Assignment 8 - Fourier series.

1. Consider the function f defined by

 $f(x) = |\sin x|, \quad \text{for} \quad -\pi < x < \pi.$

- a) Find the Fourier series of f.
- b) Sketch the graph of the function to which the series converges pointwise on \mathbb{R} . Use the pointwise convergence theorem to justify your answer.
- c) By choosing a suitable value of x in the series that you have found, show that $\sum_{k=1}^{\infty} \frac{1}{4k^2 1} = \frac{1}{2}$.
- 2. For each of the following functions defined on the interval $(0, \pi)$:
 - (a) Find the Fourier sine series.
 - (b) Find the Fourier cosine series.
 - (c) Sketch the functions to which the Fourier sine and cosine series converge on \mathbb{R} .

(i)
$$f(x) = 2x - \pi$$

(ii) $f(x) = \begin{cases} 1 & \text{if } 0 < x < \pi/2 \\ -1 & \text{if } \pi/2 < x < \pi \end{cases}$
(iii) $f(x) = \sin x$.

3. (a) Show that the Fourier series for $f(x) = x^2$, $-\pi < x < \pi$, is

$$\frac{\pi^2}{3} - 4\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\cos(nx)}{n^2}.$$

- (b) Use the pointwise convergence theorem to find the pointwise sum function of the series on \mathbb{R} . Sketch its graph.
- (c) Show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. (This is the Basel problem, which was famously first solved by Euler long before Fourier methods were developed)
- (d) Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$.
- 4. Let f be a C^1 function on $[-\pi,\pi]$. Prove that the Fourier coefficients of f satisfy

$$|a_n| \le \frac{K}{n}, |b_n| \le \frac{L}{n}, n = 1, 2, \cdots,$$

for some constants K and L.