Assignment 7 - Stokes's and Divergence theorem.

1. The surface integral of a scalar function can be given in a particularly simple form when the surface Σ is the graph of a function - i.e., when its equation is of the type $z=f(x, y)$, where the domain D of f is the projection of the surface Σ on the $x y$-plane. In this special case, it is convenient to use x and y themselves as parameters, so that the surface \vec{S} can be described through this map:

$$
\vec{S}(x, y)=x \hat{i}+y \hat{j}+f(x, y) \hat{k}
$$

(a) Show that in this case, the surface integral becomes,

$$
\iint_{\Sigma} \psi d \sigma=\iint_{D} \psi(x, y, f(x, y)) \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d x d y
$$

(b) Use this formula to compute the surface area of the paraboloid $z=$ $x^{2}+y^{2}$ between $z=0$ and $z=2$.
Hint: After setting up the integral in Cartesian coordinates, switch to polar coordinates and make the change of variable $1+4 \rho^{2}=u$.
(c) The surface Σ is the piece of the plane $z+y=1$ cut out by the cylinder $x^{2}+y^{2}=a^{2}$, oriented so that \hat{n} points upwards. Calculate the flux through Σ of the vector field $\vec{F}=k(x \hat{i}+y \hat{j}+z \hat{k})$, where $k>0$ is an arbitrary constant.
2. Evaluate

$$
\iint_{\Sigma}[\vec{\nabla} \times \vec{F}] \cdot \hat{\mathbf{n}} d \sigma
$$

where $\vec{F}=(y-z) \hat{i}-(x+z) \hat{j}+(x+y) \hat{k}, \Sigma$ is the portion of $z=9-x^{2}-y^{2}$ with $z \geq 0$ and $\hat{\mathbf{n}}$ is the upward-pointing unit normal.
3. Use Gauss' theorem to evaluate

$$
\iint_{\Sigma}\left(x^{2}+y+z\right) d \sigma
$$

where Σ is the surface of the ball $x^{2}+y^{2}+z^{2} \leq 1$.
Hint: To use the theorem, you first need to find a vector field \vec{F} such that $\vec{F} \cdot \hat{\mathbf{n}}=x^{2}+y+z$.

