Assignment 9 - Fourier series.

1. The Fourier series for the function $f(x)=\frac{1}{2} x,-\pi<x<\pi$ is

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin n x}{n}
$$

a) Sketch the graph of the function f_{p} which is the pointwise sum of the series on \mathbb{R}.
b) Use Parseval's formula to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
c) Show that

$$
\frac{1}{12}\left(\pi^{2}-3 x^{2}\right)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\cos n x}{n^{2}} \quad, \quad-\pi<x<\pi
$$

and

$$
\frac{1}{12} x\left(\pi^{2}-x^{2}\right)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin n x}{n^{3}} \quad, \quad-\pi<x<\pi
$$

d) Discuss whether the sum of each Fourier series in c) is piecewise continuous, continuous, piecewise C^{1} or C^{1} on \mathbb{R}. Sketch the graphs of the sum functions.
2. Use Parseval's formula and a suitable Fourier series to sum $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.

Hint: Look at Table 5.1. in the lecture notes.
3. Consider the function f defined by $f(x)=b, \quad 0<x<L$.
i) Extend f as an odd function and find its Fourier series (the sine series).
ii) Discuss convergence of the series on \mathbb{R}, and sketch the graph of its sum function.
4. i) Prove that the series

$$
\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}
$$

converges pointwise on \mathbb{R}, and uniformly on any finite interval.. Call its sum $f(x)$.
ii) Obtain the Fourier series of the function g defined by

$$
g(x)=\int_{0}^{x} f(t) d t
$$

justifying your method by referring to appropriate theorems.
iii) What can you say about continuity and smoothness of the function g? Explain.

