Homework 1 - Review material.
 Not to be handed in

Linear algebra

Notation: $(\hat{i}, \hat{j}, \hat{k})$ are the unit basis vectors of the Cartesian coordinate system.

1. The angular momentum vector \vec{H} of a particle of mass m is defined by $\vec{H}=\vec{r} \times(m \vec{v})$, where $\vec{v}=\vec{\omega} \times \vec{r}$.
(a) Using the result,

$$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$$

show that if \vec{r} is perpendicular to $\vec{\omega}$, then $\vec{H}=m r^{2} \vec{\omega}$.
(b) Given that $m=100, \vec{r}=0.1(\hat{i}+\hat{j}+\hat{k})$ and $\vec{\omega}=2 \hat{i}+2 \hat{j}-4 \hat{k}$, calculate $\vec{r} \cdot \vec{\omega}$ and \vec{H}.
2. Given $\vec{a}=-1 \hat{i}-3 \hat{j}-1 \hat{k}, \vec{b}=q \hat{i}+1 \hat{j}+1 \hat{k}$ and $\vec{c}=1 \hat{i}+1 \hat{j}+q \hat{k}$,
(a) Calculate $\vec{a} \times \vec{b}$.
(b) Determine the values of q for which \vec{a} is perpendicular to \vec{b}.
(c) Determine the values of q for which $\vec{a} \times(\vec{b} \times \vec{c})=\overrightarrow{0}$.

Integration

3. Evaluate the following,

$$
\text { a) } \int_{0}^{1} x \sqrt{2 x+1} d x \quad \text { b) } \int \frac{\sin (\ln x)}{x} d x \quad \text { c) } \int_{1}^{e}(\ln x)^{2} d x
$$

4. Evaluate the following, where R is bounded by $0 \leq x \leq 1, x^{2} \leq y \leq x$,

$$
\iint_{R} \frac{x}{y} \mathrm{e}^{y} d x d y
$$

Differentiation

5. Given a scalar function $F(x(t), y(t))$, that depends on two variables (x, y) that are themselves functions of t,
(a) Determine the Taylor polynomial approximation of $F(x+\Delta x, y+\Delta y)$ up to and including first-order terms in Δx and Δy.
(b) Calculate the derivative of $F(x(t), y(t))$ with respect to $t: d F / d t$.
6. Find the one-parameter family of solutions for the following differential equations,

$$
\begin{array}{ll}
\text { a) } \frac{d y}{d x}=\frac{x}{y} & \text { b) } \frac{d y}{d \theta}=\frac{e^{y} \sin ^{2} \theta}{y \sec \theta}
\end{array}
$$

