Recall:

M is a manifold and \mathbb{R}^n is the coordinate system. Charts are tools to get a handle at the otherwise nameless abstract points of the manifold.

Problem:

How to define the abstract "Tangent space, $T_p(M)$," to a differentiable manifold at a point p?

Intuition:

E.g., a 2-dim manifold has 2-dim vector space of tangent vectors.

⇒ Proper definition should imply:

An n-dim manifold possesses for every point p an n-dim vector space of tangent vectors.
3 equivalent definitions of $T_p(M)$:

1. "Algebraic" definition of $T_p(M):
 Idea: A tangent vector = directional derivative,
 Derivatives definable through Leibniz rule:
 $$(fg)' = f'g + fg'$$

2. "Physicist" definition of $T_p(M):
 Idea: The elements of $T_p(M)$ are
 to be vectors recognizable by how
 their components change with charts.

3. "Geometric" definition of $T_p(M):
 Idea: The elements of $T_p(M)$ are
 to be actual tangent vectors
 of one-dim. paths in the
 manifold, that pass through p.
The 3 defs are equivalent, but:

We'll need all 3 occasionally!

⇒ we will do all 3:

1. Algebraic definition of $T_p(M)$

 Idea: a) A tangent vector = directional derivative,

 b) Derivatives definable through Leibniz rule:

 $$(fg)' = f'g + fg'$$

Key example: $M = \mathbb{R}^m$

 a) The tangent vectors ξ at a point p are identified with the directional 1st derivatives:

 $$\xi = \sum_{i=1}^{m} \xi_i \frac{2}{\partial x_i} \bigg|_{x=p}$$

 b) Thus, tangent vectors at p should be those maps

 $\xi : f \rightarrow \xi(f) = \sum_{i=1}^{m} \xi_i \frac{2}{\partial x_i} f(x) \bigg|_{x=p}$

 which obey the "Leibniz rule" at p:

 $$\xi(fg) = \xi(f)g + f\xi(g) \bigg|_{x=p}$$

Q: How to express the local nature of $\xi \in T_p(M)$ properly?
A: ξ acts on function germs, not on functions.

Def: Assume M, N are differentiable manifolds and $p \in M$.

- We say that two differentiable functions ϕ, ψ are germ-equivalent about p if in a neighborhood $U \subset M$ of p:
 $$\phi(q) = \psi(q) \quad \forall q \in U$$
- Each such equivalence class of functions is called a germ at p.
- Then, the "germ" of ϕ at p, denoted $\overline{\phi}_p$, is the equivalence class of all functions ψ which are identical to ϕ in some neighborhood of p:
 $$\psi \in \overline{\phi}_p \iff \exists U_p \forall q \in U_p : \phi(q) = \psi(q)$$

Notice: Assume $\phi : M \to N$ is differentiable at $p \in M$.

Then all $\psi \in \overline{\phi}_p$ possess the same first derivative at p.

For example:

Consider germs of scalar functions f:

$$M \ni p \xrightarrow{f} \mathbb{R}, \text{ i.e.: } f : M \to \mathbb{R}$$
Note: To specify a germ, it suffices to specify any arbitrary one of its functions. The set of all germs at p is denoted $\mathcal{F}(p)$.

Note: One has for all $c \in \mathbb{R}$ and $f, g \in \mathcal{F}(p)$:

(a) $c \cdot \overline{f} = \overline{c \cdot f}$
(b) $\overline{f \cdot g} = \overline{f} \cdot \overline{g}$
(c) $\overline{f + g} = \overline{f} + \overline{g}$

$\Rightarrow \mathcal{F}(p)$ obeys the axioms of an associative algebra.

Finally: Algebraic definition of $T_p(M)$

Recall idea: The elements of $T_p(M)$ are to be 1st derivatives \Rightarrow definable by Leibniz rule.

Definition: The tangent space $T_p(M)$ is the set of "derivations" of $\mathcal{F}(p)$, i.e. the set of linear maps $\xi: \mathcal{F}(p) \rightarrow \mathbb{R}$ which obey:

$$\xi\left(\overline{f_p \cdot g_p}\right) = \xi\left(\overline{f_p}\right) \cdot \overline{g_p(p)} + \overline{f_p(p)} \cdot \xi\left(\overline{g_p}\right)$$

Remember this.
Remark: This definition is abstract enough not only for arbitrary differentiable manifolds! This definition (as derivations of the algebra of functions) is also suitable for "Noncommutative Geometry": There, (Quantum Gravity) the algebra of functions \(F(p) \) is noncommutative.

Note: Can’t do Newton’s derivative then but algebraic def’n of derivation still works.

First example: a constant function, \(c \), and its germ \(\bar{c} \).

\[c(x) := c \quad \text{and } c \text{ is a constant: } c \in \mathbb{R} \]

Then: \(\xi(\bar{c}) = 0 \) for all \(\xi \in T_p(M) \)

Proof: \(\xi(\bar{c}) = c \xi(1) = c \xi(1) \cdot 1 = c(\xi(1) 1 + \xi(1)) \)

\[= 2c \xi(1) \implies \xi(\bar{c}) = 0 \checkmark \]
Example: The case $M = \mathbb{R}^n$

If our definition for $T_p(M)$ is good, we expect that every $\xi \in T_p(M)$ is of the form:

$$\xi = \sum_{i=1}^{\infty} \xi_i \frac{\partial}{\partial x^i}|_{x=p}$$

Proof:

- We choose p to have coordinates $x = (0,0,\ldots)$.

- Assume $\xi \in T_p(M)$ and $\bar{f} \in \bar{F}(p)$.

Notation: $h_{ij}(a',\ldots,a^n) = \frac{\partial^2}{\partial a_i \partial a_j} h(a',\ldots,a^n)$

Then:

- Note: there are not 3 numbers! These are 3 functions, i.e., 3 equivalence classes of functions.

- \[\xi(\bar{f}(x)) = \xi(\bar{f}(0) + \bar{f}(x) - \bar{f}(0)) \]

- \[= \xi(\bar{f}(0)) + \int_0^1 \frac{d}{dt} \bar{F}(tx',\ldots,tx^n) \, dt \]

- \[= \xi(\bar{f}(0)) + \sum_{i=1}^n \sum_{j=1}^n \frac{\partial \bar{F}(tx',\ldots,tx^n)}{\partial x^j} \frac{d(tx^i)}{dt} \, dt \]

- \[= \xi \left(\int_0^1 \sum_{i=1}^n \bar{F}_i (tx',\ldots,tx^n) x^i \, dt \right) \]
Linearity of ξ:

$$
\sum_{i=1}^{n} \xi \left(\int_{0}^{\bar{x}_{i}} f_{i}(tx', \ldots, tx^n) dt \cdot \bar{x}_{i} \right)
$$

Leibniz rule:

$$
\sum_{i=1}^{n} \xi \left(\int_{0}^{\bar{x}_{i}} f_{i}(tx', \ldots, tx^n) dt \right) \cdot \bar{x}_{i} \left|_{x=p=0} \right. \\
+ \sum_{i=1}^{n} \left(\int_{0}^{\bar{x}_{i}} f_{i}(tx', \ldots, tx^n) dt \right) \left. \cdot \xi \left(\bar{x}_{i} \right) \right|_{x=p=0}
$$

$$
= \sum_{i=1}^{n} \xi (\bar{x}_{i}) \int_{0}^{\bar{x}_{i}} f_{i}(0, \ldots, 0) dt
$$

$$
= \sum_{i=1}^{n} \xi (\bar{x}_{i}) \frac{\partial}{\partial x_{i}} f(x', \ldots, x^n) \bigg|_{x=p=0}
$$

$$(\int_{0}^{\bar{x}_{i}} dt = c \Rightarrow)$$

$$
= \sum_{i=1}^{n} \xi (\bar{x}_{i}) \frac{\partial}{\partial x_{i}} f(x', \ldots, x^n) \bigg|_{x=p=0}
$$

Indeed, every $\xi \in \mathcal{T}_{\rho}(\mathcal{M})$ is of the form

$$
\xi = \sum_{i=1}^{n} \xi (\bar{x}_{i}) \frac{\partial}{\partial x_{i}} f(x', \ldots, x^n) \bigg|_{x=p,}
$$

(\text{I})

namely with

$$
\xi' = \xi (\bar{x}_{i})
$$

(\text{II})

Notice: Knowing how ξ acts on the coordinate functions \bar{x}_{i} yields ξ' (from II) and thus it means we know how ξ acts on all functions $f \in \mathcal{F}(\rho)$, namely through (I).
But:

- This was the simple example:
 \[M = \mathbb{R}^n \]

- How does our definition of \(T_p(M) \) work for \(M \neq \mathbb{R}^n \), concretely?

Recall:

- \(h \) gives abstract points a name, i.e. makes them count.

Problem: How to make abstract \(\xi \in T_p(M) \) count?

Solution: Make use of charts in our way!

Preparation: \(T_p(M) \) and Diffeomorphisms.

Consider two differentiable manifolds, \(M \) and \(N \):

Note: If \(N = \mathbb{R}^n \), then \(\xi \) is a chart.

(that's the case we'll need but it's easy to keep a general \(N \) too)
Here: \(\mathcal{F}(q) \) and \(\mathcal{F}(p) \) are algebra of function (groms).

Given \(\mathcal{E} \) we obtain a map \(\mathcal{E}^*: \mathcal{F}(q) \to \mathcal{F}(p) \)

\[\mathcal{E}^*: g \mapsto f = \mathcal{E}^*(g) \text{ with } f(x) = g(\mathcal{E}(x)) \quad \forall x \in M \]

i.e.: \(f = \mathcal{E}^*(g) = g \circ \mathcal{E} \quad (+) \)

Here: Given \(\mathcal{E}^*: \mathcal{F}(q) \to \mathcal{F}(p) \) we obtain the "tangent map":

\[T_\mathcal{E} : T_p(M) \to T_q(M) \]

\[T_\mathcal{E} : \mathbf{g} \to \mathbf{\eta} \]
Namely: \[\gamma = \xi \circ \mathcal{E}^+ \]
i.e.: \[\gamma(g) = \xi(\mathcal{E}^+(g)) \]

From (+) \Rightarrow \[\gamma(g) = \xi(\mathcal{E} \circ \mathcal{E}^+(g)) \]

The crucial special case:

- \(N = \mathbb{R}^n \) (with \(n = \dim(N) \))
- \(\mathcal{E} \) is invertible
- \(\mathcal{E} \) is algebra isomorphism
- \(\therefore T_p \mathcal{E} \) is vector space isomorphism

\[\Rightarrow \text{We do obtain a concrete handle on the abstract tangent vectors} \; \xi \in T_p(M), \text{ given a chart} \; h \]

Namely:
Given a chart \(\mathcal{C} \), every abstract point \(p \in M \) has a concrete image \(\mathcal{C}(p) \in \mathbb{R}^m \), and:

- Every abstract vector \(\xi \in T_p(M) \) has a concrete image \(\eta \in T_{\mathcal{C}(p)}(\mathbb{R}^m) \) namely:

 \[\eta = T_p \mathcal{C}(\xi) \]

- The image \(\eta \) is concrete because \(\eta \) is tangent vector to a point \(q \in \mathbb{R}^m \), and it therefore must take the form (we showed this):

 \[\eta = \sum_{i=1}^{\infty} \eta_i \frac{\partial}{\partial x^i} \bigg|_{x=q} \]

Conversely: (and very conveniently)

- Assuming a fixed \(\mathcal{C} \), any choice of a \(q = (x',...,x^m) \) denotes a \(p \in M \) and any choice of a \((q',...,q^n) \) denotes a \(\xi \in T_p(M) \).
E.g. \(\eta = \frac{\partial}{\partial x} \bigg|_{x=q} \) is the image of some abstract \(\xi \in T_p(M) \), for fixed \(\xi \).

Notation: \(\eta = \frac{\partial}{\partial x} \bigg|_{x=p} \)

[Symbolic notation]

Next:

If we hold \(p \) and \(\xi \in T_p(M) \) fixed,

how do the numbers \((x', \ldots, x^n) \)

and \((\eta', \ldots, \eta^n) \) change when we

change the chart? \[\text{Physicists' def of } T_p(M)\]