## Assignment 8 - Fourier series.

1. Consider the function $f$ defined by

$$
f(x)=|\sin x|, \quad \text { for } \quad-\pi<x<\pi .
$$

a) Find the Fourier series of $f$.
b) Sketch the graph of the function to which the series converges pointwise on $\mathbb{R}$. Use the pointwise convergence theorem to justify your answer.
c) By choosing a suitable value of $x$ in the series that you have found, show that $\sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1}=\frac{1}{2}$.
2. For each of the following functions defined on the interval $(0, \pi)$ :
(a) Find the Fourier sine series.
(b) Find the Fourier cosine series.
(c) Sketch the functions to which the Fourier sine and cosine series converge on $\mathbb{R}$.
(i) $\quad f(x)=2 x-\pi$
(ii) $f(x)=\left\{\begin{array}{rrr}1 & \text { if } & 0<x<\pi / 2 \\ -1 & \text { if } & \pi / 2<x<\pi\end{array}\right.$
(iii) $f(x)=\sin x$.
3. (a) Show that the Fourier series for $f(x)=x^{2},-\pi<x<\pi$, is

$$
\frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\cos (n x)}{n^{2}}
$$

(b) Use the pointwise convergence theorem to find the pointwise sum function of the series on $\mathbb{R}$. Sketch its graph.
(c) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. (This is the Basel problem, which was famously first solved by Euler long before Fourier methods were developed)
(d) Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$.
4. Let $f$ be a $C^{1}$ function on $[-\pi, \pi]$. Prove that the Fourier coefficients of $f$ satisfy

$$
\left|a_{n}\right| \leq \frac{K}{n}, \quad\left|b_{n}\right| \leq \frac{L}{n}, \quad n=1,2, \cdots
$$

for some constants $K$ and $L$.

