}_n\}\):

\[\Delta^{(m)} b_m(x) = \lambda^{(m)}_n b_m(x)\]
The metric's perturbation $h\in T^1_0(M)$ can be expanded:

$$h = \sum_{m=1}^{\infty} h_m b_m(x)$$

The perturbation of $\text{spec}(\Delta^{(m)})$ is:

$$\{\lambda^{(m)}_n\} \rightarrow \{\lambda^{(m)}_n + \mu^{(m)}_n\}$$

We obtain a linear map S:

$$S : \{\mu^{(m)}_n\} \rightarrow \{\mu^{(m)}_n\}$$

$$S' : h_m \rightarrow \mu_n = S_{nm} h_m$$

Notice: Consider only eigenvectors and eigenvalues up to a cutoff scale. Then, there are as many parameters $\{\mu^{(m)}_n\}$ as $\{\lambda^{(m)}_n\}$.

S is a square matrix.

If $\det(S') \neq 0$, then S^{-1} exists.

Should we be able to iterate the perturbations?

This is ongoing research.
Remarks: □ Not all h actually change the shape:

- If $h = L_\xi g$, for some vector field ξ, then $g \to g + h$ is merely the infinitesimal change of chart belonging to the flow induced by ξ.

- Symmetric covariant 2-tensors such as h have a canonical decomposition similar to the Hodge decomposition. Thus, Δ has three spectra on $T^2(M)$.

Reference: See also e.g. the video of my recent talk at PI: http://pirsa.org/15090062

Infinitesimal spectral geometry arose from my paper on how Spacetime could be simultaneously continuous and discrete, in the same way that information can.