Homework 2-Paths and curves.

1. Find a path in \mathbb{R}^{2} whose image set is:
(a) The circle with radius 4 and center at $(-1,3)$.
(b) The ellipse which in Cartesian coordinates has the equation,

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1 .
$$

(c) The branch of the hyperbola,

$$
\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

lying in the lower-left quadrant $(x, y) \leq 0$.
2. A point moves along a right-circular helix C, which is the curve of the path $\vec{\gamma}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by,

$$
\vec{\gamma}(t)=\cos t \hat{i}+\sin t \hat{j}+2 t \hat{k} .
$$

(a) Sketch C.
(b) Find the velocity and the speed of the point.
(c) Find the acceleration and comment on its direction.
3. Given that the Euclidean norm is defined as $\|\vec{x}\|^{2}=\vec{x} \cdot \vec{x}$ and that $\vec{x}(t)$ is a differentiable function, show that
(a) $\left(\|\vec{x}(t)\|^{2}\right)^{\prime}=2 \vec{x}(t) \cdot \vec{x}^{\prime}(t)$.
(b) $(\|\vec{x}(t)\|)^{\prime}=\vec{x}(t) \cdot \vec{x}^{\prime}(t) /\|\vec{x}\|$
4. Find the field lines and sketch the field portrait for the following vector fields $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) $\vec{F}(x, y)=x \hat{i}+x^{2} \hat{j}$.
(b) $\vec{F}(x, y)=x^{2} \hat{i}+x \hat{j}$.
(c) $\vec{F}(x, y)=y \hat{i}+y^{2} \hat{j}$.
5. A fluid flow in \mathbb{R}^{3} has velocity field $\vec{v}=-x^{2} \hat{i}+x \hat{j}+2 z \hat{k}$.
(a) Find the equation of the field line which passes through an arbitrary point $\left(x_{0}, y_{0}, z_{0}\right)$ at time $t=0$.
(b) A fluid particle is at position $\left(1,0, e^{2}\right)$ at time $t=0$. Find its position at time $t=1$.
6. Sketch the two curves $\vec{\gamma}(t)=t \hat{i}+t^{2} \hat{j} ; t \in[1,5]$ and $\vec{\beta}(\tau)=e^{\tau} \hat{i}+e^{2 \tau} \hat{j} ; \tau \in[0, \ln 5]$. How are they the same? How are they different?
7. A curve joining the points P_{1} and P_{2} in \mathbb{R}^{2} is parameterized by two different paths,

$$
\vec{\gamma}(t) ; t_{1} \leq t \leq t_{2} \quad \text { and } \quad \vec{\beta}(\tau) ; \tau_{1} \leq \tau \leq \tau_{2},
$$

where $\tau=h(t)$ and $h^{\prime}(t)>0$. Assume that $\vec{\gamma}, \vec{\beta}$, and h are all C^{1}.
(a) Prove that

$$
\int_{t_{1}}^{t_{2}}\left\|\vec{\gamma}^{\prime}(t)\right\| d t=\int_{\tau_{1}}^{\tau_{2}}\left\|\vec{\beta}^{\prime}(\tau)\right\| d \tau
$$

(b) Interpret the result geometrically.

