Assignment 6 - Vector Fields, Surfaces, Surface Integrals, ∇.

1. Suppose that $\mathbf{v}=(0, y, 0)$ is the velocity field of a fluid and let S be the surface defined by $y=x^{2}+z^{2}$, with $y \leq 1$. Calculate the volume of fluid crossing S in unit time, in the direction of increasing y.
2. Verify the following properties of the curl.
(i) Sum of two vector fields:

$$
\nabla \times(\mathbf{F}+\mathbf{G})=\nabla \times \mathbf{F}+\nabla \times \mathbf{G} .
$$

(ii) Product of a scalar field and a vector field:

$$
\nabla \times(f \mathbf{F})=f \nabla \times \mathbf{F}+\nabla f \times \mathbf{F} .
$$

(iii) Vector product of two vector fields:

$$
\nabla \times(\mathbf{F} \times \mathbf{G})=(\nabla \cdot \mathbf{G}) \mathbf{F}-(\nabla \cdot \mathbf{F}) \mathbf{G}+(\mathbf{G} \cdot \nabla) \mathbf{F}-(\mathbf{F} \cdot \nabla) \mathbf{G}
$$

3. Verify the following "zero identities":
(i) $\quad \nabla \times(\nabla f)=\mathbf{0}, \quad$ for any C^{2} scalar field f.
(ii) $\quad \nabla \cdot(\nabla \times \mathbf{F})=0, \quad$ for any C^{2} vector field \mathbf{F}.
4. Let f, g be C^{2} scalar fields on \mathbb{R}^{3}.
(i) Verify that $\nabla \times(f \nabla g)=\nabla f \times \nabla g$.
(ii) Simplify $\nabla \times(f \nabla g+g \nabla f)$.
(iii) Verify that $\quad \nabla \cdot(f \nabla g)=f \nabla^{2} g+\nabla f \cdot \nabla g$.
5. Verify the "curl of a curl" identity

$$
\nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \cdot \mathbf{F})-\nabla^{2} \mathbf{F} .
$$

where ∇^{2} is the Laplacian operator.
6. Use Maxwell's equations (see Section 4.1.1) to show that if the charge density field ε and the current density field \mathbf{J} are zero, the electric vector field \mathbf{E} satisfies the "wave equation"

$$
\frac{\partial^{2} \mathbf{E}}{\partial t^{2}}-c^{2} \nabla^{2} \mathbf{E}=0 .
$$

This is the fundamental equation that describes the propagation of electromagnetic waves, such as light.

