Homework 3 - Paths integrals and gradient fields.

1. A force field $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by $\vec{F}(x, y, z)=x \hat{i}+y \hat{j}+z \hat{k}$. Compute the work $\int_{\mathcal{C}} \vec{F} \cdot d \vec{s}$ done by \vec{F} in moving a particle along the parabola $z=0, y=x^{2}$, from $x=-1$ to $x=3$.
2. A vector field is given by $\vec{F}(x, y, z)=x^{2} \hat{i}+x y \hat{j}+1 \hat{k}$.

Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{s}$ where the curve \mathcal{C} parameterized by $\vec{\gamma}:[0,1] \rightarrow \mathbb{R}^{3}$ is given as $\vec{\gamma}(t)=t \hat{i}+t^{2} \hat{j}+1 \hat{k}$.
3. Find the length of the curve parameterized by $\vec{\gamma}(t)=\cos t \hat{i}+\sin t \hat{j}+t \hat{k} ; \quad \pi \leq t \leq 3 \pi$.
4. A fence is built with posts arranged in the $x y$-plane along the quarter circle $x^{2}+y^{2}=25,(x, y)>0$.

The height of the fence at point (x, y) is given by $h(x, y)=10-x-y$ feet.
(a) Calculate the area of one side of the fence.
(b) Calculate the average height of the fence above the $x y$-plane.
5. (a) Suppose that $\vec{g}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a vector-valued function and that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field. Define the composition $h: \mathbb{R} \rightarrow \mathbb{R}$ by,

$$
h(t)=f(\vec{g}(t))
$$

Show that if f and \vec{g} are C^{1} functions, then

$$
h^{\prime}(t)=\nabla f(\vec{g}(t)) \cdot \vec{g}^{\prime}(t)
$$

(b) Suppose a vector field \vec{F} is given by the gradient of a scalar field Φ according to $\vec{F}=-\vec{\nabla} \Phi$. Suppose also that $\vec{\sigma}(t)$ is a field line of \vec{F}. Show that $\Phi(\vec{\sigma}(t))$ is a decreasing function of t.
(c) If a particle of mass m moves in a gradient force field $\vec{F}=-\nabla V$, the total energy of the particle is given by,

$$
E=\frac{1}{2} m\|\vec{v}(t)\|^{2}+V(\vec{x}(t))
$$

where $\vec{x}(t)$ is the particle's position at time t and $\vec{v}(t)=\vec{x}^{\prime}(t)$ is its velocity. Assume that Newton's second law,

$$
\vec{F}=m \vec{a}(t)
$$

is satisfied, where $\vec{a}(t)=\vec{v}^{\prime}(t)$ is the particle's acceleration at time t. Prove that the energy is conserved, i.e., that $\frac{d E}{d t}=0$. That is why a gradient force field is called sometimes called a conservative force field.

