Recall: So far, we have 2 ways to capture shape:

- Specified $g \Rightarrow$ specified distance in \mathcal{M}
 \[\Rightarrow \text{implicitly specified "shape" of } \mathcal{M} \]

(Notice (fore essay): See also my new paper 1510.02725)

Then, new:

- Specified $\nabla \Rightarrow$ specified parallel transport in \mathcal{M}
 \[\Rightarrow \text{implicitly specified "shape" of } \mathcal{M} \]

Question:

How does ∇ determine "shape"? Through:

\[\text{Torsion & Curvature!} \]

Recall:

\[\Gamma^r_{ab} = \frac{\partial x^r}{\partial x^a} \frac{\partial x^b}{\partial x^c} \Gamma^c_{ij} + \frac{\partial x^r}{\partial x^c} \frac{\partial^2 x^a}{\partial x^i \partial x^j} \]

Notice: The antisymmetric part of Γ transforms tensorially!

\[\Gamma^k_{(ij)} := \frac{1}{2} \left(\Gamma^k_{ij} + \Gamma^k_{ji} \right) \]
\[\Gamma^k_{(ij)} := \frac{1}{2} \left(\Gamma^k_{ij} - \Gamma^k_{ji} \right) \]
\[\Gamma^k_{ij} = \Gamma^k_{(ij)} + \Gamma^k_{(ij)sym} \]
\[\Rightarrow \Gamma^r_{(sym)ab} = \frac{\partial x^r}{\partial x^a} \frac{\partial x^b}{\partial x^c} \frac{\partial^2 x^a}{\partial x^i \partial x^j} \Gamma^k_{(sym)ij} \]

Definition: $\mathcal{T}^k_{ij} := 2 \Gamma^k_{(sym)ij}$ in the "Torsion tensor"

(Notice: Since Γ is not a tensor, but $\Gamma_{(sym)}$ is, \mathcal{T} is not a tensor)
In General Relativity, one assumes torsionless, i.e., \(T = 0 \).

Idea: "(Extended) equivalence principle:"

Christoffel \(\Gamma \) will express gravitational and pseudo forces. Therefore, we require that around each \(p \in M \) there exists a chart so that \(\Gamma^i(p) = 0 \) (i.e., no such forces in free fall).

This rules out the existence of torsion:

Why? The torsion is a tensor.

\[\Rightarrow \text{\(\mathcal{T} \) transforms linearly with invertible Jacobian matrix} \]

\[\overline{\mathcal{T}}_{jk}^i(x) = \frac{\partial x^i}{\partial x^k} \frac{\partial x^k}{\partial x^l} \mathcal{T}_{kl}^i(x) \]

\[\Rightarrow \text{If} \ \mathcal{T}_{ij} \ \text{vanishes in one chart, it vanishes in all charts.} \]

Proposition: Vice versa, if \(\mathcal{T}_{jk}^i(x) = 0 \) \(\forall x \in \mathcal{M} \), then there is for every \(p \in M \) a chart with \(\Gamma^i_{jk}(p) = 0 \):\n
Recall: \(\xi \) is autoparallel to a path \(\gamma : t \rightarrow x(t) \) if

\[\nabla \xi_t = 0 \]

\(\nabla \) is parallel transported along the path \(\gamma \) in \(\mathcal{M} \).

Explicitly:

\[\frac{d\xi^k}{dt} + \Gamma^k_{ij} \frac{dx^i}{dt} \xi^j = 0 \]

Geodesics: A curve \(\gamma : t \rightarrow x(t) \) is called a geodesic if \(\xi \) is autoparallel along \(\gamma \), i.e., if

\[\nabla_{\dot{\gamma}} \gamma = 0 \]

Meaning: The path \(\gamma \) is in \(\mathcal{M} \) such that the path's tangent vectors are parallel translates of each other.
In charts, geodesics $x^\gamma(t)$ obey:

\[
\frac{d^2 x^\gamma}{dt^2} + \Gamma^\gamma_{\delta\mu}(x) \frac{dx^\delta}{dt} \frac{dx^\mu}{dt} = 0 \quad (\star)
\]

Theory of ordinary differential equations:

⇒ Given $p = x^\gamma(0)$, each initial condition $\xi = x^\gamma(0)$ belongs to a unique geodesic x^γ of non-zero length.

Notice: If $x^\gamma(t)$ solves (\star) then $x^\gamma(\lambda t)$ also solves (\star) and for $\lambda \in \mathbb{R}$:

\[
x^\gamma_{\lambda \xi}(t) = x^\gamma(\lambda t) \quad (6)
\]

(Exercise: verify)

"Exponential map":

Consider a fixed point $p \in \mathcal{M}$.

The exponential map is defined through:

\[
\exp_p: T_p(M) \to \mathcal{M} \quad \text{((real)} \text{ly from a neighborhood of } p \text{ to a neighborhood of } p \text{ in } \mathcal{M})
\]

\[
\exp_p: \xi \to \exp_p(\xi) = x^\gamma(1)
\]

where x^γ is the geodesic with $x^\gamma(0) = p, x^\gamma(0) = \xi$.

Observe:

From (6) we obtain:

\[
x^\gamma(\lambda) = x^\gamma_{\lambda \xi}(1) = \exp_p(\lambda \xi) \quad (E)
\]
"Geodesic" or "Riemann normal" coordinates:

- \(\exp_p \) is a diffeomorphism from a neighborhood of \(0 \in T_p(M) \cong \mathbb{R}^n \) into a neighborhood of the point \(p \in M \).

\[\Rightarrow \exp_p \text{ provides a chart around } p: \]

- Choose a basis, say \(e_1, e_2, \ldots, e_n \) of \(T_p(M) \), then:
 \[\xi = \xi^i e_i \]

- Through \(\exp_p \), the \(\xi^i \) become the coordinates of points in a neighborhood of \(p \in M \):
 \[(\xi^1, \ldots, \xi^n) \rightarrow \exp_p (\xi^i e_i) \in M \]

- These \(\xi^i \) are called "normal" or "geodesic coordinates."

\[\Rightarrow \text{Geodesics, } \gamma, \text{ through } p \text{ are straight lines in a normal c.s. about } p! \]

- Recall (E):
 \[\gamma_p^\xi (\lambda) = \exp_p (\lambda \xi^i e_i) \]

 - For varying \(\lambda \), one moves along the geodesic in \(M \).

 - For varying \(\lambda \), one moves on a straight line in the coordinate system of the \(\xi^i \).

- Thus: In geodesic c.s., geodesics through \(p \) are straight lines of constant velocity \(\xi^i \).

- Does this mean \(\Gamma^k_{ij} (p) = 0 \)? No!
Geodesic eqn. at p:
\[
\frac{d^2 x^k}{dt^2} + \Gamma^k_{ij}(p) \frac{dx^i}{dt} \frac{dx^j}{dt} = 0
\]

Thus:
\[
\left(\Gamma^k_{ij}(p) + \Gamma^k_{ji}(p) \right) \frac{dx^i}{dt} \frac{dx^j}{dt} = 0
\]

$\Rightarrow \Gamma^k_{ij}(p) = 0$ in geodesic coords.

\Rightarrow Indeed: If the torsion vanishes, $\Gamma^k_{ij}(p) = \frac{1}{2} \mathcal{J}^k_{ij}(p) = 0$

then for each $p \in \mathcal{M}$ there exists a chart in which
the entire gravity and pseudo field vanishes at p:

Note:
Quantum fluctuations may induce torsion! So, let's nonetheless ask:

What would torsion mean, geometrically?

Abstract definition of Torsion:

- Assume ξ_1 and ξ_2 are tangent vectors at $p \in \mathcal{M}$:

 Then, the **Torsion map** is defined as:

 $\mathcal{J} : T_p'(\mathcal{M}) \times T_p'(\mathcal{M}) \to T_p'\mathcal{M}$

 $\mathcal{J} : \xi_1, \xi_2 \to \mathcal{J} (\xi_1, \xi_2) := \nabla_{\xi_1} \xi_2 - \nabla_{\xi_2} \xi_1 - [\xi_1, \xi_2]$

- It is used to define the **Torsion tensor**, \mathcal{J},

 $\mathcal{J} \in T_p'\mathcal{M}$

 through:

 $\mathcal{J} (\omega, \xi_1, \xi_2) := \langle \omega, \mathcal{J} (\xi_1, \xi_2) \rangle \in \mathbb{R}$
Choose canonical bases \(w := dx^k, g_1 := \frac{2}{\partial x^i}, g_2 := \frac{2}{\partial x^j} \):

\[
\mathcal{J}^k_{ij} := dx^k \left(\mathcal{J}(\frac{2}{\partial x^i}, \frac{2}{\partial x^j}) \right)
\]

\[
= \langle dx^k, \mathcal{J}(\frac{2}{\partial x^i}, \frac{2}{\partial x^j}) \rangle \quad \text{(in more convenient notation)}
\]

\[
= \langle dx^k, \frac{2}{\partial x^i}, \frac{2}{\partial x^j} \rangle - \left[\frac{2}{\partial x^i}, \frac{2}{\partial x^j} \right]
\]

\[
\frac{\partial}{\partial x^j} \left(\frac{2}{\partial x^i} \right) = \Gamma^r_{ij} \frac{2}{\partial x^r}
\]

\[
= \langle dx^k, \Gamma^r_{ij} \frac{2}{\partial x^r} - \Gamma^r_{ji} \frac{2}{\partial x^r} \rangle = \Gamma^r_{ij} \delta^r - \Gamma^r_{ji} \delta^r
\]

\[
\implies \mathcal{J}^k_{ij} = \Gamma^r_{ij} - \Gamma^r_{ji}
\]

Geometric meaning of torsion? Parallelograms would not close!

Travel from \(p \) infinitesimally in \(\xi \) and then \(\eta \) direction, and compare with the reverse. \((\text{In flat space: } x^k + \xi^k + \eta^k = x^k + \xi^k + \eta^k)\)

Recall parallel transport: \(\nabla_{\xi} \gamma = 0 \)

\[
\frac{d\gamma^k}{dt} + \Gamma^k_{ij} \frac{dx^i}{dt} \gamma^j = 0
\]

Now use \(\gamma := \xi, \frac{dx}{dt} = \eta \):

\[
\tilde{\xi}(\tau) = ?
\]

\[
\tilde{\xi}^k(x + \tau \xi) \approx \xi^k(x) + \frac{d\xi^k}{d\xi}(x) \]

\[
= \xi^k(x) - \Gamma^k(x)_{ij} \eta^i \eta^j
\]

\[
\implies \text{Cds. of } \xi : \quad x^a + \eta^a + \xi^a - \Gamma^a(x)_{ij} \eta^i \eta^j
\]
Analogously obtain: \(\text{c.d.s. of } u: x^a + \xi^a + \eta^a - \Gamma^a_{ij} \xi^i \eta^j \)
\[\Gamma_{ij}^k \xi^i \eta^j \]

\(\Rightarrow \text{c.d. distance from } u \text{ to } \tilde{u} \text{ is: } \left(\Gamma_{ij}^k \xi^i - \Gamma_{ij}^k \xi^i \right) \eta^j \xi^j = T_{ij}^k \eta^j \xi^j \)

Comment: We had:

\[\tilde{\xi}^k(x + \eta^i) \approx \xi^k(x^i) + \frac{\partial \xi^k}{\partial x^i}(x^i) = \xi^k(x^i) - \Gamma^k_{ij} \xi^i \eta^j \]

this is also:

\[\xi^k(x^i) = (\eta^i \xi^k_{,i} + \Gamma^k_{ij} \eta^i \xi^j_{,i}) + \xi^k_{,i} \]

Thus: c.d. distance from \(u \) to \(\tilde{u} \) is:

\[\left(x^a + \xi^a + \eta^a - \eta^i \xi^k_{,i} - \eta^i \xi^k_{,i} \right) - \left(\xi^k - \xi^k - \xi^k_{,k} - \eta^i \xi^k_{,i} - \eta^i \xi^k_{,i} \right) = T_{ij}^k \eta^j \xi^j \]

Recall that indeed: \(T: \eta, \xi \rightarrow T(\eta, \xi) = \nabla_\eta \xi - \nabla_\xi \eta - [\eta, \xi] \)

Curvature:

Assume \(\xi_1, \xi_2 \) and \(\xi_3 \) are tangent vectors at \(\text{p.e.m.} \)

1. The curvature map, \(R \), is defined through:

\[R: \xi_1, \xi_2, \xi_3 \rightarrow R(\xi_1, \xi_2) \xi_3 = (\nabla_\xi_2 \xi_1 - \nabla_\xi_1 \xi_2 - \xi_1 [\xi_2, \xi_3]) \xi_3 \]

2. It defines the curvature tensor, \(R \),

\[R \in T_3'(M) \]

through:

\[R(\omega, \xi_1, \xi_2, \xi_3) := \langle \omega, R(\xi_1, \xi_2) \xi_3 \rangle \in \mathbb{R} \]
In a chart:

\[R^i_{j;ks} = \langle dx^i, R\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right)\frac{\partial}{\partial x^k}\rangle \]

\[= \langle dx^i, \left(\nabla_2 \nabla_2 \frac{\partial}{\partial x^j} - \nabla_2 \nabla_2 \frac{\partial}{\partial x^k} - \nabla_2 \nabla_2 \frac{\partial}{\partial x^l}\right)\frac{\partial}{\partial x^i}\rangle \]

\[= \langle dx^i, \nabla_2 \Gamma^i_{ks} \frac{\partial}{\partial x^j} - \nabla_2 \Gamma^i_{ks} \frac{\partial}{\partial x^l}\rangle \]

\[= \langle dx^i, \left(\Gamma^i_{ksj} + \Gamma^i_{ksl} \right) \frac{\partial}{\partial x^j} - \Gamma^i_{ksj} \frac{\partial}{\partial x^l}\rangle \]

\[= \Gamma^i_{kj} - \Gamma^i_{ksj} - \Gamma^i_{ksj} \frac{\partial}{\partial x^l}\]

(at origin of geodesic do they vanish.)

Curvature tensor's meaning?

Intuition:

- Contains derivatives of \(\Gamma \rightarrow \)

- Expresses variation in gravitational force \(\Rightarrow \)

- Expresses the strength and direction of "tidal force".

Geometry:

- Curvature expresses noncommutativity of two parallel transports, namely:
Proposition: (Ricci Identity)

Assume the torsion vanishes and that ξ is a vector field. Then:

$$\xi^a_{\text{jcd}} - \xi^a_{\text{jdc}} = R^a_{\text{cdef}} \xi^b$$

(here: $\xi^a_{\text{jcd}} : = \xi^a_{\text{jcd}}$ etc.)

Remark: (too messy to derive, because need Taylor expansion)

Yes, e.g., test by Shouto Tsuchiya

It implies that for parallel transport along infinitesimal parallelogram:

$$(\xi^a - \xi^a) \approx \gamma^{bc} \nu^c R^a_{\text{cedf}} \xi^d$$

Proof of Ricci identity:

- Assume ξ, η, ν are vector fields.

- Then, $R(\xi, \eta)\nu := \nabla_{\xi} (\nabla_{\eta} \nu) - \nabla_{\eta} (\nabla_{\xi} \nu)$ reads

 $\nabla_{\xi} (\nabla_{\eta} \nu) - \nabla_{\eta} (\nabla_{\xi} \nu)$;

 in basis: $R^a_{\text{bed}} \xi^b \eta^c \nu^d = (\nabla_{\xi^d} \eta^c)_{\text{ijc}} \xi^i - (\nabla_{\xi^d} \xi^c)_{\text{ijc}} \eta^i$

- Terms cancel:

 $R^a_{\text{bed}} \xi^b \eta^c \nu^d = (\nabla_{\xi_d} \eta^c - \nabla_{\eta_d} \xi^c) \nu^d$

 $\Rightarrow \quad R^a_{\text{bed}} \xi^b \eta^c \nu^d = (\nabla_{\xi_d} \eta^c - \nabla_{\eta_d} \xi^c) \nu^d$

- True $\forall \xi, \eta \Rightarrow R^a_{\text{bed}} \nu^d = \nu^a_{\text{jcb}} - \nu^a_{\text{jdc}}$
The "Bianchi Identities":

- They are automatic relations among torsion and curvature, by construction.

- Preparation: \(\checkmark\) for maps!

Consider an arbitrary \(\mathcal{F}(M)\)-linear map:

\[K: \xi_1 \times \xi_2 \times \ldots \times \xi_r \rightarrow \mathcal{F}(\xi_1, \ldots, \xi_r) \]

\(\text{target vector} \rightarrow \text{target vector}\)

i.e. at each \(p \in M\):

\[K: T_p(M) \rightarrow T_p(M) \]

We can view \(K\) as a tensor \(\tilde{K} \in T_p(M)^\vee\), (as we did for \(R\) and \(J\))

namely:

\[\tilde{K}(\omega, \xi_1, \ldots, \xi_r) = \langle \omega, K(\xi_1, \ldots, \xi_r) \rangle \]

Now let the usual derivative of the tensor \(K\) define the derivative of the map \(K\):

\[\langle \omega, (\nabla_{\xi} K)(\xi_1, \ldots, \xi_r) \rangle := \nabla_{\xi} K(\omega, \xi_1, \ldots, \xi_r) \]

Using \(\nabla\) for map:
1st Bianchi Identity:

\[\sum_{\text{cyclic}} R(\xi, \eta) v = \sum_{\text{cyclic}} \left(T(T(\xi, \eta), \nu) + (\xi \nabla) \right)(\eta, \nu) \]

2nd Bianchi Identity:

\[\sum_{\text{cyclic}} \left((\nabla_\xi R)(\eta, \nu) + R(T(\xi, \eta), \nu) \right) = 0 \]

with obvious simplification in case \(T = 0 \).

Note: They are automatically obeyed equations, just like any set of bin-operators obeys the Jacobi identity with respect to \([,] \). Indeed that's why:

Proof of 1st Bianchi: (assuming no torsion)

\[\sum_{\text{cyclic}} R(\xi, \eta) v = 0 \]

Indeed:

\[(\nabla_\xi \nabla_\eta - \nabla_\eta \nabla_\xi) v - \nabla_{[\xi, \eta]} v + \text{cyclic} \]

\[= \nabla_\xi (\nabla_\eta v - \nabla_\nu \gamma) - \nabla_{[\gamma, \nu]} \gamma + \text{cyclic} \]

Exercise: Prove that, without torsion:\n
\[\nabla_\gamma v - \nabla_\nu \gamma = [\gamma, v] \]

\[= [\xi, [\gamma, v]] + \text{cyclic} \]

because again \([\alpha, [\beta, \gamma]] = [\alpha, \beta] \]

\[= \left[\xi, [\gamma, v] \right] + \text{cyclic} \]
\[= 0 \quad \text{by Jacobi identity for all lin. maps.} \]

Recall:

Assume \(A, B, C \) are linear maps \(V \to V \)

Then: \([A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0\]

i.e., the Jacobi identity holds.

Proof: Simply spell out the commutators.

Remark: This means that, e.g., in quantum mechanics, all objects that need to be representable as operators on the Hilbert space must obey the Jacobi identity, e.g., generators of symmetries.