Assignment 4 - Conservative fields and Green's theorem.

1. A force \vec{F} acts on a particle that is moving in the plane along the semi-circle parameterized by $\vec{\gamma}(t)=(-\cos t) \hat{i}+$ $(\sin t) \hat{j} ; t \in[0, \pi]$. Find the work $W=\int_{\mathcal{C}} \vec{F} \cdot d \vec{s}$ done by the force field when
(a) $\vec{F}=\sqrt{x^{2}+y^{2}} \hat{i}$
(b) $\vec{F}=\sqrt{x^{2}+y^{2}} \hat{\tau}$, where $\hat{\tau}$ is the unit vector tangential to the path.
2. Evaluate $\oint_{C} \vec{F} \cdot d \vec{s}$, where $\vec{F}=2 x(x+y) \hat{i}+\left(x^{2}+x y+y^{2}\right) \hat{j}$ and the positively-oriented curve C encloses the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$.
3. Let D be the upper half-plane $(y>0)$ and consider the vector field $\vec{F}: D \mapsto \mathbb{R}^{2}$ given by $\vec{F}(x, y)=\left(\frac{7}{y}, \frac{-7 x}{y^{2}}\right)$. Test whether \vec{F} is a gradient field, and if so, find a potential Φ.
4. Consider the closed curve C, which is the image of the path $\vec{\gamma}(t)=(a \cos t, b \sin t), t \in[0,2 \pi]$.
(a) Given the velocity field $\vec{v}=(-y, x)$, sketch the velocity vector at various points along C and predict whether the circulation of \vec{v} around C is positive, negative or zero. Verify your prediction.
(b) Repeat 4a with $\vec{v}=(x, y)$.
5. In Newton's theory of gravitation, the Earth's gravitational field is given by,

$$
\vec{g}(\vec{r})=\frac{-G M}{r^{3}} \vec{r}
$$

where $\vec{r}=(x, y, z)$ is the position vector relative to the centre of the Earth, $r=\|\vec{r}\|, M$ is the mass of the Earth and G is the gravitational constant. The force acting on a particle of mass m at position \vec{r} is given by $\vec{F}=m \vec{g}(\vec{r})$.
(a) A rocket of mass m is launched from position $(0,0, R)$ and travels to $(0,0, R+h)$ in a time T, along the straight line path C_{1}. A similar rocket travels along the spiral path C_{2} given by

$$
\vec{r}=\vec{h}(t)=\left(R+\frac{h}{T} t\right)\left(-\sin \frac{2 \pi t}{T}, 0, \cos \frac{2 \pi t}{T}\right)
$$

with $0 \leq t \leq T$. By evaluating the appropriate line integrals, show that the work done by the gravitational field along C_{1} equals the work done along C_{2} (Figure 1).
(b) Show that the gravitational field is conservative by finding a potential Φ. Hence, verify the expression for work obtained in 5a.

Figure 1: For question 5. The origin is at the centre of the Earth.

