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Preface

This course has two main themes:

i) the calculus of vector fields, and

ii) Fourier analysis.

The first theme, which includes the famous integral theorems associated with the names
of Green, Gauss and Stokes, represents the culmination of the traditional Calculus sequence.
This material provides the mathematical foundation for continuum mechanics (AMATH
361), fluid dynamics (AMATH 463), and electromagnetic theory (PHYS 252 & 253) and is
of importance for partial differential equations (AMATH 353). The second theme, Fourier
analysis, is built on the remarkable idea that a variety of complicated functions can be
synthesized from pure sine and cosine functions. This material provides the mathematical
foundation for signal and image processing (course under development) and is of importance
for PDEs (AMATH 353) and quantum mechanics (AMATH 373).
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Chapter 1

Curves & Vector Fields

The notion of a curve is of fundamental importance in Applied Mathematics courses because
it arises in many physical and mathematical contexts. The path or trajectory of a particle
moving in space, e.g. a satellite orbiting the earth, is a curve in R3. A section of a power line
suspended between two pylons is another example of a curve in R3. Looking ahead in this
course, the field lines of a vector field F(x, y, z), such as magnetic flux lines, are a family of
curves in R3 (more on this in Section 1.2). More generally, if one considers a physical system
whose state at time t is a vector x(t) ∈ Rn, then the evolution in time of the system will be
described by a curve in Rn (the value of n will depend on the complexity of the system).

The first mathematical description of a curve that one encounters is the graph of a
function f : R→ R, described by an equation

y = f(x), a ≤ x ≤ b.

This way of describing curves has a number of limitations: it is only valid for curves in R2,
and it doesn’t give a simple description of the motion of particles (e.g. a particle moving
in a circle). So one introduces vector-valued functions and uses a parametric description of
curves (MATH 138),

x = g(t), a ≤ t ≤ b,

which provides a sufficiently general description of curves for most purposes.
In Section 1.1 we review vector-valued functions and their use in describing curves in R2

and R3, discussing the topic in greater depth than in MATH 138.

1.1 Curves in Rn

1.1.1 Curves as vector-valued functions

Let g : [a, b]→ Rn be a vector-valued function , i.e. a function which associates with each real
number t ∈ [a, b] a unique vector g(t) ∈ Rn. We can express g(t) in terms of its components
relative to the standard basis in Rn:

g(t) = (g1(t), g2(t), . . . , gn(t)), (1.1)
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where the gi, i = 1, . . . , n, are scalar functions called the component functions of g. We shall
work with functions g which are (at least) continuous, which means that the component
functions are continuous.

Consider a (continuous) vector-valued function g : [a, b] → Rn. As t runs from a to b,
the function g determines an ordered succession of points g(t) in Rn, which we shall refer to
as a curve C, in Rn. The curve C is described by the equations

x = g(t), a ≤ t ≤ b. (1.2)

We shall refer to the function g as a parametrization of C, and to t as a parameter on C. We
can think of the curve C as the image of the interval [a, b] under the function g, represented
pictorially as in Figure 1.1.

t

b

t

a

g

z

x

g(a)

g(t)
C

g(b)

y

Figure 1.1: A vector-valued function g defines a curve C in R3.

One can think of the function g bending and stretching the line segment a ≤ t ≤ b so as
to create the curve C. The ordering of points in the interval [a, b] determines an ordering of
points in C, called the orientation of C. The points g(a) and g(b) are called the endpoints of
C.

Example 1.1:
The vector-valued function g : [0, a]→ R3 defined by

g(t) = r0 + tu, 0 ≤ t ≤ a, (1.3)

where r0 and u are given vectors in R3, determines a curve x = g(t), which is the straight
line segment in R3, joining the points g(0) = r0 and
g(a) = r0 + au, traversed in the direction of u.
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tu

g(a)
g(t)

u

g(0) = r0

Figure 1.2: The curve x = r0 + tu, 0 ≤ t ≤ a. �

Comment:
One can interpret an element a = (a1, a2, . . . , an) of Rn in two ways, either as the position

vector of a point in Rn (e.g. the vector r0 in Example 1.1), or as a vector attached to a point
in Rn (e.g. the vector u in Example 1.1). In the second interpretation the vector would
represent some physical quantity such as the velocity or acceleration of a particle, or a force
acting on a particle.

Example 1.2:
The vector-valued function g : [0, π]→ R2 defined by

g(t) = (b cos t, b sin t), 0 ≤ t ≤ π,

where b is a positive constant, determines a curve x = g(t) which is half the circle x2+y2 = b2

of radius b, traversed counterclockwise from (b, 0) to (−b, 0).

y

x = g(t)

g(0) = (b,0)g(π) = (−b,0)

x
0

Figure 1.3: The curve x = (b cos t, b sin t), 0 ≤ t ≤ π.

Here is a more complicated example, which arises in many scientific contexts.
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Example 1.3:
Describe the curve C in R3 determined by the vector-valued function

g(t) =

(
R cos t, R sin t,

h

2π
t

)
, 0 ≤ t ≤ 2π, (1.4)

where R and h are positive constants.

Solution: The curve is described by the equation x = g(t), which in component form reads

x = R cos t, y = R sin t, z =
h

2π
t.

Since
x2 + y2 = R2,

and 0 ≤ t ≤ 2π, the curve rotates once around the cylinder of radius R, whose axis is the
z-axis. Since z increases linearly with t, the curve rises uniformly as it moves around the
cylinder, giving one revolution of a helix. The constant R is the radius of the helix, and the
constant h, the change in z during one revolution, is called the pitch of the helix.

h

R

z

y

g(2π) = (R,0,h)

g(0) = (R,0,0)
x

Figure 1.4: A helix of radius R and pitch h.

In some situations one is given a curve C described geometrically, and it is necessary to
find a parametrization g(t) of C. Here’s an example.

Example 1.4:
The cylinder x2 + z2 = R2 intersects the plane z = y in a closed curve (an ellipse).

We specify the orientation of the curve C by stating that the ellipse is traversed counter-
clockwise when viewed from the positive y-direction. We complete the description of the
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curve C by stating the the ellipse is traversed twice starting at the point (R, 0, 0). Find a
parametrization for the curve C.

Solution: The equation of the cylinder, and Figure 1.5, suggest that we choose

x = R cos t, z = −R sin t,

with
0 ≤ t ≤ 4π,

to give two revolutions. The equation of the plane, z = y, then determines y in terms of t,
i.e.

y = −R sin t.

z

(R, 0)
x

Figure 1.5: Projection of the ellipse into the xz-plane. The positive y-axis points into the
page.

Thus, a possible parametrization of C is

g(t) = (R cos t,−R sin t,−R sin t), 0 ≤ t ≤ 4π.

An important special case:

The graph of a scalar function f : [a, b] → R, given by y = f(x) is a curve C in R2.
We take the orientation of C to be the direction of increasing x. It is easy to obtain a
parametrization g(t) of this curve. Just let x = t, and then y is given by y = f(t), with
a ≤ t ≤ b. Thus a parametrization of C is

g(t) = (t, f(t)), a ≤ t ≤ b. (1.5)

�
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z

y

x

(R,0,0)

C

Figure 1.6: The curve C in Example 1.4.

A curve as the path of a particle:

Given a vector-valued function g : [a, b] → Rn, one can imagine the image point g(t)
moving in Rn as t runs from a to b, thereby tracing out the curve C. When describing the
motion of a particle, the parameter t will represent time and the curve C ∈ R3, (i.e. n = 3)
will represent the path or trajectory of the particle in space during the time interval a ≤ t ≤ b.
The orientation of the curve will give the direction of motion along the curve.

Comment:
Given a vector-valued function g : [a, b] → Rn, it is important to make a distinction

between the range of g, i.e. the subset {g(t)|a ≤ t ≤ b} ⊂ Rn, and the curve C determined
by g, i.e. the ordered succession of points g(t) ∈ Rn, as t runs from a to b. For example,
first consider g1 : [0, 2π]→ R2 defined by

g1(t) = (cos t, sin t).

The curve C1 given by x = g1(t), 0 ≤ t ≤ 2π, is the circle x2 + y2 = 1, traversed once in
a counterclockwise direction,starting at the point (1, 0). Second, consider g2 : [0, 2π] → R2

defined by
g2(t) = (cos 2t, sin 2t).

The curve C2 given by x = g2(t), 0 ≤ t ≤ 2π, is the circle x2 + y2 = 1 traversed twice in
counterclockwise direction, starting at the point (1, 0).

The point is that g1 and g2 have the same range in R2, namely the points on the circle
x2 + y2 = 1, but the curves C1 and C2 that they determine are not the same. For example, a
particle whose path is C1 will travel a distance of 2π, while for C2 the distance travelled will
be 4π. �

Exercise 1.1:
Describe the curve C determined by the vector-valued function

g(t) = (3 sin t, 4 cos t), 0 ≤ t ≤ π.
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Exercise 1.2:
A curve C in R3 is defined by the intersection of the plane x − y = 0 and the sphere

x2 + y2 + z2 = 2 (the intersection is a circle). The endpoints and orientation of the curve
are as shown in Figure 1.7. Find a parametrization g(t) of the curve C.

z

x

y

(1,1,0)

C

Figure 1.7: The curve C in Exercise 1.2.

1.1.2 Reparametrization of a curve

An essential aspect of describing curves is that infinitely many different vector-valued func-
tions describe the same curve C in Rn.

For example, consider g : [0, π]→ R2 defined by

g(t) = (cos t, sin t), 0 ≤ t ≤ π,

and also ĝ :
[
0, π

2

]
→ R2 defined by

ĝ(τ) = (cos 2τ, sin 2τ), 0 ≤ τ ≤ π
2
,

where we use a different letter τ for the parameter in the second case. The point is that g and
ĝ are different functions, but determine the same curve in R2, namely the circle x2 + y2 = 1
traversed halfway around counterclockwise from (1, 0) to (−1, 0). We say that g and ĝ are
different parametrizations of the same curve C. Note that the two functions are related by

ĝ(τ) = g(h(τ)),

where
h(τ) = 2τ.

In general, let h : [α, β] → [a, b] be a continuous, increasing (and hence one-to-one)
function. Given g : [a, b]→ Rn, we define ĝ : [α, β]→ Rn by

ĝ(τ) = g(h(τ)), α ≤ τ ≤ β. (1.6)
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As τ runs from α to β, t = h(τ) runs from a to b (see Figure 1.8). Thus by equation (1.6),
ĝ(τ) follows the same ordered succession of points in Rn as does g(t), and hence determines
the same curve C in Rn.

!"

#

t

b

a

t = h (#)

Figure 1.8: The change of parameter function h.

We shall refer to ĝ as a reparametrization of the curve C. the situation is represented
pictorially in Figure 1.9.

z

y

x

a t b

g g

! " #

g (t) = g (h (")) = g (")

C

h

Figure 1.9: Two parametrizations g and ĝ of a curve C.

In terms of the motion of a particle, reparametrizations have the following interpretation.
Consider a particle that moves on a curve in 3-space between two given points. One can
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imagine the particle speeding up or slowing down as it moves along the curve. Thus given
one curve, there are infinitely many ways a particle can move along the curve, and each one
corresponds to a different parametrization. We will shed more light on this matter when we
discuss tangent vectors and velocity vectors in the next subsection.

Comment:
In these notes, when we write

“Consider a curve C in Rn . . .”

we shall mean that there is some vector-valued function g : [a, b] → Rn which gives a
parametrization of this curve. At the same time, we know that there are infinitely many
other functions ĝ that give reparametrizations of C. Which parametrization we use for doing
a calculation will be a matter of convenience.

1.1.3 Limits

Given a vector-valued function g : [a, b]→ Rn, the Newton quotient at t is

1

∆t
[g(t+ ∆t)− g(t)] (1.7)

for a non-zero change ∆t. The derivative of g at t, denoted g′(t), is defined to be the vector
that is the limit of the Newton quotient as ∆t→ 0. So we need to think about the limit of
a vector-valued function.

Definition:
Given a vector-valued function f defined in a neighbourhood of t0 and a constant vector

L, the statement lim
t→t0

f(t) = L means that

lim
t→t0
‖ f(t)− L ‖= 0.

Comments:

1) Since ‖ f(t)− L ‖ is Euclidean distance between the vectors f(t) and L, the definition
captures the usual idea of “limit”, namely that the vector f(t) gets arbitrarily close to
the unique vector L as t approaches t0.

2) When doing calculations with vector-valued functions one works with components. So
we need to express the basic concepts in terms of components. Let

f(t) = (f1(t), . . . , fn(t)), L = (L1, . . . , Ln).

Then
lim
t→t0

f(t) = L ⇐⇒ lim
t→t0

fi(t) = Li, i = 1, 2, . . . , n. (1.8)
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This equivalence follows on noting that

‖ f(t)− L ‖=
[
(f1(t)− L1)2 + · · ·+ (fn(t)− Ln)2

]1/2
,

which implies
|fi(t)− Li| ≤ ‖ f(t)− L ‖, for i = 1, 2, . . . , n,

so that

lim
t→t0
‖ f(t)− L ‖= 0 implies lim

t→t0
fi(t) = Li, i = 1, . . . , n. �

We can now talk about a vector-valued function being continuous.

Definition:
f is continuous at t0 means that f(t0) is defined, lim

t→t0
f(t) exists, and lim

t→t0
f(t) = f(t0).

Comments:

i) In terms of component functions

f is continuous at t0 ⇔ fi is continuous at t0, i = 1, 2, . . . , n.

ii) The curves one encounters in physics are invariably defined by continuous functions. If
the function f was discontinuous at t0, say lim

t→t+0
f(t) = L+ and lim

t→t−0
f(t) = L− in terms

of one-sided limits, with L+ 6= L−, then the curve would have a “break” in it. An
object traveling on such a trajectory would have to teleport at the break. �

1.1.4 Derivatives

Definition:
Given a vector-valued function g : [a, b] → Rn, the derivative of g at t, denoted g′(t), is

defined by

g′(t) = lim
∆t→0

1

∆t
[g(t+ ∆t)− g(t)] , (1.9)

provided this limit exists.

Comments:

i) If g′(t) exists we say that g is differentiable at t.

ii) In terms of component functions

g(t) = (g1(t), . . . , gn(t)),

the Newton quotient is given by

1

∆t
[g(t+ ∆t)− g(t)] =

(
g1(t+ ∆t)− g1(t)

∆t
, . . . ,

gn(t+ ∆t)− gn(t)

∆t

)
.

10



It follows from (1.8) and (1.9) that

g′(t) exists ⇐⇒ g′i(t) exists, i = 1, 2, . . . , n,

and
g′(t) = (g′1(t), . . . , g′n(t)). (1.10)

In practice one calculates the derivative g′(t) using (1.10) and routine differentiation.
�

Physical interpretation of the derivative:

Consider a curve C in R3, x = g(t), which represents the path of a particle. We write

∆x = g(t+ ∆t)− g(t).

Then the Newton quotient (1.7) is(
1

∆t

)
[g(t+ ∆t)− g(t)] =

(
1

∆t

)
∆x.

Thus by (1.9), g′(t) represent the rate of change of position with respect to time t, i.e. g′(t)
is the velocity v(t) of the particle. We write

v(t) = g′(t) or v(t) =
dx

dt
. (1.11)

Writing the position function g(t) in terms of its component functions,

g(t) = (x(t), y(t), z(t)),

equations (1.10) and (1.11) imply that

v(t) = (x′(t), y′(t), z′(t)), (1.12)

giving the components of the velocity vector. The magnitude of the velocity vector

‖ v(t) ‖=
√
x′(t)2 + y′(t)2 + z′(t)2 (1.13)

is of course the speed of the particle.
If g′(t) is itself differentiable, the function g will have a second derivative denoted g′′(t),

and
g′′(t) = (x′′(t), y′′(t), z′′(t))

in terms of the component functions. The second derivative represents the acceleration vector
of the particle, and we write

a(t) = g′′(t), or a(t) =
d2x

dt2
. (1.14)
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Geometrical interpretation of the derivative:

Given a curve
x = g(t),

with g′(t0) 6= 000, then g′(t0) is a vector in the direction of the tangent line at the point
x = g(t0). This conclusion follows from Figure 1.10. Note that as ∆t → 0 the increment
∆g tends to zero and the secant line approaches the position of the tangent line. This
result can also be confirmed on physical grounds: the velocity vector v(t0) = g′(t0) gives
the instantaneous direction of motion and hence must be tangent to the path of the particle
when t = t0.

the secant line

the tangent line

0

    !g = g(t
0 + !t )" g(t

0
)

    g(t
0 + !t )

    # g (t
0
)

    g( t
0
)

!g

Figure 1.10: The secant line and tangent line to a curve.

Equation of the tangent line:

Given a curve x = g(t) with g′(t0) 6= 000, the equation of the tangent line at x = g(t0) is

x = g(t0) + (t− t0)g′(t0), (1.15)

as follows from Figure 1.11. Referring to Figure 1.11, we note that

OQ = OP + PQ,

and PQ is a multiple of g′(t0) which we write as (t− t0)g′(t0). This choice of parameter on
the tangent line ensures that t = t0 gives the point of tangency.

In equation (1.15) we have defined a vector-valued function which we denote by Lt0(t):

Lt0(t) = g(t0) + (t− t0)g′(t0) (1.16)

12



Q
tangent

line

P
0

    x = g(t )

    ! g (t
0
)

    g( t
0
)

Figure 1.11: The tangent line to a curve x = g(t).

called the linearization of g at t0 Since the tangent line approximates the curve for t suffi-
ciently close to t0, we obtain the linear approximation

g(t) ≈ Lt0(t),

or in full,
g(t) ≈ g(t0) + (t− t0)g′(t0), (1.17)

for t sufficiently close to t0. We can write (1.17) more concisely in terms of the increments

∆x = g(t)− g(t0), ∆t = t− t0.

Rearranging (1.17) gives
∆x ≈ (∆t)g′(t0), (1.18)

for ∆t sufficiently close to zero.

Terminology:

i) When we say that a vector-valued function g : [a, b] → Rn is of class C1 (or more
briefly, is C1) we mean that g has a derivative function g′ that is itself a continuous
function: think of C1 as “C for continuous” and “1 for first derivative”. We shall usually
work with C1 curves, i.e. curves described by C1 functions, although one can imagine
situations where the path of a particle would be a continuous but not a C1 curve.
There is a subtle point concerning C1 curves. Based on experience with the graphs of
scalar functions one might expect that a C1 curve would look “smooth”. A C1 curve
x = g(t) can, however, have cusps (i.e. sharp spikes, or corners). See Examples 1.5
and 1.6 below. Physically, these occur when a particle stops, and changes its direction
of motion.

13



ii) A function g : [a, b]→ Rn is piecewise C1 means that there is a partition of [a, b],

a = t0 < t1 < · · · < tN = b,

such that g, when restricted to each open interval (ti, ti+1), i = 0, 1, . . . , N−1, coincides
with a function that is C1 on the closed interval [ti, ti+1].

Example 1.5:
Consider the curves defined by

i) x = g1(t) = (t |t|, t2), −1 ≤ t ≤ 1
ii) x = g2(t) = (t, |t|), −1 ≤ t ≤ 1.

In both cases the component functions x(t), y(t) satisfy y = |x|, so the curve is a ∨, i.e. the
curve is not “smooth”. The point we wish to illustrate is that g1 is C1, while g2 is piecewise
C1 but not C1. The difference is that g′1 (0) = 000, while g′2(0) does not exist (convince yourself
of this). Physically, g1 represents the path of a particle that slows down and comes to rest
at time t = 0 and then changes direction and speeds up again, while g2 represents the path
of a particle that bounces off a hard surface without coming to rest (an idealized billiard
ball).

Example 1.6:
The curve defined by

x = g(t) = b(t− sin t, 1− cos t), t ∈ R, (1.19)

where b is a constant, is called a cycloid.
The derivative is

g′(t) = b(1− cos t, sin t),

so that
g′(2nπ) = 000, n = 0,±1,±2, . . . .

Note the properties of the component functions:

i) x′ ≥ 0, x is non-decreasing,

ii) y ≥ 0, y is periodic.

This curve is C1, but is not smooth. It is the path of a point on a uniformly rolling circle.
(See Figure 1.12.) �

Comment:
A curve x = g(t), a ≤ t ≤ b, with g of class C1 and g′(t) 6= 000 for all t ∈ [a, b], will be

smooth, because it will have a unique non-zero tangent vector at each point. We shall refer
to such a curve as a smooth curve.

14



y

2b

0

x

2!b

Figure 1.12: The cycloid.

1.1.5 Arclength

We want to calculate the arclength s of a curve C in Rn given by

x = g(t), a ≤ t ≤ b. (1.20)

We assume that the curve is of class C1. If C represents the path of a particle then the
arclength s represents the distance travelled by the particle in the time interval a ≤ t ≤ b.
If C represents a hanging cable (e.g. a section of a power line) then s represents the actual
length of the cable.

A partition of [a, b],
a = t0 < t1 < · · · < tN = b

defines N + 1 points on the curve (1.20), given by xi = g(ti), i = 0, 1, . . . , N . Joining
these points in order with straight lines yields a polygonal arc that can be regarded as
approximating the curve C. See Figure 1.13 for the case N = 4.

    x0

    x1

    x2

    x3

    x4

C

Figure 1.13: A polygonal arc approximating a curve C.
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The ith increment
∆xi = xi+1 − xi

represents the vector joining xi to xi+1. Its length will approximate the arclength ∆si of the
ith curve segment:

∆si ≈‖ ∆xi ‖ . (1.21)

Using the linear approximation (1.18),

∆xi ≈ (∆ti)g
′(ti), (1.22)

    x i

  Δs
i

    xi+1

    

Δ
x

i

Figure 1.14: The length of the line segment approximates the arclength of the curve segment.

where
∆ti = ti+1 − ti,

for ∆ti sufficiently small.
It follows from (1.21) and (1.22) that

∆si ≈‖ g′(ti) ‖ ∆ti, i = 0, 1, . . . N − 1, (1.23)

for ∆ti sufficiently small. Summing over N curve segments gives an approximation for the
total arclength s:

s ≈
N−1∑
i=0

‖ g′(ti) ‖ ∆ti.

The sum is a Riemann sum for the integral∫ b

a

‖ g′(t) ‖ dt,
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and will thus approximate the integral with increasing accuracy as the partition becomes
increasingly fine. We thus expect that the arclength s of the curve x = g(t), a ≤ t ≤ b is
given by

s =

∫ b

a

‖ g′(t) ‖ dt. (1.24)

Comments:

i) In practice we use equation (1.24) as the definition of arclength of a C1 curve. The
steps leading to (1.21) do not constitute a proof because of the approximations made,
but should be viewed as a heuristic justification of (1.24). It is important to understand
these steps, however, because they form the basis for the definition of the concept of
line integral in Chapter 2.

ii) If the curve C represents the path of a particle then the integrand ‖ g′(t) ‖ in (1.24) is
the speed of the particle, and so the formula (1.24) has a simple physical interpretation:

distance travelled is the integral of the
speed with respect to time.

1.2 Vector fields

So far we have considered vector-valued functions g : [a, b]→ Rn, which define curves. In this
section we consider a second type of vector-valued function of great importance in physics
and engineering applications, namely vector fields.

1.2.1 Examples from physics

Many physical quantities are characterized by giving a magnitude, i.e. a real number, at
each point of space. Such quantities are represented by real-valued functions f : R3 → R.
Functions of this type, when used in a physical context, are called scalar fields. Some
examples are the following:

- the temperature T (x, y, z) at a point of a body,

- the pressure p(x, y, z) at a point of a fluid,

- the electric charge density σ(x, y, z) on the surface of a metallic object,

- the intensity of light I(x, y, z) falling on an object,

. . . and so on.

On the other hand there are many physical quantities that are characterized by giving
a magnitude and a direction, i.e. a vector, at each point of space. Such quantities are
represented by a function F : R3 → R3 that associates with each point (x, y, z) ∈ R3 a
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unique vector F(x, y, z) ∈ R3. Functions of this type, when used in a physical context, are
called vector fields.

Example 1.7:
The gravitational field due to a spherical body of mass M , such as the earth, can be

represented by the vector field F defined by

F(x, y, z) = −GM
r3

r, (1.25)

where r = (x, y, z), r =‖ r ‖=
√
x2 + y2 + z2, and G is the gravitational constant.

The vector F(x, y, z) represents the force exerted on a test body of unit mass placed at
position (x, y, z). The minus sign accounts for the fact that the test body will be attracted
to the earth, i.e. F (x, y, z) points towards the origin.

x

z

y

    F(x ,y, z)

    r = (x , y, z)

Figure 1.15: The gravitational field of a spherical body.

Comment:
In this example the domain of the vector field is the open set U = R3 − {(0, 0, 0)}. �

Example 1.8:
Consider a distribution of fluid flowing in a steady state. Then at a given point (x, y, z)

the fluid has a uniquely defined velocity v(x, y, z) that is independent of the time. The
vector field v is called the velocity field of the fluid. See Figure 1.16.

Example 1.9:
There is also a scalar field ρ(x, y, z) associated with a fluid, namely the mass density of

the fluid, which is independent of time for a steady state flow. One is interested in the rate
at which mass is transferred by the fluid, and this rate is determined by another vector field
formed from ρ and v, as follows.

Consider a plane surface element of area ∆S, with unit normal vector n, located at
position (x, y, z). In time ∆t, the fluid in a column of length ‖v ‖∆t will flow through the
surface element. Since the vertical height of the column is v ··· n∆t (see Figure 1.17) the
volume of the column, and hence the volume of fluid transported, is

∆V ≈ (v ··· n)∆S∆t.
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  (x , y,z )

    v(x ,y ,z )

Figure 1.16: The velocity field of a fluid.

Figure 1.17: Flow of a fluid through a plane surface element.

It follows that mass of fluid transported across the surface element in time ∆t is

∆M ≈ ρ∆V ≈ ρv · n∆S∆t.

Thus, the mass transferred per unit time across the surface element is

(ρv) ··· n∆S. (1.26)

This quantity is called the mass flux across the surface element:

“flux” means “rate of flow”.

It is worth checking the physical dimensions of the mass flux (note that n, being a unit
normal, is dimensionless):

[(ρv) ··· n∆S] = (ML−3)(LT−1)(L2) = MT−1,

i.e. mass per unit time.
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The mass flux (1.26) is determined by the vector field J defined by

J(x, y, z) = ρ(x, y, z)v(x, y, z), (1.27)

which has physical dimensions
[ J ] = MT−1L−2,

i.e. mass per unit time per unit area. This vector field, which describes the transport of
mass by the fluid, is called the mass flux density of the fluid.

Comment:
In (1.26) and the preceding equations, ρ and v are evaluated at the given point (x, y, z).

We are assuming that ‖ v ‖ ∆t and ∆S are sufficiently small that ρ and v can be regarded
as constant throughout the cylinder in Figure 1.17.

Example 1.10:
Any C1 scalar field u in R3 determines a vector field F in R3 according to

F(x, y, z) = ∇u(x, y, z), (1.28)

where ∇u is the gradient of the scalar field, defined by

∇u =

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
. (1.29)

In other words, the gradient of a C1 scalar field is a vector field. This type of vector field
will arise frequently in the course. �

The concept of a flux density vector field, as in Example 1.3, where we studied the mass
flux density, applies to any physical quantity that is transferred in space, e.g. heat energy,
which is the next example.

Example 1.11:
Consider a piece of material that is heated on one side and cooled on the other in such

a way that the temperature attains a steady state, i.e. the temperature u(x, y, z) depends
on position (x, y, z) but not on time t. The temperature is a scalar field. From everyday
experience we know that heat will flow (i.e. energy will be transferred) from hot regions to
cold regions. As with mass flow, heat flow can be described mathematically by a vector field
j(x, y, z), which gives the rate of heat transfer through a small surface element at (x, y, z),
called the heat flux density, i.e.

(j · n)∆S

is the rate of transfer of heat through a small plane surface element of area ∆S and having
unit normal n (compare with equation (1.26)).

Experimental work shows that the heat flux density may be represented by Fourier’s law

j(x, y, z) = −k∇u(x, y, z), (1.30)
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where k > 0 is a constant. This law is plausible physically, since one expects that the larger is
the spatial temperature gradient, represented by the gradient ∇u, the larger will be the rate
of heat transfer. The constant k, called the thermal conductivity, depends on the material,
being bigger for a good conductor of heat than for a poor conductor (e.g. kcopper/kglass � 1).
�

Having given some physical examples of vector fields we now introduce the terminology
formally.

Let U be an open subset of Rn. A vector field on U is a function F : U → Rn, whose
domain is U and whose range is in Rn, i.e. F assigns to each x ∈ U a unique vector F(x) ∈ Rn.

The vector fields we work with will usually be of class C1, which means that the n
component functions,

F(x) = (F1(x), . . . , Fn(x))

are C1 functions.
We shall also assume that the domain U is a connected set, which means that U is not

the union of two or more disjoint sets.

1.2.2 Field lines of a vector field

One visualizes a vector field F on an open set U ⊂ R3 as a “field of vectors”, represented by
arrows, attached to the points of U . The length of the vector at a point gives the strength of
the field at the point, and the arrow gives the direction of the field.

It is also helpful to think of the family of curves in U with the property that at each point
P the tangent to the curve through P equals the vector field evaluated at P . These curves are
called the field lines1 of the vector field. One thinks of a field line threading its way through
the vector field, always following the direction of the vector field (see Figure 1.18).

Figure 1.18: Two field lines of a vector field.

1These curves are also called integral curves of the vector field.
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Figure 1.19: Field lines of a magnetic field.

In the case of the velocity field of a fluid the field lines are simply the paths of the fluid
particles (see Figures 1.16 and 1.18). In the case of a magnetic field one can do a simple
experiment to visualize the field lines. Take a sheet of paper and sprinkle it with iron filings.
Then put a bar magnet under the paper and shake the paper slightly. You will observe the
iron filings arranging themselves in lines going from one magnetic pole to the other. The
strength of the magnetic field is revealed by the density of packing of the filings. In this way
one obtains a picture of the field lines of the magnetic field.

We now consider the problem of determining the field lines of a given vector field F (x).

Let the curve x = g(t), assumed C1, be a field line. Its tangent vector is g′(t), and thus
the defining condition of a field line is written

g′(t) = F(g(t)). (1.31)

(see Figure 1.20). Equation (1.31) is a differential equation for the unknown vector-valued
function g(t). If you want to find the field line through a given point x0 then you should
impose the initial condition

g(t0) = x0. (1.32)

DEs such as (1.31) are studied in depth in the course AM 451. In general they can only
be solved numerically using a computer. For this course, however, it will be enough to
concentrate on simple types that can be solved explicitly, as in the examples to follow.

Example 1.12:
Find the field lines of the vector field

F(x, y) = (−y, x) (1.33)
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    x0

    x = g(t )

    ′ g (t) = F(g(t))

Figure 1.20: The field line of a vector field F through a given point x0.

in R2, and sketch the field portrait.

Solution: A field line x = g(t) satisfies

g′(t) = F(g(t)).

In terms of components g(t) = (x(t), y(t)), this reads

(x′(t), y′(t)) = (−y(t), x(t)),

giving
dx

dt
= −y(t),

dy

dt
= x(t). (1.34)

These two coupled DEs can be written as a single DE by using the chain rule:

dy

dt
=
dy

dx

dx

dt
,

giving
dy

dx
= −x

y

by equations (1.34). Solving this separable DE yields∫
y dy = −

∫
x dx,

giving
x2 + y2 = C,

where C is a constant.
The conclusion is that any field line of the given vector field is a circle centred on the

origin. Equations (1.34) show that the circles are traversed counterclockwise, giving Figure
1.21. We note that the field line through a given point (x0, y0) is the circle of radius

√
x2

0 + y2
0

– specifying a point on the field line fixes the value of the constant C. �
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y

x
0

Figure 1.21: The field lines x2 + y2 = C of the vector field F = (−y, x).

Exercise 1.3:
The vector field in Example 1.12 can be interpreted physically as the velocity field of a

rigidly rotating disc with unit angular velocity. Verify that

θ′ ≡ dθ

dt
= 1.

y

x

  ( ′ x , ′ y )= ( −y, x)

θ
  ( x, y) = (r cos θ, r sin θ )

Figure 1.22: Velocity of a point on a rotating disc.

Example 1.13:
Find the field lines of the vector field

F(x, y) =

(
−y

x2 + y2
,

x

x2 + y2

)
(1.35)

on the open set U = R2 − {(0, 0)}, and sketch the “portrait”.
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Solution: We have to solve the DEs

dx

dt
=

−y
x2 + y2

,
dy

dt
=

x

x2 + y2
.

Proceeding as in Example 1.12, these equations lead to the same DE

dy

dx
= −x

y
,

giving
x2 + y2 = C,

where C is a constant, as the field lines. �

y

x

Figure 1.23: Field lines of the vector field (1.35).

Comment:
The vector field (1.35) could represent the velocity field of a fluid swirling down a drain.

Note that for Example 1.12,
‖ F(x, y) ‖=

√
x2 + y2,

i.e. the speed equals the distance from the origin, while for Example 1.13,

‖ F(x, y) ‖= 1√
x2 + y2

, (x, y) 6= (0, 0),

i.e. the speed equals the reciprocal of the distance from the origin. We have indicated this
difference in Figures 1.21 and 1.23 by the size of the arrows. We note that Examples 1.12
and 1.13 illustrate that different vector fields can have the same field lines.

Exercise 1.4:
Find the field lines of the vector field F(x, y) = (x, 2y) in R2, and sketch the field portrait.
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Gradient vector fields:

The field lines of a vector field F(x) = ∇u(x) in R2 that is the gradient of a scalar field can
be drawn without solving a DE. We know (Calculus 3) that the gradient ∇u of a scalar field
u is orthogonal to the level curves u = constant of the scalar field. It follows that the field
lines of the vector field F = ∇u are the orthogonal trajectories of the family of level curves
of u.

    u=  const

.

  ∇u

  ∇u

  ∇u

Figure 1.24: The field lines of F = ∇u intersect the level curves u = constant orthogonally.
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Chapter 2

Line Integrals & Green’s Theorem

In this chapter we define two types of integral that are associated with a curve in Rn.

2.1 Line integral of a scalar field

2.1.1 Motivation and definition

Consider a nuclear fuel rod, with linear mass density ρ (i.e. the physical dimensions are
[ρ] = ML−1) and length `. If ρ is a constant, the mass m of the rod is simply m = ρ`.
Suppose that due to manufacturing defects, the density depends on position on the rod, say
ρ = ρ(x), 0 ≤ x ≤ `. How does one calculate the mass of the rod? Well, one approximates
the mass m as a Riemann sum of the density function on the interval 0 ≤ x ≤ `:

m ≈
n∑
i=1

ρ(xi)∆xi,

leading to the formula

m =

∫ `

0

ρ(x)dx. (2.1)

A similar but more difficult problem is to find the mass of a suspended wire (say, part of
a hydro line, see Figure 2.1) whose linear mass density depends on position. Evidently, we
will need some sort of integral along the curve C that represents the wire. This new type of
integral, which we now introduce, is called the line integral of a scalar field.

Given a curve C in Rn, defined by x = g(t), a ≤ t ≤ b, where g is a class C1, and a scalar
field f continuous on C, the line integral of f along C is denoted by∫

C

f ds.

We first give a tentative definition, motivated by the problem of calculating the mass of the
hanging wire. As in the calculation of arclength (Section 1.1.5) we introduce a partition of
[a, b],

a = t0 < t1 < · · · < tN = b,

27



Figure 2.1: A curve C representing a hanging wire.

which defines N + 1 points xi = g(ti) on the curve C. Let ∆si be the arclength of the ith

curve segment. We make the tentative definition:∫
C

f ds = lim N→∞
|∆ti|→0

N−1∑
i=0

f(xi)∆si, (2.2)

provided the limit exists (∆ti = ti − ti−1 as before).
Thinking of the scalar field f as representing the linear density of the hanging wire, the

term f(xi)∆si approximates the mass of the ith segment of the wire, and so we expect the
limit of the sum to give the total mass of the wire.

Figure 2.2: The ith segment of the hanging wire.

Substituting xi = g(ti) and using the approximation ∆si ≈‖ g′(ti) ‖ ∆ti (see equation
(1.23)), we can approximate the sum in (2.2) as

N−1∑
i=0

f(xi)∆si ≈
N−1∑
i=0

f(g(ti)) ‖ g′(ti) ‖ ∆ti, (2.3)
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for ∆ti sufficiently small. In the limit as N → +∞ and |∆ti| → 0 the right side of (2.3)

equals the Riemann integral

∫ b

a

f(g(t)) ‖ g′(t) ‖ dt, and we expect the approximation in

(2.3) to become increasingly accurate. Comparison of (2.2) and (2.3) then motivates the
definition to follow.

Definition:
Consider a curve C in Rn given by x = g(t), a ≤ t ≤ b, where g is of class C1, and a

scalar field f continuous on C. The line integral of f along C is defined by∫
C

f ds =

∫ b

a

f(g(t)) ‖ g′(t) ‖ dt. (2.4)

Comment:
We see that the line integral is defined in terms of an ordinary Riemann integral. The

formula (2.4) can be remembered easily as follows:

“f” is evaluated on the curve C giving “f(g(t))”, and the symbol “ds” reminds
one of ∆s in (2.2), which is approximated as ∆s ≈‖ g′(t) ‖ ∆t, leading to
“‖ g′(t) ‖ dt”.

Example 2.1:

Evaluate the line integral

∫
C

f ds in R2, where the curve C is the upper semi-circle of

radius b joining (b, 0) and (−b, 0), and f is the scalar field defined by f(x, y) = x2 + 3y2.

Solution: We introduce the standard parametrization for the semi-circle,

x = g(t) = (b cos t, b sin t), 0 ≤ t ≤ π.

Then
g′(t) = (−b sin t, b cos t),

and the magnitude is
‖ g′(t) ‖=

√
(−b sin t)2 + (b cos t)2 = b,

after simplifying. Evaluating the scalar field on the curve C gives

f(g(t)) = (b cos t)2 + 3(b sin t)2 = b2(3− 2 cos2 t),

after simplifying. By the definition (2.4) of the line integral,
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∫
C

f ds =

∫ π

0

f(g(t)) ‖ g′(t) ‖ dt

=

∫ π

0

b2(3− 2 cos2 t)b dt

= · · · = 2πb3. �
Aside: 2 cos2 t = 1 + cos 2t.

Exercise 2.1:

Evaluate the line integral

∫
C

f ds in R3, where C is the helix x = g(t) = (R cos t, R sin t, t),

0 ≤ t ≤ 4π, and f is the scalar field f(x, y, z) = z.

An important consistency requirement:

Given a hanging wire represented by a curve C and a scalar field f representing the linear

mass density of the wire, we have seen that the line integral

∫
C

f ds represents the mass of

the wire, which can be calculated using the definition (2.4). We know, however, that a curve
C has infinitely many different parametrizations (Section 1.1.2). Clearly, the value of the line
integral (the mass of the wire) should not depend on which parametrization we use. Consider
a different parametrization for the same curve C:

x = ĝ(τ), α ≤ τ ≤ β,

with ĝ(τ) = g(h(τ)) and t = h(τ) (see equation (1.6)). The definition (2.4) becomes∫
C

f ds =

∫ β

α

f(ĝ(τ)) ‖ ĝ′(τ) ‖ dτ. (2.5)

The consistency requirement is that the Riemann integrals in (2.4) and (2.5) must be equal.
The proposition to follow establishes the consistency.

Proposition 2.1:
Consider a curve C given by

x = g(t), a ≤ t ≤ b,

with g of class C1. Under a change of parameter t = h(τ), with h of class C1 and h′(τ) > 0
for τ ∈ [α, β], the curve is described by

x = ĝ(τ), α ≤ τ ≤ β,

with
ĝ(τ) = g(h(τ)). (2.6)

30



Then ∫ b

a

f(g(t)) ‖ g′(t) ‖ dt =

∫ β

α

f(ĝ(τ)) ‖ ĝ′(τ) ‖ dτ. (2.7)

Proof: (outline)
Differentiate (2.6) with respect to τ and use the Chain Rule to get

ĝ′(τ) = h′(τ)g′(h(τ)).

Since h′(τ) > 0 it follows that
Aside: See Problem Set 1, #20.

‖ ĝ′(τ) ‖=‖ g′(h(τ)) ‖ h′(τ). (2.8)

Substitute (2.6) and (2.8) into the integral on the right in (2.7). Since t = h(τ) and a = h(α),
b = h(β), the Change of Variable Theorem now implies the integral on the right equals the
integral on the left.

Exercise 2.2:
Repeat Example 2.1 using a different parametrization of C, for example

x = ĝ(τ) = (b cos 2τ, b sin 2τ), 0 ≤ τ ≤ π
2
,

and confirm that you get the same value for the line integral.

2.1.2 Applications

When working with a line integral in a physical context it is essential to keep in mind that

an integral is the limit of a sum1

(as in equation (2.2)). An important special case arises if f(x) = 1 for all x ∈ C. Then the
definition (2.4) becomes ∫

C

ds =

∫ b

a

‖ g′(t) ‖ dt,

which by equation (1.24) equals the arclength of the curve C. In words, the line integral of
the constant scalar field f(x) = 1 along a curve C equals the arclength of C, i.e. one thinks

of the line integral

∫
C

ds as summing the elements of arclength along the curve C to give the

total arclength.
We now give a glimpse of some other applications of the line integral of a scalar field

i) An “everyday” example:

The base of a vertical curved fence is a curve C in the xy-plane, and its height at position
(x, y) is h(x, y). What is the total area of the fence?

1This statement applies to ANY integral.
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Consideration of the preliminary definition (2.2) leads to the conclusion that the area A
is given by

A =

∫
C

h ds.

AAAA
AAAA
AAA
AAA

AAA
AAA
AAA

AAA
AAA

AA
AA
AA
AAA
AAA

AAAA
AAAA
AAA
AAA

AAA
AAA
AAA

h(x,y)

(x,y)

∆s
C

Figure 2.3: A curved fence whose base is a plane curve C.

One thinks of the line integral as summing the product of height h and element of arclength
∆s. �

Exercise 2.3:
The base of a vertical fence is given by x = g(t) = (b cos3 t, b sin3 t), 0 ≤ t ≤ π, where b

is a positive constant, and the height at position x = (x, y) is h(x, y) = b + 1
3
y. Show that

the area of the fence is 17
5
b2. �

Reference: Marsden & Tromba, page 417, example 2.

ii) Line integral of a linear density function

It is helpful to think of the physical dimensions of quantities when interpreting a line
integral

I =

∫
C

f ds. (2.9)

In terms of the preliminary definition (2.2), we have

I = lim
N→∞

N−1∑
i=0

f(x)∆si,

where ∆si is the arclength of the ith segment of C. Since2

[f(xi)∆si] = [f(xi)][∆si] = [f(xi)]L,

2We use the symbol [I] to denote the dimensions of a physical quantity I.
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it follows that the dimensions of the integral I are

[I] = [f ]L. (2.10)

In the hanging wire problem, f represents the linear mass density, i.e. [f ] = ML−1, and
the line integral I in (2.9) represents the total mass of the wire. Equation (2.10) gives

[I] = ML−1L = M,

which is consistent with the interpretation of I.
As another example, think of the curve C as representing a conductor (e.g. a copper

wire) which is charged, with f being the linear charge density, i.e. [f ] = [charge]L−1. The
line integral I will give the total charge on the conductor. Equation (2.10) implies

[I] = [charge]LL−1 = [charge],

which is again consistent with the interpretation of I.
In general we can think of the scalar field f as representing the linear density of some

“physical stuff”, which is distributed on a curve C. Then the line integral I in (2.9) gives
the total amount of “physical stuff” on the curve. As before, equation (2.10) guarantees
dimensional consistency.

iii) Average value of a scalar field on a curve

For a continuous function f : [a, b]→ R, the average value of f over the interval [a, b] is
defined by

〈f〉 =

∫ b
a
f(x)dx∫ b
a
dx

,

i.e. the average value is the integral of f over [a, b] divided by the length of the interval. We
can generalize the concept of “average of a function” to the case of a scalar field f that is
continuous on a curve C in Rn. In this case we define the average value by

〈f〉 =

∫
C
f ds∫
C
ds

, (2.11)

i.e. the average value of f is the line integral of f along C divided by the arclength of C.

Comment:
If we choose a partition so that the N curve segments of C are of equal length (i.e.

∆si = ∆s, i = 0, 1, . . . , N − 1), it follows from (2.11) and (2.2) that

〈f〉 ≈ 1

N

N−1∑
i=0

f(xi),

i.e. the “continuous average of f” is approximated by the “discrete average” of N values of
the scalar field on C.
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Exercise 2.4:
The steady state temperature of a circular metal plate of radius b centred on the origin

in the xy-plane is given by

u(x, y) =
u0

b2
(x2 − y2),

where u0 is a constant. Show that the average temperature along the diameter y = (tan θ)x
is given by

〈u〉 = 1
3
u0 cos 2θ.

2.2 Line integral of a vector field

2.2.1 Motivation and definition

Consider a particle moving along the x-axis from x = a to x = b under the action of a force
F. If F is constant the work done on the particle is simply

a b
i

F

x

W = (F · i)(b− a),

where F · i is the component of F in the direction of motion (i is a unit vector in the x-
direction). If F = F(x) then the work done can be calculated as an integral (the limit of a
Riemann sum),

W =

∫ b

a

(F · i)dx.

A similar but more difficult problem is to calculate the work done by a force field F(x) acting
on a particle moving in a complicated way in space. Evidently we will need some sort of
integral along the curve C that represents the path of the particle in space. This new type
of integral is called the line integral of a vector field.

Given a curve C in Rn, defined by x = g(t), a ≤ t ≤ b, where g is of class C1, and a
vector field F continuous on C, the line integral of F along C is denoted by∫

C

F ··· dx.

We first give a tentative definition, motivated by the problem of calculating the work
done by a force field. The development parallels that of Section 2.1, 2.1.1 very closely. We
introduce a partition of [a, b],

a = t0 < t1 < · · · < tN = b,
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which defines N + 1 points xi = g(ti) on the curve C. Let

∆xi = xi+1 − xi

be the increment vector associated with the ith curve segment. We make the tentative
definition: ∫

C

F ··· dx = lim
N→∞
|∆ti|→0

N−1∑
i=0

F(xi) ···∆xi, (2.12)

provided the limit exists. Thinking of the vector field as the force field acting on the moving
particle, the term F(xi)···∆xi approximates the work done on the particle while it moves from
xi to xi+1, and so we expect the limit of the sum to give the total work done on the particle.

    ∆x
i

    x i

    F(x
i
)    xi+1

C

Figure 2.4: The ith segment of the path of a particle and the increment vector ∆xi.

Substituting xi = g(ti) and using the approximation

∆xi ≈ (∆ti)g
′(ti),

(see equation (1.22)), we can approximate the sum in (2.12) as

N−1∑
i=0

F(xi) ···∆xi ≈
N−1∑
i=0

F(g(ti)) ··· g′(ti)∆ti (2.13)

for ∆ti sufficiently small. In the limit as N → ∞ and |∆ti| → 0 the right side of (2.13)

equals the Riemann integral

∫ b

a

F(g(t))···g′(t)dt, and we expect the approximation in (2.13) to

become increasingly accurate. Comparison of (2.13) and (2.12) then motivates the definition
to follow.

Definition:
Consider a curve C in Rn given by x = g(t), a ≤ t ≤ b, where g is of class C1, and a

vector field F continuous on C. The line integral of F along C is defined by∫
C

F·dx =

∫ b

a

F(g(t)) ··· g′(t) dt. (2.14)
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Comment:
The line integral of a vector field is defined in terms of an ordinary Riemann integral.

The formula (2.14) can be remembered easily, because F·dx reminds one of F(g(t)) ··· ∆x,
which is approximated by F(g(t)) ··· g′(t)∆t.

Example 2.2:

Evaluate the line integral

∫
C

F·dx, where C is the quarter circle of radius b, x2 + y2 = b2,

joining (b, 0) to (0, b), and F is the vector field defined by F(x, y) = (y, 0).

Solution: We use the usual parametrization for the circle:

x = g(t) = (b cos t, b sin t), 0 ≤ t ≤ π
2
.

Then
g′(t) = (−b sin t, b cos t).

Evaluating the vector field on C gives

F(g(t)) = (b sin t, 0).

By the definition (2.14),

∫
C

F·dx =

∫ π/2

0

(b sin t, 0) ··· (−b sin t, b cos t)dt

= −b2

∫ π/2

0

sin2 t dt

= −1
4
πb2. �

Aside: sin2 t = 1
2(1− cos 2t)

Comment:

The line integral

∫
C

F·dx is the limit of the sum of scalar products F·∆x. One can thus

predict the sign of the line integral by referring to Figure 2.5, which shows that F·∆x < 0
except at the point (b, 0), since the angle φ between F and ∆x satisfies π

2
< φ ≤ π.

Exercise 2.5:
Let C be the straight line joining (b, 0) to (0, b) and let F be the vector field F(x, y) =

(y, 0), as in Example 2.2. Show that

∫
C

F·dx = −1
2
b2.

Exercise 2.6:
Compute the line integral of the vector field F(x) = (x, y, z) along the helix C defined by

x = g(t) = (cos t, sin t, t), 0 ≤ t ≤ 2π.

Answer: 2π2.
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y

(0,b)

(b,0)
x

F

F

F
C ψ

Figure 2.5: The vector field F(x, y) = (y, 0) in Example 2.2.

2.2.2 Applications

So far we have considered the following physical interpretation of the line integral of a vector
field along a curve C:

if F is a force field acting on a particle whose path is the curve C, then

∫
C

F·dx

represents the work done by the force field on the particle.

In this course a major role is played by line integrals

∫
C

F·dx, where C is a closed curve,

i.e. the end point coincides with the initial point. Line integrals of this type enter into two of
the principal theorems, namely Green’s theorem (Section 2.4) and Stokes’ theorem (Section
4.3). The physical interpretation of the line integral depends on the interpretation of the
vector field, two important cases being where F is a velocity field (in fluid dynamics), and
where F is an electric field (in electromagnetic theory).

C
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2.2.3 Some technical matters

The consistency requirement:

The definition (2.14) of

∫
C

F·dx is based on choosing a parametrization for the curve C.

However, the work done by a force field should be independent of the parametrization, and
so in order to show that the definition is consistent, we should verify that it is independent
of the parametrization. The situation is similar to that for the line integral of a scalar field,
and a result analogous to Proposition 2.1 holds, namely∫ b

a

F(g(t)) ··· g′(t)dt =

∫ β

α

F(ĝ(τ)) ··· ĝ′(τ)dτ, (2.15)

where the notation is defined in Proposition 2.1.

Other notation for the line integral:

There is another notation for

∫
C

F·dx that is popular in physics and engineering, namely

∫
C

F·dx ≡
∫
C

F1dx+ F2dy + F3dz,

where F = (F1, F2, F3). In a purely formal sense, one expands the “scalar product” F·dx
with “dx = (dx, dy, dz)”. In terms of this alternate notation, the definition reads∫

C

F1dx+ F2dy + F3dz =

∫ b

a

[
F1( )

dx

dt
+ F2( )

dy

dt
+ F3( )

dz

dt

]
dt, (2.16)

where x = (x(t), y(t), z(t)) is a parametrization of C and Fi( ) = Fi(x(t), y(t), z(t)), i = 1, 2, 3.
Mathematically, the quantity F1dx+F2dy+F3dz is called a differential form. The theory

of differential forms is more modern than that of vector fields, and is useful, for instance, in
generalizing vector calculus, and in the subject of differential geometry. For our purposes,
however, we do not need this more sophisticated approach.

Exercise 2.7:
Evaluate the line integral

I =

∫
C

cos z dx+ exdy + eydz,

where the curve C is given by x(t) = (1, t, et), 0 ≤ t ≤ 2.

Answer: 2e+ 1
2
e4 − 1

2
.
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Properties of line integrals:

i) Linearity: ∫
C

(F + G) ··· dx =

∫
C

F·dx +

∫
C

G·dx, (2.17)

∫
C

(λF) ··· dx = λ

∫
C

F·dx, (2.18)

where λ is a constant scalar.

These properties follow immediately from the definition (2.14) and the corresponding
properties of the Riemann integral.

ii) Additivity:

If C is a C1 curve that is the union of two
curves C1 and C2 joined end-to-end and consis-
tently oriented (C = C1 ∪ C2), then∫

C

F·dx =

∫
C1

F·dx +

∫
C2

F·dx (2.19)

Line integral along a piecewise C1 curve:

Let C be a continuous curve which is piecewise of class C1 i.e. C = C1 ∪ · · · ∪ Cn, where
the individual pieces Ci, i = 1, . . . , n are of class C1. Motivated by equation (2.19), we define
the line integral of a vector field F along C by∫

C

F·dx =

∫
C1

F·dx + · · ·+
∫
Cn

F·dx. (2.20)

Each line integral on the right is, of course, defined as a Riemann integral by equation (2.14).

Example 2.3:
Compute the line integral of the vector field F = (y,−2x) along the piecewise C1 curve

consisting of the two straight line segments joining (−b, b) to (0, 0) and (0, 0) to (2b, b), where
b is a positive constant.

Solution: For C1, x = g1(t) = (t,−t), with −b ≤ t ≤ 0, giving

g′1(t) = (1,−1), and F(g1(t)) = (−t,−2t).

By the definition (2.14), ∫
C1

F·dx =

∫ 0

−b
(−t,−2t) ··· (1,−1)dt

=

∫ 0

−b
t dt = −1

2
b2.
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y

x(0,0)

(−b,b)

C1 C2

(2b,b)

For C2, x = g2(t) = (2t, t), 0 ≤ t ≤ b, and a similar calculation yields∫
C2

F·dx = −b2.

Finally, by (2.20), ∫
C

F·dx =

∫
C1

F·dx +

∫
C2

F·dx

= −1
2
b2 − b2 = −3

2
b2.

Exercise 2.8:
Calculate the line integral of the vector field F = (y,−2x) along the piecewise smooth

curve consisting of two parabolic segments as drawn.

Answer: 2b2. �

(0,0) (2b,0)

y

x

(b,b)

Reversal of orientation:

If C is a curve in Rn with a specific orientation, we denote by −C the curve that is
obtained by reversing the orientation. Specifically if C is given by

x = g(t), a ≤ t ≤ b,

then −C is given by
x = ĝ(τ), a ≤ τ ≤ b,

where
ĝ(τ) = g(a+ b− τ).
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Observe that ĝ(a) = g(b) and ĝ(b) = g(a), which reverses the orientation.
It is an important result that reversing the orientation of a curve changes the sign of the

line integral of a vector field along the curve.

Proposition 2.2:
If C is a piecewise-smooth curve and F is a vector field continuous on C, then∫

−C

F·dx = −
∫
C

F·dx.

Proof:
By definition of line integral∫
−C

F·dx =

∫ b

τ=a

F(ĝ(τ)) ··· ĝ′(τ)dτ

= −
∫ b

τ=a

F(g(a+ b− τ)) ··· g′(a+ b− τ)dτ (by the equation for ĝ(τ))

= −
∫ a

t=b

F(g(t)) ··· g′(t)(−1)dt (by the change of variable t = a+ b− τ)

= −
∫ b

t=a

F(g(t)) ··· g′(t)dt (reverse the limits of integration)

= −
∫
C

F·dx. (by definition of line integral) �

Comment:
The change in sign is physically reasonable if one thinks in terms of work done by a force

field F; for example, if the height of an object above the earth’s surface is increased, the
work done by the gravitational field is negative, whereas if an object falls, the work done is
positive.

2.3 Path-independent line integrals

Let F : U → Rn be a continuous vector field on the connected open set U ∈ Rn. Consider two
points x1,x2 in U , and imagine all possible piecewise smooth curves in U joining x1 to x2.

In general, the value of the line integral

∫
C

F·dx will depend on the particular curve C joining

x1 to x2. In physical terms, thinking of F as a force field, the work done on the particle as
it moves from x1 to x2 in general depends on the path followed by the particle. There are,
however, certain special vector fields (force fields) with the property that the line integral
(the work done) depends only on the endpoints of the curve and not on the particular curve
joining the two points.
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As an example, consider the vector field

E(x, y) = −kq
(

x

(x2 + y2)3/2
,

y

(x2 + y2)3/2

)
. (2.21)

As endpoints, consider x1 = (1, 0) and x2 = (0, 1). You will find that for any piecewise

smooth curve C joining x1 to x2,

∫
C

E·dx has the same value, namely zero.

Exercise 2.9:
Show that the line integral of the vector field (2.21) equals zero for each of the curves

C1 and C2 joining (1, 0) to (0, 1), where C1 is the quarter circle.

(0,1)

(0,0)

C
2

(1,0)

C
1

Definition:
Let F be a continuous vector field on a connected open set in Rn. We say that the line

integral

∫
C

F·dx is path-independent in U if, given any two points x1,x2 in U , the line integral

has the same value for all piecewise smooth curves in U that join x1 to x2. �

Exercise 2.9 gives a hint that the line integral of the vector field (2.21) is path-independent
in U = R2 − {(0, 0)}. Of course we cannot prove that a line integral is path-independent
by calculating its value all different curves joining different pairs of points because there are
infinitely many possibilities! So an important question is: how can we tell whether a given
line integral is path-independent or not? To find out, let us be guided by one of the most
important results in elementary calculus, the first Fundamental Theorem.

2.3.1 First Fundamental Theorem for Line Integrals

Recall that if f is continuous on an interval [a, b], then the new function g defined by

g(x) =

∫ x

a

f(t) dt, a ≤ x ≤ b, (2.22)

is such that
g′(x) = f(x). (2.23)

This result is the first Fundamental Theorem of Calculus (FTC).
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Q: Can we extent this theorem to line integrals?

A: Yes, provided the line-integral is path-independent.

If the line integral

∫
C

F·dx is path-independent and C joins x0 to x, we denote the line-

integral by ∫ x

x0

F·dx.

In this case we can define a new function – a scalar field φ – by

φ(x) =

∫ x

x0

F·dx,

in analogy with (2.22). We can now state the first Fundamental Theorem for line integrals.

Theorem 2.1:

Let U be a connected open subset of Rn, and let F : U → Rn be a continuous vector field
whose line integral is path independent in U .

If

φ(x) =

∫ x

x0

F·dx, (2.24)

where x0 is a specified point, then,

∇φ(x) = F(x) (2.25)

for all x ∈ U .

Proof:
For simplicity we give the proof in R2. With φ defined by (2.24), we have to prove that

∂φ

∂x
= F1,

∂φ

∂y
= F2,

where F1 and F2 are the components of F.

The key idea is this: since the line integral is path-independent, we are free to make a
special choice of the curve joining x0 = (x0, y0) to x = (x, y), i.e. to choose a “custom-
designed” curve. Figure 2.6 shows the curve we need. Suitable parametrizations for C1 and
C2 are

x = g1(t) = (x0, t), y0 ≤ t ≤ y,

x = g2(t) = (t, y), x0 ≤ t ≤ x.
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x

(x,y)
(x0,y)

(x0,y0)

C1

C2

Figure 2.6: A piecewise smooth curve C = C1 ∪ C2 joining (x0, y0) to (x, y).

Using these equations and the definition of line integral,

φ(x, y) =

∫
C

F·dx =

∫
C1

F·dx +

∫
C2

F·dx

=

∫ y

y0

F2(x0, t)dt+

∫ x

x0

F1(t, y)dt.

It now follows from the first FTC for Riemann integrals (see equations (2.22) and (2.23))
that

∂φ

∂x
= 0 + F1(x, y),

since we are treating y as a constant.
Similarly we get the result for ∂φ

∂y
by choosing a different path (do it!). �

Terminology:

The significance of Theorem 2.1 is this: any vector field F whose line integral is path-
independent can be written as the gradient of a C1 scalar field. Such a vector field is called
a gradient field. The scalar field ψ is called a potential for F, for physical reasons that we’ll
soon see. The level sets ψ(x) = C of the potential ψ are called equipotentials. In R2, we
have equipotential lines ψ(x, y) = C and in R3 we have equipotential surfaces ψ(x, y, z) = C.

As an example, we note that the vector field F(x, y) given by (2.21) (the electric field
due to a point of charge q at the origin) is derivable from the potential

ψ(x, y) =
kq√
x2 + y2

(2.26)

i.e. E(x, y) = ∇ψ(x, y) (verify this!). The equipotential lines are given by ψ(x, y) = constant,
i.e.

x2 + y2 = const.
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2.3.2 Second Fundamental Theorem for Line Integrals

Continuing the train of thought from the previous subsection we ask

Q: In elementary calculus we learned that if G, g : [a, b]→ R are such that g is continuous
and G′ = g, then ∫ b

a

g(x)dx = G(b)−G(a), (2.27)

(the second FTC). Is there a way to extend this result to line integrals?

A: Yes, provided the vector field F is a gradient field, i.e. F = ∇φ.

This generalization is the Second Fundamental Theorem for line integrals.

Theorem 2.2:

Let F : U → Rn be a continuous vector field on a connected open set U ⊂ Rn, and let x1,x2

be two points in U .
If F = ∇φ, where φ : U → R is a C1 scalar field, and C is any curve in U joining x1 to

x2, then ∫
C

F·dx = φ(x2)− φ(x1). (2.28)

Proof:
Let C be given by

x = g(t), t1 ≤ t ≤ t2,

so that
x1 = g(t1), x2 = g(t2). (2.29)

By the hypothesis,∫
C

F·dx =

∫
C

(∇φ) ··· dx

=

∫ t2

t1

∇φ(g(t)) ··· g′(t)dt (by definition of line integral)

=

∫ t2

t1

d

dt
[φ(g(t))]dt (by the Chain Rule)

= φ(g(t2))− φ(g(t1)) (by the second FTC)

= φ(x2)− φ(x1). (by (2.29)) �
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Comment:
The significance of Theorem 2.2 is two-fold:

i) if F is a gradient field, the line integral

∫
C

F·dx only depends on the end points of the

curve C, and hence is path-independent,

ii) if the potential φ is known, then equation (2.28) gives the value of the line integral
immediately.

Exercise 2.10:
We have seen that the vector field

E(x, y) = −kq
(

x

(x2 + y2)3/2
,

y

(x2 + y2)3/2

)
on U = R2 − {(0, 0)} is a gradient field with potential

φ(x, y) =
kq√
x2 + y2

.

In exercise 9 you showed that the line integral of E along each of 2 curves joining (1, 0) to
(0, 1) equalled zero. Use Theorem 2.2 to verify this result. �

Looking ahead:

So far (Theorems 2.1 and 2.2) we have established that

∫
C

F·dx is path-independent if and

only if F is a gradient field. Moreover, if F is a gradient field and we can find a potential φ,

then the line integral

∫
C

F·dx can be quickly evaluated. Now we are faced with two problems:

i) if we are given a vector field F, how can we tell quickly whether it is a gradient field?

ii) if we know F is a gradient field, how do we find a potential φ?

Answering the first question requires the famous Green’s theorem, while the second is
more straightforward. But before dealing with these questions we first discuss the physical
significance of the Second Fundamental Theorem for line integrals.

2.3.3 Conservative (i.e. gradient) vector fields

Thinking of the vector field F in Theorem 2.2 as a force field, the line integral

∫
C

F·dx equals

the work done by the force field on a particle as the particle moves along the curve C from
x1 to x2. The theorem asserts that if the force field is a gradient field, F = ∇φ, then the
work done depends only on the potential at the end points x1 and x2.
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In this physical context, it is customary, to define a scalar field V = −φ, so that

F = −∇V. (2.30)

Theorem 2.2 then has the form ∫
C

F·dx = −V (x2) + V (x1). (2.31)

Since “work” is the same as “energy”, physicists call V (x) the potential energy of the particle
at position x, when moving under the action of F.

Comment:
The minus sign in equation (2.30) becomes appropriate when one thinks, for example

of the force field due to the earth’s gravitational field. The potential energy of a particle
increases if its distance from the earth’s centre increases i.e. ∇V points radially outwards,
while the gravitational force field F acts radially inwards.

One can also relate the work done to the kinetic energy K of the particle, defined by

K = 1
2
m ‖ v ‖2 . (2.32)

Describing the path C of the particle by x = r(t), t1 ≤ t ≤ t2, the work done can be written∫
C

F·dx =

∫ t2

t1

F(r(t)) ··· r′(t)dt. (2.33)

But Newton’s second law tells us that

mr′′(t) = F(r(t)).

It follows that

F(r(t)) ··· r′(t) = mv′(t) ··· v(t) (since r′(t) = v(t))

= 1
2
m[v(t) ··· v(t)]′ (property of the derivative)

=
d

dt
K(t) (by (2.32)).

Thus, by (2.33) and the FTCII, ∫
C

F·dx = K(t2)−K(t1). (2.34)

Equation (2.34) and (2.31) gives

K(t1) + V (r(t1)) = K(t2) + V (r(t2)), (2.35)

for any two times t1 and t2. In words, for a gradient force field one can define a potential
energy V of a particle in such a way that the sum of the potential energy and kinetic energy
K is constant, i.e. conservation of energy holds.
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It is for this reason that when vector fields are thought of a force fields, gradient fields
are also called conservative fields.

Comment:
In many applications in the real world, conservation of energy does not have the simple

form of (2.35), because, for example, of energy losses due to friction – think of the space
shuttle re-entering the atmosphere. Dissipative, i.e. non-conservative forces have also to be
considered. It is nevertheless important to be able to find out whether a given force field is
conservative, and this is the problem we now consider.

2.4 Green’s Theorem

In this section we introduce Green’s theorem, and discuss a number of applications, including
how to spot conservative/gradient vector fields in R2.

2.4.1 The theorem

We need some additional terminology related to curves.
Consider a curve C in Rn given by

x = g(t), a ≤ t ≤ b,

with g continuous.

i) C is a closed curve means that g(a) = g(b).

ii) C is a simple closed curve means that g(a) = g(b) and g is a one-to-one function on
the interval a ≤ t < b. (Note the strict inequality t < b.) In geometric terms a simple
closed curve has no self-intersections.

g(a) = g(b) g(a) = g(b)

Figure 2.7: A simple closed curve. A non-simple closed curve.

iii) In what follows we shall consider a bounded open subset D of R2, whose boundary,
denoted by ∂D, is a simple closed curve. In this situation we assume that the curve
∂D is oriented counter-clockwise, so that if you walk around the boundary, the region
D is on your left.
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D

D
∂

Figure 2.8: A bounded open subset D and its boundary ∂D oriented counter-clockwise.

Theorem 2.3 (Green’s theorem):

Let D be a bounded subset of R2 whose boundary ∂D is a piecewise C1 simple closed curve
oriented counter-clockwise. If F = (F1, F2) is of class C1 on D ∪ ∂D then∫

∂D

F·dx =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy. (2.36)

Digression on iterated integrals:

If D is described by inequalities of the form

f(x) ≤ y ≤ g(x),

a ≤ x ≤ b,

and H(x, y) is continuous on D ∪ ∂D, then the double integral

∫∫
D

H(x, y)dx dy can be

expressed as an iterated integral:

y

a x b
x

(x,f(x))

(x,g(x))
C2

C1

D

Figure 2.9: A region D and its boundary ∂D = C1 ∪ (−C2).

∫∫
D

H(x, y)dx dy =

∫ b

x=a

[∫ g(x)

y=f(x)

H(x, y)dy

]
dx. (2.37)
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Proof of Green’s theorem:

We give a proof subject to the assumption that D can be described by inequalities of the
form

f(x) ≤ y ≤ g(x), a ≤ x ≤ b, (2.38)

and
h(y) ≤ x ≤ k(y), c ≤ y ≤ d, (2.39)

where f, g, h and k are C1 functions.
It is sufficient to prove two special cases of (2.36), namely∫

∂D

(F1, 0) ··· dx =

∫∫
D

−∂F1

∂y
dx dy, (2.40)

and ∫
∂D

(0, F2) ··· dx =

∫∫
D

∂F2

∂x
dx dy. (2.41)

The sum of (2.40) and (2.41) gives (2.36).
We prove (2.40), using the inequalities (2.38). Consider the curves C1, C2 (see Figure 2.9)

given by
x = (x, f(x)) and x = (x, g(x))

respectively, with a ≤ x ≤ b, i.e. we use x as parameter. The boundary ∂D is then the
union ∂D = C1 ∪ (−C2). By definition of the line integral,∫

∂D

(F1, 0) ··· dx =

∫
C1

(F1, 0) ··· dx−
∫
C2

(F1, 0) ··· dx

(
since

∫
−C2

= −
∫
C2

)

=

∫ b

a

{F1(x, f(x)), 0) ··· (1, f ′(x)}dx−
∫ b

a

{F1(x, g(x)), 0) ··· (1, g′(x)}dx

=

∫ b

a

[F1(x, f(x))− F1(x, g(x))] dx (2.42)

We now apply (2.37) to the right side of (2.40):∫∫
D

−∂F1

∂y
dx dy = −

∫ b

x=a

[∫ g(x)

y=f(x)

∂F1

∂y
dy

]
dx

= −
∫ b

a

[F1(x, g(x))− F1(x, f(x))] dx,

(2.43)

by the FTCII. Equation (2.40) follows, on comparing (2.42) and (2.43). A similar argument
based on (2.39) yields (2.41) (do it!), which completes the proof. �

Example 2.4:
Verify Green’s theorem for the vector field F(x) = (xy, 2xy) and the triangluar region D

with vertices (0, 0), (1, 0) and (0, 1).
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Solution:

a) The boundary of D taken counterclockwise is the piecewise C1 curve

∂D = C1 ∪ C2 ∪ C3.

∫
∂D

F · dx =

∫
C1

F · dx +

∫
C2

F · dx +

∫
C3

F · dx. (2.44)

Observe that F = 000 on C1(y = 0) and on C3(x = 0), which implies that∫
C1

F · dx = 0 =

∫
C3

F · dx. (2.45)

A vector function for C2(x+ y = 1) is

x = g(t) = (1− t, t), 0 ≤ t ≤ 1.

It follows that
g′(t) = (−1, 1) and F(g(t)) = t(1− t)(1, 2),

after taking out a common factor. By definition of line integral,∫
C2

F · dx =

∫ 1

0

F(g(t)) · g′(t)dt

=

∫ 1

0

t(1− t)(1, 2) · (−1, 1)dt

=

∫ 1

0

t(1− t)dt = · · · = 1
6

(2.46)

Substituting (2.45) and (2.46) in (2.44) gives∫
∂D

F · dx = 1
6
.
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b) We calculate
∂F2

∂x
− ∂F1

∂y
= −x+ 2y.

The right side of Green’s theorem is∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫∫
D

(−x+ 2y)dxdy

=

1∫
x=0

(∫ 1−x

y=0

(−x+ 2y)dy

)
dx

= · · · = 1
6
.

Green’s theorem is verified. �

The limits of integration for the triangular region D.

Aside: D is defined by the inequalities

0 ≤ y ≤ 1− x,

0 ≤ x ≤ 1,

which give the limits of integration.

Green’s theorem can be used to express a given line integral as a double integral, or
conversely, to express a given double integral as a line integral, provided you can choose a
suitable vector field. Here is an example of the latter.

Example 2.5:
Use a line integral to calculate the area enclosed by the ellipse

x2

a2
+
y2

b2
= 1.

Solution: The area A of a plane region D can be expressed as a double integral:

A =

∫∫
D

(1)dx dy.

The vector field F = (0, x) satisfies ∂F2

∂x
− ∂F1

∂y
= 1, so that Green’s theorem (2.36) gives

A =

∫
∂D

(0, x) ··· dx,

where ∂D is the ellipse (a simple closed curve) oriented counter-clockwise. Using the standard
parametrization,

x = (a cos t, b sin t), 0 ≤ t ≤ 2π,
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the definition of line integral gives

A =

∫ 2π

0

(0, a cos t) ··· (−a sin t, b cos t)dt Aside: cos 2t = 2 cos2 t− 1

= · · · = π ab.

Exercise 2.11:
Repeat example 2.5 using the vector field F = 1

2
(−y, x).

2.4.2 Existence of a potential in R2

We now return to the question: how can you tell whether a given vector field F : U → R2 in
R2 is derivable from a potential, i.e. is a conservative/gradient field?

So far we have proved the two fundamental theorems for line integrals (theorems 2.1 and
2.2), which show that for continuous vector fields in Rn:

∫
C

F·dx is path-independent ⇐⇒ F is a gradient field

in U ⊂ Rn in U ⊂ Rn (2.47)

We begin the final stage of the discussion by establishing that

“

∫
C

F·dx is path-independent in U”

is equivalent to

“

∫
C

F·dx = 0 for all simple closed curves in U”.

The reason for doing this is that Green’s theorem deals with line integrals around simple
closed curves.

Proposition 2.3:
Let U be an open subset of Rn. A continuous vector field F : U → Rn is path independent

in U if and only if

∫
C

F·dx = 0 for every simple closed curve in U .

Proof:

1) Suppose

∫
C

F·dx is path-independent in U . Let C be a simple closed curve in U .

Decompose C into C1 and C2 as in figure 2.10. Then∫
C

=

∫
C1

+

∫
C2

=

∫
C1

−
∫
−C2

= 0,

since the line integral is path independent.
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C
2

C
1

− C
2

C
1

    x1     x1

    x2     x2

Figure 2.10: Decomposing a simple closed curve C into C1 and C2

2) Suppose

∫
C

F·dx = 0 for every simple closed curve in U . Let x1,x2 be any two points

in U , and let C1 and C2 be two curves joining x1 to x2 which do not intersect each
other. Then C1 ∪ (−C2) is a simple closed curve C. It follows that∫

C1

−
∫
C2

=

∫
C1

+

∫
−C2

=

∫
C

= 0.

C
1 C

1

− C
2

C
2

    x1
    x1

    x2     x2

Figure 2.11: Two curves C1, C2 joining x1 to x2 form a simple closed curve C = C1 ∪ (−C2).

If C1 and C2 intersect each other, introduce a third curve C3 that does not intersect
either C1 or C2. It follows as before that∫

C1

=

∫
C3

and

∫
C2

=

∫
C3

.

We have thus shown that

∫
C1

=

∫
C2

for any two curves joining x1 to x2, i.e. the line

integral is path-independent. �
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Figure 2.12: A third curve C3 avoids intersections.

Combining Proposition 2.3 with the result (2.47) gives the following:∫
C

F·dx = 0 for every simple ⇐⇒ F is a gradient field

closed curve in U ⊂ Rn in U ⊂ Rn (2.48)

We now restrict our considerations to R2. Suppose that the C1 vector field F : U → R2

is a gradient field, i.e. F = ∇φ, or in component form,

(F1, F2) =

(
∂φ

∂x
,
∂φ

∂y

)
.

It follows that
∂F2

∂x
− ∂F1

∂y
=

∂2φ

∂x∂y
− ∂2φ

∂y∂x
= 0,

since φ is of class C2. This result, with (2.48), means that if F is a gradient field in R2, the
formula in Green’s theorem,namely∫

∂D

F·dx =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy

is identically satisfied. This formula also suggests that if ∂F2

∂x
− ∂F1

∂y
= 0 in U , then

∫
∂D

F·dx = 0

for any simple closed curve ∂D in U , so that by (2.48), F is a gradient field. The following
example, however, shows that the situation is not as simple as this.

Example 2.6:
Let U = R2 − {(0, 0)}. Show that the vector field F : U → R2 defined by

F(x) =

(
−y

x2 + y2
,

x

x2 + y2

)
(2.49)

satisfies
∂F2

∂x
− ∂F1

∂y
= 0 in U ,

but that F is not a gradient field in U .
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Solution: A simple calculation gives

∂F2

∂x
=
∂F1

∂y
=
−x2 + y2

(x2 + y2)2
.

According to (2.48) we can show that F is not a gradient field by giving a simple closed curve

C in U such that

∫
C

F·dx 6= 0.

Consider the unit circle C given by

x = (cos t, sin t), 0 ≤ t ≤ 2π.

A routine calculation gives

∫
C

F·dx = 2π 6= 0. (do it!) �

Comment:
The essential point is that Green’s theorem cannot be applied to the vector field (2.49)

on the set D =
{

(x, y)
∣∣ x2 + y2 ≤ 1

}
whose boundary is the circle C, x2 + y2 = 1, since F

is not C1 on D – it is not even defined at (0, 0). Another way of looking at the difficulty is
that the set U = R2−{(0, 0)} on which F is C1 has a “hole” in it – the point (0, 0) has been
deleted. So we need to introduce a “no holes” restriction on the set U on which F is C1.

Definition:
A connected open set U ⊂ Rn is simply-connected means that every simple close curve in

U can be shrunk continuously to a point while remaining in U .

e.g. i) D =
{

(x, y)
∣∣ 1 < x2 + y2 < 4

}
is not simply-connected in R2. The circle drawn cannot

be shrunk continuously to a point.

ii) D = R2 −
{

(x, 0)
∣∣ x ≤ 0

}
is simply-connected in R2.
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iii) R3 minus a finite number of points is simply-connected.

iv) R3 minus an infinite line is not simply-connected.

We are now ready to state the theorem on detecting gradient vector fields in R2. Having
done the preparatory work, the proof is short!
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Theorem 2.4 (test for conservative fields)

If

i) U is a simply-connected open subset of R2,

ii) F is a C1 vector field that satisfies

∂F2

∂x
− ∂F1

∂y
= 0 (2.50)

in U , then there exists a single-valued C2 potential φ in U , i.e.

F = ∇φ in U .

Proof:
Let C be any simple closed curve in U . Since U is simply-connected the interior D of C

belongs to U and thus (2.50) holds in D ∪ C. By Green’s theorem,∫
C

F·dx = 0.

Since C is arbitrary it follows from (2.48) that F is a gradient field in U . �

Example 2.7:
Test the vector field

F(x) = (yexy, xexy + 2y) (2.51)

for being conservative, and if it is, find a potential φ.

Solution: A routine calculation shows that ∂F2

∂x
− ∂F1

∂y
= 0 on R2. Since R2 is simply-

connected, F is conservative by Theorem 2.4.
To find a potential, we have to integrate the equations

∂φ

∂x
= F1 = yexy,

∂φ

∂y
= F2 = xexy + 2y. (2.52)

The first gives
φ(x, y) = exy +K(y), (2.53)

where the “constant of integration” depends on y. Differentiate (2.53) with respect to y and
use the second equation in (2.52):

xexy + 2y = xexy +K ′(y),

giving K ′(y) = 2y, and hence
K(y) = y2 + C,
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where C is constant. By (2.53) the potential is

φ(x, y) = exy + y2 + C,

unique up to an additive constant C. �

Exercise 2.12:
Test whether the vector field F : U → R2 is conservative on the set U ⊂ R2, and if so,

find a potential φ:

i) F =
(

1
y
,− x

y2

)
, U =

{
(x, y)

∣∣ y > 0
}

,

ii) F = (y cos(xy),−x cos(xy)), U = R2,

iii) F =
(

x
x2+y2 ,

y
x2+y2

)
, U = R2 − {(0, 0)}.

Answers:
i) Yes; φ = x

y
+ C ii) NO iii) Yes; φ = 1

2
ln(x2 + y2) + C.

Comment:
Exercise 2.12 iii) shows that even if U is not simply-connected the vector field may be

conservative.

2.5 Vorticity and circulation

Theorem 2.4 (test for conservative fields) shows that given a vector field F = (F1, F2) in R2,
the quantity

∂F2

∂x
− ∂F1

∂y

is of fundamental importance: if it is zero on a simply-connected set U ⊂ R2, then F is a
gradient/conservative field in U .

This quantity also plays an important role when the vector field is the velocity field
v = (v1, v2) of a fluid flow in two dimensions3 and in this context it is called the vorticity of
the fluid, denoted by Ω:

Ω =
∂v2

∂x
− ∂v1

∂y
. (2.54)

We now describe the physical significance of the vorticity. Think of a small wooden paddle
wheel that is carried along by the fluid. The question is: will the motion of the fluid cause
the paddle wheel to rotate about its axis?

In order to illustrate the problem we consider two simple vector fields

u = (u, 0),

3By a fluid flow in two dimensions we mean a three dimensional flow which is “stratified”, i.e. the fluid
velocity is the same in each of a family of planes. Without loss of generality v(x) = (v1(x, y), v2(x, y), 0).
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axis

Figure 2.13: A paddle wheel.

where u is a positive constant with [u] = LT−1, and

v = (αy, 0),

where α is a positive constant with [α] = T−1. It follows from figure 2.14 that the velocity
field u will not cause the paddle wheel to rotate, while figure 2.15 shows that the paddle
wheel will rotate under the action of v.

a fluid
flow line

y

x

Figure 2.14: The velocity field u = (u, 0) acting on a paddle wheel.

y

x

Figure 2.15: The velocity field v = (αy, 0) acting on a paddle wheel.

This difference between u and v can be characterized by considering the line integral of
the velocity fields around the circle C of radius ρ that represents the circumference of the
paddle wheel. By (2.54) the vorticity for each velocity field is

Ωu =
∂u2

∂x
− ∂u1

∂y
= 0, Ωv =

∂v2

∂x
− ∂v1

∂y
= −α,
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and hence Green’s theorem applied to the paddle wheel disc gives∫
C

u·dx = 0,

∫
C

v·dx = −πρ2α.

The line integral of a velocity field v along a curve is in fact equal to the line integral of the
tangential component v ·T along the curve, where T is the unit tangent vector to the curve.
This result is seen as follows:∫

C

v·dx =

∫ b

a

v(g(t)) ··· g′(t)dt Aside: g′(t) = T ‖ g′(t) ‖

=

∫ b

a

v(g(t)) ···T ‖ g′(t) ‖ dt

=

∫
C

(v ·T)ds.

(2.55)

If

∫
C

v·dx < 0, i.e. v ·T is on balance negative along C, the paddle wheel will rotate in the

opposite direction to T. On the other hand, if

∫
C

v·dx = 0, i.e. v ·T is on balance zero along

C, the paddle wheel will not rotate.

We now summarize the conclusion.

Let the curve C, oriented counter-clockwise as usual, be the circumference of a paddle
wheel. If ∫

C
v·dx


< 0

= 0

> 0

,

then the fluid flow will cause the paddle wheel to
rotate clockwise

not rotate

rotate counter-clockwise.

The quantity

∫
C

v·dx is called the circulation of the fluid around the simple closed curve C.

Green’s theorem leads to a relation between the vorticity Ω and the circulation

∫
C

v·dx.

Let Dρ be the disc of radius ρ centred at x with boundary ∂Dρ oriented counter-clockwise.
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By Green’s theorem ∫
∂Dρ

v·dx =

∫∫
Dρ

(
∂v2

∂x
− ∂v1

∂y

)
dx dy

=

(
∂v2

∂x
− ∂v1

∂y

)
(x̂)πρ2,

where x̂ is some point in Dρ. The last step follows from the Mean Value Theorem for
integrals. Divide by the area πρ2 and let ρ→ 0 giving

(
∂v2

∂x
− ∂v1

∂y

)
(x)︸ ︷︷ ︸

Ω(x)

= lim
ρ→0

 1

πρ2

∫
∂Dρ

v·dx

 . (2.56)

x

x ρ

  ∂Dρ

In words,

the vorticity at x equals the circulation
per unit area at x.

For our purposes it is helpful to write an approximation,

Ω(x) ≈ 1

πρ2

∫
∂Dρ

v·dx,

for ρ sufficiently close to 0.
We thus obtain the desired physical interpretation of the vorticity:

Ω(x)


< 0

= 0

> 0

⇒ a paddle wheel at x will


rotate clockwise

not rotate

rotate counter-clockwise.

We conclude with two classic vector fields in R2 that illustrate vorticity and circulation.

Example 2.8:
Consider the vector field

v = α(−y, x), (2.57)
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where α is a positive constant with [α] = T−1. The flow lines are circles x2 + y2 = c2,
traversed counter-clockwise (see example 1.12 in Chapter 1). The vorticity Ω is non-zero,

Ω =
∂v2

∂x
− ∂v1

∂y
= 2α.

Since the domain of v is R2, Green’s theorem can be applied to any circle of radius ρ, giving∫
ρ

v·dx = 2α(πρ2)

for the circulation. It follows that a paddle wheel will rotate counter-clockwise (see Figure
2.16).

Example 2.9:
Consider the vector field (a “vortex field”)

v =
α

x2 + y2
(−y, x), (x, y) 6= (0, 0). (2.58)

The flow lines are again circles x2 + y2 = c2 (see example 1.13 in Chapter 1). The vorticity
Ω is, however, zero:

Ω =
∂v2

∂x
− ∂v1

∂y
= 0,

(verify). In this case the domain of v is R2−{(0, 0)}, which is not simply-connected. Green’s
theorem can be applied to any circle that does not enclose or pass through the origin, giving∫

C

v·dx = 0

(since Ω = 0). Thus a paddle wheel will not rotate as it moves with the fluid (see Figure
2.17). However, for a circle of radius b that encloses the origin the circulation is non-zero:∫

C

v·dx = 2παb.

(Verify using the definition of line integral.) Thus in this case, although the fluid is locally
non-rotating (i.e. the paddle wheel does not rotate), it does rotate globally, i.e. there are
simple closed curves with non-zero circulation.
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Figure 2.16: The velocity field (2.57) causes the paddle wheel to rotate.

Figure 2.17: The velocity field (2.58) does not cause the paddle wheel to rotate.
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Chapter 3

Surfaces & Surface Integrals

The notion of a surface arises in various physical and mathematical contexts, e.g. the wing or
fuselage of an aircraft, an ocean wave at an instant of time, or a soap film formed by dipping a
closed wire loop into a soap solution. In a mathematical context, when deriving the equation
that governs heat transfer one considers an arbitrary finite chunk of the conducting medium
that is bounded by a surface Σ, and one writes the heat flux through Σ as a surface integral.

3.1 Parametrized surfaces

3.1.1 Surfaces as vector-valued functions

The first mathematical description of a surface that one encounters is the graph of a function
f : R2 → R. The graph is a surface in R3, described by the equation

z = f(x, y), (x, y) ∈ D ⊂ R2.

This way of describing surfaces is somewhat limited: it cannot describe a surface that “folds
over” such as a sphere or a torus. So we think about vector-valued functions and generalize
the way they are used to describe curves by introducing two parameters u and v, and writing

x = g(u, v), (u, v) ∈ Duv. (3.1)

Here Duv is a subset of R2 (the uv-plane), x = (x, y, z) ∈ R3 (xyz-space), and g : Duv → R3

is a vector-valued function. Often Duv will be a rectangle in the uv-plane, but in general it
will be a bounded subset of R2, whose boundary is a simple closed curve. Figure 3.1 gives
a schematic representation of the domain Duv and the surface Σ : as the point (u, v) moves
through the set Duv the image point g(u, v) sweeps out the surface Σ in R3.

One thinks of the function g as a map from R2 → R3 that acts on the rectangle Duv,
bending and stretching it so as to form the surface Σ. It is helpful to think of the surface
Σ as being generated by two families of curves, namely the images of the two families of
straight lines u = constant and v = constant. The two families of curves form a “grid” or
“fish-net” that covers the surface. We think of u and v as being coordinates on the surface
Σ and we refer to the curves on Σ that are defined by u = constant and v = constant as
coordinate curves which form a coordinate grid.
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v (u,v)

u

Duv

g

z

x

y

g(u,v)

Σ

Figure 3.1: The vector-valued function g maps the domain Duv onto the surface Σ.

Example 3.1:
The equation

x = g(u, v) = a + ue1 + ve2, (u, v) ∈ Duv, (3.2)

where Duv = {(u, v) | −1 ≤ u, v ≤ 1}, and e1, e2 are two linearly independent vectors in
R3, describes a surface which is a piece of the plane through the point a, and containing the
vectors e1 and e2. Referring to Figure 3.2, the vector x− a lies in the plane and hence is a
linear combination of e1 and e2.

v (u,v)

u

(0,0)

g

x

z

x = g(u,v)

y

a = g(0,0)

e2

e1

n

Figure 3.2: Parametric representation of a plane.

One can obtain the equation of the plane in standard form

n1(x− a) + n2(y − b) + n3(z − c) = 0 (3.3)

by calculating a normal vector n. Since e1 and e2 lie in the plane the vector product e1× e2

is a vector normal to the plane:
n = e1 × e2.
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Then, taking the scalar product of equation (3.2) with n gives

n·(x− a) = 0,

which is the standard form (3.3).

Recall: The vector product a× b can be evaluated using a “symbolic determinant”:

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ , (3.4)

which, when formally expanded by the first row, gives

a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k. �

Exercise 3.1:
A plane in R3 is given by

x = (1, 2, 3) + u(1, 1, 0) + v(1,−1, 1),

with (u, v) ∈ R2. Find the equation of the plane in standard form.

Answer: (x− 1)− (y − 2)− 2(z − 3) = 0.

Exercise 3.2:
Find a vector-valued function to describe the plane x− 3y + z = 2.

Hint: Let u = x, v = y.

Answer: x = g(u, v) = (0, 0, 2) + u(1, 0,−1) + v(0, 1, 3). �

Example 3.2:
The vector-valued function g : Duv → R3 defined by

g(u, v) = (sinu cos v, sinu sin v, cosu), (3.5)

with
Duv = {(u, v) | 0 ≤ u ≤ π, 0 ≤ v ≤ 2π},

describes the surface of the unit sphere in R3. This can be verified by writing x = g(u, v)
and verifying that

‖ x ‖2= x2 + y2 + z2 = 1.

The vector-valued function (3.5) is obtained from the formulas that relate spherical polar
coordinates to Cartesian coordinates:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ.
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z

x

y

rθ

φ

Figure 3.3: Spherical polar coordinates.

circles
φ = const.

circles
θ = const.

fig3.4

Figure 3.4: The coordinate grid on the sphere created by the spherical polar angles θ and φ.

To obtain a unit sphere we choose r = 1, and then let u = θ, v = φ. The coordinate lines
u = constant on the sphere are circles of constant latitude, and the coordinate lines v =
constant are circles of constant longitude, as shown in Figure 3.4.

Comment:
Consider the surface Σ defined by

z = f(x, y), (x, y) ∈ D ⊂ R2.

One can write a vector equation for Σ by introducing u = x and v = y as parameters. Then
z = f(u, v), and the vector equation for the surface is

x = g(u, v) = (u, v, f(u, v)), (u, v) ∈ D. (3.6)

Exercise 3.3:
Give a vector-valued function to describe the cone x2 + y2 = z2 with 0 ≤ z ≤ 1.

Answer: x = g(u, v) = (u cos v, u sin v, u),
with (u, v) ∈ Duv = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}.
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3.1.2 The tangent plane

Consider a surface in R3 given by

x = g(u, v), (u, v) ∈ Duv,

where g is of class C1. The coordinate curves on the surface, obtained by setting either u or
v to be constant, are given by

x = g(u, v0), x = g(u0, v).

The vectors
∂g

∂u
(u0, v0) and

∂g

∂v
(u0, v0) (3.7)

are tangent to these curves at the point g(u0, v0), and hence are tangent to the surface at
that point. We can thus regard these vectors, provided that they are linearly independent, as
defining the tangent plane of the surface at the point g(u0, v0).

z
N

x

y

e2g(u0,v0)

e1

    x = g(u, v0 )

    x = g(u0 ,v)

Figure 3.5: The surface x = g(u, v), and tangent vectors e1 = ∂g
∂u

(u0, v0) and e2 = ∂g
∂v

(u0, v0).

Referring to Example 3.1, the equation of the tangent plane can thus be written by using
the vectors (3.7) as e1 and e2, in the form

x = g(u0, v0) + (u− u0)
∂g

∂u
(u0, v0) + (v − v0)

∂g

∂v
(u0, v0). (3.8)

Furthermore, the vectors (3.7) define a vector N that is normal to the surface,

N =
∂g

∂u
(u0, v0)× ∂g

∂v
(u0, v0), (3.9)

where the vector product is defined by equation (3.4). Knowing N, the tangent plane at the
point g(u0, v0) can also be written in the form

N ··· (x− g(u0, v0)) = 0. (3.10)
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Comment:
The requirement that the tangent vectors (3.7) be linearly independent is essential: if

they are linearly dependent (in particular if one or both is the zero vector), then the surface
may not have a tangent plane at the point in question. A classic example is the cone

x = g(u, v) = (u cos v, u sin v, u),

with 0 ≤ v ≤ 2π and u ≥ 0. The function g is of class C1, but the surface does not have a
tangent plane at the point g(0, 0) = (0, 0, 0). The tangent vectors are

∂g

∂u
= (cos v, sin v, 1),

∂g

∂v
= (−u sin v, u cos v, 0),

and are linearly dependent when u = 0, since

∂g

∂v
(0, v) = (0, 0, 0).

This requirement of linear independence is analogous to the requirement that g′(t) 6= 000
for a curve: if g′(t0) = 000 the curve may have a cusp at g(t0). �

For a vector-valued function g : Duv → R3 the linear approximation corresponds to using
the tangent plane to approximate th surface x = g(u, v). Using (3.8) we have

g(u, v) ≈ g(u0, v0) + (u− u0)
∂g

∂u
(u0, v0) + (v − v0)

∂g

∂v
(u0, v0),

for (u, v) sufficiently close to (u0, v0). Equivalently, introducing the increments

∆g = g(u, v)− g(u0, v0), ∆u = u− u0, ∆v = v − v0,

we obtain

∆g ≈ ∆u
∂g

∂u
(u0, v0) + ∆v

∂g

∂v
(u0, v0), (3.11)

for ∆u, ∆v sufficiently close to zero.

Example 3.3:
The surface S defined by

z = f(x, y), (x, y) ∈ D, (3.12)

can be described equivalently by

x = g(u, v) = (u, v, f(u, v)), (u, v) ∈ D

(see (3.6)). The tangent vectors (3.7) are given by

∂g

∂u
=

(
1, 0,

∂f

∂u

)
,

∂g

∂v
=

(
0, 1,

∂f

∂v

)
. (3.13)
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The normal vector (3.9) is

N =

(
−∂f
∂u
,−∂f

∂v
, 1

)
, (3.14)

(verify, using (3.4)). As a check, one can also calculate a normal vector by writing (3.12) in
the form h(x, y, z) = 0, where

h(x, y, z) = z − f(x, y). (3.15)

We know that the gradient ∇h is orthogonal to the surface h(x, y, z) = 0. Using (3.15)

∇h =

(
−∂f
∂x
,−∂f

∂y
, 1

)
in agreement with (3.14). �

3.1.3 Surface area

We want to calculate the surface area of a surface Σ described by

x = g(u, v), (u, v) ∈ Duv,

where g is a C1 function. Consider a partition of Duv into small rectangles by means of
parallel lines u = constant and v = constant. These lines define a coordinate grid on the
surface Σ that decomposes Σ into small surface elements (see Figure 3.1). For ∆u and ∆v
sufficiently small a surface element can be approximated as part of a plane, and the edges
of the surface element can be approximated by parallel vectors. Thus we can approximate a
surface element as a small plane parallelogram.

v

u

z

g

x

y

magnify

Σ

∆v

∆u

Duv

g(u0,v0)

g(u0,v0)

g(u0 + ∆u, v0)

g(u0,v0 + ∆v)
B

A

(u0,v0)

Figure 3.6: A surface element on a surface Σ.

Recall that the area of a parallelogram defined by two vectors A and B is ‖ A × B ‖,
the magnitude of the vector product. This result follows from the formula

‖ A×B ‖=‖ A ‖ ‖ B ‖ sin θ,

where θ is the angle between the vectors.
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In order to approximate the area ∆S of a surface element we need to approximate the
vectors A and B that define the sides of the surface element in Figure 3.6. Using the linear
approximation (3.11) we obtain

A ≈ (∆u)
∂g

∂u
(u0, v0), B ≈ (∆v)

∂g

∂v
(u0, v0).

Thus, simplifying ∆S ≈‖ A×B ‖ gives

∆S ≈
∥∥∥∥∂g

∂u
(u0, v0)× ∂g

∂v
(u0, v0)

∥∥∥∥∆u∆v. (3.16)

To obtain the total area S we have to sum over all surface elements determined by the
partition of Duv and take the limit as N → ∞ and max(∆u), max(∆v) → 0. This process
leads to a double integral over the set Duv in the uv-plane. With the above as motivation
we make the following.

Definition:
The surface area of the surface by x = g(u, v), (u, v) ∈ Duv, where g is C1, is defined by

S =

∫∫
Duv

∥∥∥∥∂g

∂u
× ∂g

∂v

∥∥∥∥ du dv. (3.17)

Example 3.4:
Calculate the surface area of a cone of radius b and height h.

Solution: The cone is given by

x2 + y2

b2
=
z2

h2
, 0 ≤ z ≤ h.

A suitable vector-valued function is

x = g(u, v) = (bu cos v, bu sin v, hu), (u, v) ∈ Duv,

with Duv = [0, 1]× [0, 2π]. The tangent vectors are

∂g

∂u
= (b cos v, b sin v, h),

∂g

∂v
= (−bu sin v, bu cos v, 0),

giving

∂g

∂u
× ∂g

∂v
=

∣∣∣∣∣∣
i j k

b cos v b sin v h
−bu sin v bu cos v 0

∣∣∣∣∣∣ = (−bhu cos v,−bhu sin v, b2u),

and ∥∥∥∥∂g

∂u
× ∂g

∂v

∥∥∥∥ =
√
b2 + h2 bu.
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Thus by (3.17) the surface area is

S =

∫∫
Duv

√
b2 + h2 bu du dv

=
√
b2 + h2 b

1∫
u=0

 2π∫
v=0

u dv

 du

= · · · = πb
√
b2 + h2.

v

u10

D uv
2π

Comment:
This example is simply intended to show you how the “machinery” works. The surface

area of a cone can be calculated by simple geometry. �

The most important part of this subsection is the approximation (3.16) for the area of a
surface element, which we shall use when introducing surface integrals, the main goal of this
chapter.

3.1.4 Orientation of a surface

Consider a surface Σ given by

x = g(u, v), (u, v) ∈ Duv,

where g is one-to-one and of class C1, and the normal vector

N =
∂g

∂u
× ∂g

∂v

is non-zero for all (u, v) ∈ Duv. Since g is one-to-one the surface does not intersect itself (see
Figure 3.7), and since g is of class C1, N varies continuously over Σ. In the sequel we shall
need to work with a unit normal n on Σ. There are two choices for n at each point, namely

n = ± 1

‖ N ‖
N.
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Figure 3.7: A surface which intersects itself.

Once we have made a choice of n we say that we have assigned an orientation to Σ. An
oriented surface has two distinct sides, a positive side which is the side on which n points
and a negative side. You could paint the positive side red and the negative side blue and
the colours would not merge. A surface for which this cannot be done, i.e. a surface which
does not have two distinct sides, is said to be non-orientable. The existence of such surfaces
is counter-intuitive, but there is a famous example called the Moëbius band that can be
constructed easily using a piece of paper as shown in Figure 3.8.

B

A C

D B

A C

D

Figure 3.8: Identifying AB and CD creates a cylinder. Identifying BA and CD creates
a Möbius band.

We shall assume that the surfaces we work with can be oriented. When working with
a closed surface, e.g. the surface of a sphere or of a torus, the standard orientation is to
choose n to be the outward normal. On the other hand, when working with a surface Σ
whose boundary ∂Σ is a piecewise smooth closed curve, we shall relate the orientation of Σ
to the orientation of ∂Σ as follows: when viewed from the side of Σ on which the normal
vector points, the boundary ∂Σ is oriented counter-clockwise (see Figure 3.10).

3.2 Surface Integrals

3.2.1 Scalar fields

As motivation, think of a surface Σ coated with a thin film of silver of surface density ρ
(mass per unit area), that varies over the surface. In order to calculate the total mass of
silver on the surface we need to define a surface integral over Σ. This concept is analogous
to the line integral of a scalar field, as defined in Section 2.1, but with surface area replacing
arclength.

Consider a surface Σ given by

x = g(u, v), (u, v) ∈ Duv,
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Figure 3.9: The two normals on an orientable closed surface.

n

Σ

∂Σ

Figure 3.10: Orientation of the boundary of a surface.

and a scalar field f : R3 → R continuous on Σ. Consider a partition P of Σ into N surface
elements as in Section 3.1.3. The surface integral of f over Σ is denoted by∫∫

Σ

f dS.

As a tentative definition we write∫∫
Σ

f dS = lim
|P|→0

∑
P

f(x)∆S, (3.18)

where the summation is taken over all surface elements of the partition P , x is a point in
the surface element and ∆S is the area of the surface element. The symbol |P| denotes the
maximum of the areas of the surface elements.

Using the approximation (3.16) we can write

f(x)∆S ≈ f(g(u, v))

∥∥∥∥∂g

∂u
(u, v)× ∂g

∂v
(u, v)

∥∥∥∥∆u∆v.

The sum (3.18) then becomes a Riemann sum for a double integral over the set Duv in the
uv-plane. These considerations lead to the working definition below.
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Definition:
Consider a surface Σ given by x = g(u, v), (u, v) ∈ Duv, with g of class C1, and a scalar

field f continuous on Σ. The surface integral of f over Σ is defined by∫∫
Σ

f dS =

∫∫
Duv

f(g(u, v))

∥∥∥∥∂g

∂u
× ∂g

∂v

∥∥∥∥ du dv. (3.19)

Comment:
As regards physical interpretation, the scalar field f will usually represent the surface

density of some physical quantity and the surface integral

∫∫
Σ

f dS gives the total amount of

the physical quantity on the surface Σ.

Example 3.5:

Evaluate the surface integral

∫∫
Σ

f dS, where Σ is the surface of the sphere of radius b

centred on the origin and the scalar field f is given by f(x) = z2.

Solution: We use the standard parametrization (3.5) adapted to a sphere of radius b:

x = g(u, v) = b(sinu cos v, sinu sin v, cosu),

with (u, v) ∈ Duv = {(u, v) | 0 ≤ u ≤ π, 0 ≤ v ≤ 2π}. The tangent vectors are

∂g

∂u
= b(cosu cos v, cosu sin v,− sinu),

∂g

∂v
= b(− sinu sin v, sinu cos v, 0),

giving

∂g

∂u
× ∂g

∂v
= b2(sin2 u cos v, sin2 u sin v, sinu cosu)

= (b sinu)x.

It follows that ∥∥∥∥∂g

∂u
× ∂g

∂v

∥∥∥∥ = (b sinu) ‖ x ‖= b2 sinu,

since sinu ≥ 0 on [0, π]. By definition of the surface integral (3.19)∫∫
Σ

z2dS =

∫∫
Duv

(b cosu)2(b2 sinu)du dv

= b4

2π∫
v=0

π∫
u=0

cos2 u sinu du dv

= · · · = 4
3
πb4. �
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Exercise 3.4:

Evaluate the surface integral

∫∫
Σ

f dS, where Σ is the cone z =
√
x2 + y2, 0 ≤ z ≤ 1,

and f(x) = z2.

Answer: π√
2
.

3.2.2 Vector fields

As motivation, think of a vector field F that is a flux density field, for example mass flux
density (example 3 in Section 1.6.1) or heat flux density (example 5 in Section 1.6.1). Let
Σ be a (piece-wise) smooth oriented surface with unit normal n. Consider a surface element
of area ∆S on Σ. We have seen (Section 1.6.1) that the flux through the surface element is
given by

(F · n)∆S. (3.20)

The total flux through Σ is obtained by summing over all surface elements. This process
leads to the notion of the surface integral of the flux density field F over the surface Σ.

In general, consider an oriented surface Σ in R3 given by

x = g(u, v), (u, v) ∈ Duv,

with unit normal n. Let F be a vector field on R3 that is continuous on Σ. The surface
integral of F over Σ is denoted by ∫∫

Σ

F · n dS.

Consider a partition P of Σ into N surface elements, as in Section 3.1.3. Motivated by the
form of the expression (3.20), we write the tentative definition of surface integral as follows:∫∫

Σ

F · n dS = lim
|P|→0

∑
P

F(x)·n ∆S, (3.21)

where the notation has the same meaning as in (3.18). The unit normal n is obtained by
normalizing1 the normal vector (3.9):

n =
1∥∥∂g

∂u
× ∂g

∂v

∥∥
(
∂g

∂u
× ∂g

∂v

)
. (3.22)

Using (3.22) and the approximation (3.16) for ∆S i.e.

∆S ≈
∥∥∥∥∂g

∂u
× ∂g

∂v

∥∥∥∥∆u∆v,

1One has to verify that this normal vector does agree with the assigned orientation of Σ. If not, one has
to change the parametrization so as to reverse the direction of n.
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we obtain

F(x)·n ∆S ≈ F(g(u, v)) ···
(
∂g

∂u
× ∂g

∂v

)
∆u∆v.

The sum (3.21) then becomes a Riemann sum for a double integral over the set Duv. These
considerations lead to the working definition below.

Definition:
Consider an oriented surface Σ given by x = g(u, v), (u, v) ∈ Duv, with g of class C1,

and a vector field F continuous on Σ. The surface integral of F over Σ is defined by∫∫
Σ

F · ndS =

∫∫
Duv

F(g(u, v)) ···
(
∂g

∂u
× ∂g

∂v

)
dudv. (3.23)

Comment:

If F is a flux density vector field, then the surface integral

∫∫
Σ

F · ndS equals the total

flux of F through the surface Σ.

Example 3.6:
The surface Σ is the piece of the plane y + z = 1 cut out by the cylinder x2 + y2 = a2,

oriented so that the unit normal n points upwards. The temperature in the vicinity of Σ is
given by T (x) = x2 + y2 + z2. Calculate the total heat flux through Σ. Denote the thermal
conductivity by k.

Solution: We parametrize Σ by writing

x = g(u, v) = (u, v, 1− v), u2 + v2 ≤ a2,

i.e. we choose x = u, y = v. The tangent vectors are

∂g

∂u
= (1, 0, 0),

∂g

∂v
= (0, 1,−1),

giving
∂g

∂u
× ∂g

∂v
= (0, 1, 1),

which has the correct orientation. By equation (1.30) the heat flux density vector is

J = −k∇T = −2k(x, y, z).

The total heat flux J(Σ) through Σ is

J(Σ) =

∫∫
Σ

J · ndS.
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By definition of the surface integral

J(Σ) =

∫∫
Duv

−(2k)(u, v, 1− v) ··· (0, 1, 1)dudv

=

∫∫
Duv

(−2k)dudv.

Since Duv is the disc u2 + v2 ≤ a2 and the integrand is constant,

J(Σ) = −2πka2. �

Comment:
The temperature T in Example 3.6 increases radially outwards, and thus we expect

that heat will be transferred across Σ in the direction of −n. We thus expect that the heat
flux across Σ will be negative.
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Figure 3.11: The surface Σ in Example 3.6.

Exercise 3.5:

Evaluate the surface integral

∫∫
Σ

F · ndS where Σ is the cylinder x2 +z2 = b2, 0 ≤ y ≤ h,

excluding the ends, and F is the vector field F(x) = (0, 0, z). The surface Σ is oriented so
that the normal is in the outward radial direction.

Answer: πb2h.

3.2.3 Properties of surface integrals

As with any integral, surface integrals possess the properties of linearity and additivity. The
formal statements are analogous to those for line integrals in Section 2.2.3. In addition, if
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a surface Σ is piecewise C1 instead of being C1, i.e. the surface Σ is the union of several
surfaces whose defining functions are C1, one can define the surface integral over Σ as the
sum of the integrals over the separate pieces.
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Chapter 4

Gauss’ and Stokes’ Theorems

In this chapter we first introduce the divergence and curl of a vector field, which we then use
in the formulation of Gauss’ and Stokes’ theorems.

4.1 The vector differential operator ∇

4.1.1 Divergence and curl of a vector field

In elementary calculus it is useful to think of the process of differentiation as defining a
differential operator, denoted by d

dx
, which acts on a C1 function f to give the derivative

function f ′:
d

dx
(f) = f ′.

When working with scalar and vector fields on R3 (i.e. functions of x, y and z) it is useful
to generalize the operator d

dx
, and consider a vector differential operator which we denote by

∇:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (4.1)

or equivalently

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (4.2)

relative to Cartesian coordinates.
Firstly, ∇ can act on a scalar field f : R3 → R,

∇f = i
∂

∂x
(f) + j

∂

∂y
(f) + k

∂

∂z
(f),

which we rewrite as

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k, (4.3)

and recognize as the gradient of the scalar field f . Secondly, ∇ can act on a vector field
F : R3 → R3 to give a scalar field ∇ ··· F:

∇ ··· F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
··· (F1, F2, F3),
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which, in analogy with the scalar product of two vectors, is written

∇·F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
. (4.4)

This scalar field is called the divergence of F, and is also written div F. We note that Gauss’
Theorem leads to a physical interpretation of ∇·F, which we shall discuss later.

Thirdly, in analogy with the vector product, ∇ can act on a vector field F on R3 to give
a vector field ∇× F:

∇× F =

∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣ . (4.5)

Written out in full this gives

∇× F =

(
∂F3

∂y
− ∂F2

∂z

)
i +

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k. (4.6)

This vector field is called the curl of F, and is also written curl F. On recalling that the
vorticity scalar of a vector field on R2 is given by

Ω =
∂F2

∂x
− ∂F1

∂y
,

(see equation (2.54)) we see that the curl is the generalization to three dimensions of the
vorticity scalar in R2. Indeed in fluid mechanics, if v is the velocity field of a fluid then
w = ∇ × v is called the vorticity field of the fluid. We thus expect ∇ × F to describe
rotational properties of the vector field F. This interpretation will be clarified after we
discuss Stokes’ theorem.

Exercise 4.1:
In this exercise, r = (x, y, z), r =‖ r ‖. By writing out components, verify that

i)∇r =
1

r
r, ii)∇ ··· r = 3, iii)∇× r = 000.

Exercise 4.2:
Consider the vector field F defined by

F(x) = Ax,

where A is a 3×3 constant matrix with entries aij. The matrix A acts on the position vector
x written as a column vector. Show that

∇·F = a11 + a22 + a33,

∇× F = (a32 − a23, a13 − a31, a21 − a12). �

As an example of the use of divergence and curl in physics, we now present Maxwell’s
equations, the fundamentalequations that describe electromagnetic fields. Our purpose is not
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to derive the equations or to study their physical implications – it is simply to present an
important example of the use of the divergence and curl.

An electromagnetic field is composed of an electric field E(t, x, y, z) and a magnetic field
H(t, x, y, z), which are time-dependent vector fields on R3. With appropriate choice of units,
Maxwell’s equations read

∂E

∂t
= c∇×H− 4πJ (4.7)

∂H

∂t
= −c∇× E (4.8)

∇·E = 4πε (4.9)

∇·H = 0, (4.10)

where ε is the charge density and j is the current vector. The constant c has the dimensions
of velocity, and is in fact the speed of light in a vacuum. Mathematically these equations
form a system of linear partial differential equations in 6 unknowns, namely the components
of E and H.

One of the most remarkable predictions of Maxwell’s equations is that electromagnetic
fields can transport energy through space in the form of waves, called electromagnetic waves
or electromagnetic radiation (light, radio waves, X-rays are all examples, differing in fre-
quency). See #6 in Problem Set 4.

4.1.2 Identities involving ∇
The differential operator ∇ satisfies various identities which are used in deriving and working
with the field equations of classical physics, e.g. Maxwell’s equations, or the equations of
fluid dynamics.

The first set of identities refers to the gradient.

G1 Sum of two scalar fields:
∇(f + g) = ∇f +∇g.

G2 Product of two scalar fields:

∇(fg) = f∇g + g∇f.

G3 Scalar product of two vector fields:

∇(F ·G) = (F ··· ∇)G + (G·∇)F + F× (∇×G) + G× (∇× F).

The second set refers to the divergence

D1 Sum of two vector fields:

∇ ··· (F + G) = ∇·F +∇·G.
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D2 Product of a scalar field and a vector field:

∇ ··· (fF) = f∇·F + (∇f)·F.

D3 Vector product of two vector fields:

∇ ··· (F×G) = G·(∇× F)− F·(∇×G).

The third set refers to the curl.

C1 Sum of two vector fields:

∇× (F + G) = ∇× F +∇×G.

C2 Product of a scalar field and a vector field:

∇× (fF) = f∇× F +∇f × F.

C3 Vector product of two vector fields:

∇× (F×G) = (∇·G)F− (∇·F)G + (G·∇)F− (F·∇)G.

The fourth set can be thought of as “zero identities”.

Z1 Curl of a gradient:
∇× (∇f) = 000, (4.11)

for any C2 scalar field f ,

Z2 Divergence of a curl:
∇ ··· (∇× F) = 0, (4.12)

for any C2 vector field F.

Note: In G3 and C3 there appear the terms (F · ∇)G and (G · ∇)F. In component form
the expression F · ∇ reads

F · ∇ = (F1, F2, F3) ·
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= F1

∂

∂x
+ F2

∂

∂y
+ F3

∂

∂z
.

Observe that F · ∇ is a scalar differential operator. For example

i · ∇ =
∂

∂x
,
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where i = (1, 0, 0). Note that one cannot reverse the order of the symbols in the expression
F · ∇:

F · ∇︸ ︷︷ ︸
a scalar

differential operator

6= ∇ · F︸ ︷︷ ︸
divergence of F,

a scalar field

The scalar operator F · ∇ can act on a vector field G to give a vector field (F · ∇)G.

Exercise 4.3:
Let A = (A1, A2, A3) be a constant vector field and let r = (x, y, z). Show that

(A · ∇)r = A.

One can also ask about the “curl of a curl”, i.e.

∇× (∇× F).

Unlike the other two expressions with repeated derivatives, namely Z1 and Z2, this one is
not identically zero, and in order to give an expression for it, we need to form a second
order differential operator from ∇, called the Laplacian, and denoted by ∇2. This operator
is defined by taking the divergence of a gradient field:

∇2f = ∇ ··· (∇f) (4.13)

Writing this out in terms of partial derivatives, i.e.

∇2f =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
···
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

leads to

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
. (4.14)

One can formally write

∇2 = ∇ ··· ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (4.15)

The operator ∇2, which is a scalar differential operator, is called the Laplacian. Note that
the Laplacian can act on a vector field F,

∇2F =
∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2
(4.16)

to give a vector field.
We can now state the “curl of a curl” identity:

∇× (∇× F) = ∇(∇·F)−∇2F. (4.17)

In words: the curl of the curl of F equals the gradient of the divergence of F minus the
Laplacian of F.
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The Laplacian operator ∇2 commutes with the vector operator ∇ in the following ways:

∇(∇2f) = ∇2(∇f), (4.18)

∇ · (∇2F) = ∇2(∇ · F), (4.19)

∇× (∇2F) = ∇2(∇× F), (4.20)

where f is a C3 scalar field and F is a C3 vector field. Note that in (4.18), ∇2f is a scalar
field while ∇f is a vector field.

Comment:
Proving the identities listed in this section involves a straightforward but sometimes

lengthy calculation – one simply expresses each side of an identity in terms of components,
thereby showing that they are equal. The “zero identities” Z1 and Z2 are essentially a

consequence of the equality of mixed second order partial derivatives e.g.
∂2f

∂x∂y
=

∂2f

∂y∂x
.

See Problem Set 4, #3-7.

Exercise 4.4:
Use exercise 4.1 and the chain rule to show that

∇f(r) =
f ′(r)

r
r,

where f : R→ R is a C1 function, r =‖ r ‖ and r = (x, y, z).

Exercise 4.5:
Use exercises 4.1 and 4.4 and the identities involving ∇ to verify the following results:

i) ∇ · (f(r)r) = rf ′ + 3f ii) ∇ · (f(r)A) =
f ′(r)

r
r ·A

iii) ∇× (f(r)r) = 000 iv) ∇× (f(r)A) =
f ′(r)

r
r×A

v) ∇(A ·R) = A vi) ∇× (A× r) = 2A

vii) ∇2f(r) = f ′′(r) + 2f ′(r)
r

Here f(r) is a C2 function of r =‖ r ‖, and A is a constant vector field in R3.

4.1.3 Expressing ∇ in curvilinear coordinates

In problems in which there is symmetry about a point it is usually helpful to introduce polar
coordinates (ρ, φ) in R2 or spherical coordinates (r, θ, φ) in R3. If there is symmetry about a
line in R3, one thinks of cylindrical coordinates (ρ, φ, z). These three systems of coordinates
are examples of curvilinear coordinates. Let’s begin by reviewing the definitions of these
coordinates.
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Polar coordinates:

x = ρ cosφ

y = ρ sinφ,
(4.21)

with ρ ≥ 0, 0 ≤ φ ≤ 2π.

Figure 4.1: Polar coordinates.

Spherical coordinates:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ,

(4.22)

with r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

z

x

r
y

θ

φ

Figure 4.2: Spherical coordinates.

Cylindrical coordinates:

x = ρ cosφ

y = ρ sinφ

z = z,

(4.23)
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z

x

y

φ
ρ

z

Figure 4.3: Cylindrical coordinates.

with ρ ≥ 0, 0 ≤ φ ≤ 2π, z ∈ R.
Cartesian coordinates (x, y) in R2 define a coordinate grid consisting of two families of

orthogonal straight lines x = constant and y = constant. Polar coordinates (ρ, φ) define
a coordinate grid consisting of concentric circles ρ = constant and radial half-lines φ =
constant.

y
y = const.

x

x = const.

θ = const.

r = const.

Figure 4.4: A Cartesian coordinate grid. A polar coordinate grid.

Coordinate systems in R3 define a coordinate grid consisting of three families of curves or
lines. A coordinate system whose coordinate grid does not consist of families of parallel
lines is called a curvilinear coordinate system. If the families of curves intersect orthogonally,
we call the coordinate system orthogonal. Polar, spherical and cylindrical coordinates are
orthogonal.

Our goal is to learn how to write the gradient ∇f , the divergence ∇·F and the curl
∇× F in terms of spherical and cylindrical coordinates in R3. In Cartesian coordinates the
operator ∇ has the form

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

The key to writing this operator in a curvilinear coordinate grid is to construct an orthonor-
mal basis {e1, e2, e3), the analogue of the Cartesian basis {i, j,k}. Figure 4.5 shows the
orthonormal basis {eρ, eφ} determined by polar coordinates {ρ, φ} in R2.

For simplicity we begin by introducing the orthonormal basis determined by an orthogonal
curvilinear coordinate system in R2. The generalization to R3 then becomes clear. A general
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eφ

  
eρ   

eφ
  
eρ

Figure 4.5: The orthonormal basis associated with polar coordinates.

curvilinear coordinate system (v1, v2) in R2 is related to a Cartesian coordinate system by a
pair of equations

x = f(v1, v2)

y = g(v1, v2),
(4.24)

(see for example (4.21)). It is convenient to write these equations in vector form

x = F(v1, v2), (4.25)

where x = (x, y), F = (f, g). The curves of the coordinate grid are then given by

x = F(v1, `), x = F(k, v2),

where k and ` are constants, and the tangent vectors are

∂x

∂v1

=

(
∂x

∂v1

,
∂y

∂v1

)
,

∂x

∂v2

=

(
∂x

∂v2

,
∂y

∂v2

)
. (4.26)

By assumption these vectors are orthogonal. We thus obtain an orthonormal basis by nor-
malizing them

e1 =
1

h1

∂x

∂v1

,

e2 =
1

h2

∂x

∂v2

,

(4.27)

where

h1 =

∥∥∥∥ ∂x

∂v1

∥∥∥∥ =

√(
∂x

∂v1

)2

+

(
∂y

∂v1

)2

,

h2 =

∥∥∥∥ ∂x

∂v2

∥∥∥∥ =

√(
∂x

∂v2

)2

+

(
∂y

∂v2

)2

.

(4.28)

We can now express the gradient vector field ∇u of a given scalar field u relative to the
orthonormal basis {e1, e2}:

∇u = (∇u·e1)e1 + (∇u·e2)e2. (4.29)
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v1 = const.v2 = const.

e2 e1

Figure 4.6: The orthonormal basis.

Using the Chain Rule and equation (4.26) we obtain

∂u

∂v1

=
∂u

∂x

∂x

∂v1

+
∂u

∂y

∂y

∂v1

= ∇u ··· ∂x

∂v1

.

Dividing by h1 and using (4.27) gives

∇u ··· e1 =
1

h1

∂u

∂v1

.

Similarly

∇u ··· e2 =
1

h2

∂u

∂v2

.

It now follows from (4.29) that

∇u =
1

h1

∂u

∂v1

e1 +
1

h2

∂u

∂v2

e2.

We can write this equation in the form

∇u =

(
1

h1

e1
∂

∂v1

+
1

h2

e2
∂

∂v2

)
u. (4.30)

Thus, relative to the curvilinear coordinate system (v1, v2), the operator ∇ has the form

∇ =
1

h1

e1
∂

∂v1

+
1

h2

e2
∂

∂v2

, (4.31)

where the basis vectors e1, e2 are given by (4.27) and the scale factors h1, h2 by (4.28).
Equations (4.27) (4.31) generalizes to R3 in an obvious way:

ei =
1

hi

∂x

∂vi
, i = 1, 2, 3 (4.32)

∇ =
1

h1

e1
∂

∂v1

+
1

h2

e2
∂

∂v2

+
1

h3

e3
∂

∂v3

, (4.33)

where

hi =

∥∥∥∥ ∂x

∂vi

∥∥∥∥ (4.34)

We now give the expression for ∇ in each of the three classical coordinate systems.

90



Polar coordinates in R2:

The defining equations are
x = ρ cosφ, y = ρ sinφ.

Using equations (4.27), (4.28) and (4.31) with ρ = v1, φ = v2 we obtain

eρ = (cosφ, sinφ), eφ = (− sinφ, cosφ), (4.35)

hρ = 1, hφ = ρ,

and

∇ = eρ
∂

∂ρ
+

1

ρ
eφ

∂

∂φ
. (4.36)

Cylindrical coordinates in R3:

The defining equations are

x = ρ cosφ, y = ρ sinφ, z = z.

Using equations (4.32)-(4.34) we obtain with (v1, v2, v3) = (ρ, φ, z),

eρ = (cosφ, sinφ, 0), eφ = (− sinφ, cosφ, 0), ez = (0, 0, 1), (4.37)

hρ = 1, hφ = ρ, hz = 1,

and

∇ = eρ
∂

∂ρ
+

1

ρ
eφ

∂

∂φ
+ ez

∂

∂z
. (4.38)

Comment: It is important to note that an orthonormal basis (e1, e2, e3) determined by a
curvilinear coordinate system (v1, v2, v3) differs from the Cartesian basis {i, j,k} in a signif-
icant way – the vector fields (e1, e2, e3) vary from point to point (see for example (4.35) and
(4.37).

Spherical coordinates in R3:

The defining equations are

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

Using equations (4.32)-(4.34) with (v1, v2, v3) = (r, θ, φ), we obtain

er = (sin θ cosφ, sin θ sinφ, cos θ), hr = 1

eθ = (cos θ cosφ, cos θ sinφ,− sin θ), hθ = r

eφ = (− sinφ, cosφ, 0), hφ = r sin θ,

(4.39)

and

∇ = er
∂

∂r
+

1

r
eθ
∂

∂θ
+

1

r sin θ
eφ

∂

∂φ
. � (4.40)
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We are now in a position to calculate the divergence ∇·F and the Laplacian ∇2f in the
different coordinate systems. We will illustrate the procedure by calculating ∇·F in polar
coordinates in R2.

Example 4.1: Calculate the divergence ∇ · F in polar coordinates in R2.

Solution: We write F in terms of the basis (4.35):

F = Fρeρ + Fφeφ.

Using (4.36), and taking into account that eρ and eφ are not constant vector fields,

∇·F = eρ
∂

∂ρ
··· (Fρeρ + Fφeφ) +

1

ρ
eφ

∂

∂φ
··· (Fρeρ + Fφeρ)

= eρ ···
(
∂Fρ
∂ρ

eρ + Fρ
∂eρ
∂ρ

)
+ eρ ···

(
∂Fφ
∂ρ

eφ + Fφ
∂eφ
∂ρ

)
+

1

ρ
eφ ···

(
∂Fρ
∂φ

eρ + Fρ
∂eρ
∂φ

)
+

1

ρ
eφ ···

(
∂Fφ
∂φ

eφ + Fφ
∂eφ
∂φ

)
.

From (4.35) we obtain

∂eρ
∂ρ

= 000,
∂eρ
∂φ

= eφ,

∂eφ
∂ρ

= 000,
∂eφ
∂φ

= −eρ.

(4.41)

Using these results and the fact that

eρ·eρ = 1, eρ·eφ = 0, eφ·eφ = 1,

the expansion for ∇·F simplifies dramatically to give

∇·F =
∂Fρ
∂ρ

+
1

ρ
Fρ +

1

ρ

∂Fφ
∂φ

. � (4.42)

Comment: The surprise is the appearance of the term 1
ρ
Fρ, which is due to the fact that

the basis vectors are not constant. Equation (4.42) can be written more concisely as

∇·F =
1

ρ

[
∂

∂ρ
(ρFρ) +

∂Fφ
∂φ

]
. (4.43)

Example 4.2: Calculate the Laplacian ∇2f in polar coordinates in R2.

Solution: We use (4.13),
∇2f = ∇ · (∇f) (4.44)
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Equation (4.36) implies that

∇f =
∂f

∂ρ
eρ +

1

ρ

∂f

∂φ
eφ. (4.45)

We apply (4.43) with F = ∇f , i.e.

Fρ =
∂f

∂ρ
, Fφ =

1

ρ

∂f

∂φ
, (4.46)

as follows from (4.45). Equation (4.44), in conjunction with (4.43) and (4.46) now gives

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂φ2
� (4.47)

In a similar fashion we can derive the expression for ∇·F in cylindrical coordinates:

∇·F =
1

ρ

[
∂

∂ρ
(ρFρ) +

∂Fφ
∂φ

]
+
∂Fz
∂z

, (4.48)

and in spherical coordinates:

∇·F =
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

(
∂

∂θ
(sin θFθ) +

∂Fφ
∂φ

)
. (4.49)

The formulas for the Laplacian∇2f = ∇···(∇f) are also useful in applications. For cylindrical
coordinates it follows from (4.38) and (4.48) that

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂φ2
+
∂2f

∂z2
, (4.50)

and for spherical coordinates it follows from (4.40) and (4.49) that

∇2f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (4.51)

We leave the details as an exercise.

4.2 Gauss’ Theorem

In this section we state Gauss’ theorem, give a proof subject to a simplifying assumption on
the domain, and then discuss some applications in physics.

4.2.1 The theorem

Consider a bounded subset Ω of R3, whose boundary ∂Ω is a single piecewise smooth oriented
closed surface. For example, a solid sphere, a solid cube and a solid torus have this property.
The region between two concentric spheres does not have this property because its boundary
is the union of two disjoint surfaces. We note that a closed surface is one which has no
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boundary curve – it is the two-dimensional analogue of a closed curve, which has no boundary
points (i.e. end points).

Gauss’s theorem – also known as the Divergence theorem – relates the surface integral of
a vector field over a surface ∂Ω to the triple integral of the divergence of F over the region
Ω enclosed by ∂Ω.

Theorem 4.1 (Gauss’ theorem):
Let Ω be a bounded subset of R3 whose boundary ∂Ω is a single piecewise smooth oriented

closed surface. If the vector field F is of class C1 on Ω ∪ ∂Ω, then∫∫∫
Ω

∇·FdV =

∫∫
∂Ω

F · ndS,

where n is the unit outward normal to ∂Ω.
In order to simplify the proof of the theorem we shall require Ω to be a special domain,

defined by the following restriction:

any line through an interior point of Ω
intersects the boundary ∂Ω in two points.

A solid sphere and a solid cube are both special domains, but a solid torus is not.

F

n

n
F

Ω

∂Ω

Figure 4.7: Gauss’ theorem.

Comment:
If we project a special domain in the z-direction, as shown in Figure 4.8, we can describe

it by inequalities of the form
f`(x, y) ≤ z ≤ fu(x, y),

where
(x, y) ∈ Dxy.

It follows that a triple integral over Ω can be written in the form
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z = fu (x,y)

Σu

Σ
l

z = f
l
 (x,y)

Ω

(x,y,0)
Dxy

∂Ω

Figure 4.8: A special domain projected in the z-direction.

∫∫∫
Ω

h dV =

∫∫
Dxy

(∫ fu(x,y)

z=f`(x,y)

h dz

)
dx dy. (4.52)

In addition we can represent the boundary ∂Ω as the union of an upper surface

Σu : z = fu(x, y), (x, y) ∈ Dxy, (4.53)

and a lower surface
Σ` : z = f`(x, y), (x, y) ∈ Dxy, (4.54)

i.e.
∂Ω = Σu ∪ Σ`. (4.55)

This decomposition forms the basis of the proof of Gauss’ theorem. We shall also require
an expression for the surface integral of a vector field over a surface of the form Σu or Σ`,
which assumes a particularly simple form, given in the proposition to follow.

Proposition 4.1:
Consider a surface Σ given by z = f(x, y) with (x, y) ∈ Dxy, and with unit normal n

oriented in the positive z-direction. Then for any vector field of the form F = F3k,∫∫
Σ

F · ndS =

∫∫
Dxy

F3(x, y, f(x, y))dx dy. (4.56)

Proof:
We use the parametrization

x = g(x, y) = (x, y, f(x, y)),
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which leads to
∂g

∂x
× ∂g

∂y
=

(
−∂f
∂x
,−∂f

∂y
, 1

)
(exercise). By definition of the surface integral:∫∫

Σ

F · ndS =

∫∫
Dxy

(0, 0, F3(x, y, f(x, y))) ···
(
−∂f
∂x
,−∂f

∂y
, 1

)
dx dy,

which simplifies to (4.56). �

Proof of Gauss’ theorem for a special domain:

Consider a vector field of the form F = F3k. Decompose the boundary ∂Ω as in (4.55),
noting that on Σu the outward normal is in the positive z-direction while on Σ` it is in the
negative z-direction. Thus by (4.56)∫∫

∂Ω

F · ndS =

∫∫
Σu

F · ndS +

∫∫
Σ`

F · ndS

=

∫∫
Dxy

[F3(x, y, fu(x, y))− F3(x, y, f`(x, y))] dx dy.

On the other hand, using (4.52),∫∫∫
Ω

∂F3

∂z
dV =

∫∫
Dxy

[∫ fu(x,y)

z=f`(x,y)

∂F3

∂z
dz

]
dx dy

=

∫∫
Dxy

[F3(x, y, fu(x, y))− F3(x, y, f`(x, y))] dx dy,

after applying the second Fundamental Theorem of Calculus to the z-integral. We have thus
shown that ∫∫∫

Ω

∂F3

∂z
dV =

∫∫
∂Ω

(F3 k)·n dV. (4.57)

By projecting in the y- and x-directions, one similarly obtains∫∫∫
Ω

∂F2

∂y
dV =

∫∫
∂Ω

(F2 j)·n dV, (4.58)

∫∫∫
Ω

∂F1

∂x
dV =

∫∫
Ω

(F1 i)·n dV. (4.59)

Summing (4.57)-(4.59) gives Gauss’ theorem. �

Here is a simple application of Gauss’ theorem.
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Example 4.1:
Show that the flux of the vector field F = xi+yj+zk through any oriented closed surface

∂Ω equals 3V (Ω), where V (Ω) is the volume of the set Ω enclosed by ∂Ω.

Solution: Differentiation gives ∇·F = 3. Applying Gauss’ theorem to F gives∫∫
∂Ω

F · ndS =

∫∫∫
Ω

(3)dV = 3

∫∫∫
Ω

(1)dV = 3V (Ω),

by the usual interpretation of the triple integral. �

Physical interpretation of the divergence:

Gauss’ theorem leads directly to the physical interpretation of ∇·F at a given point x.
Apply Gauss’ theorem to a sphere of radius ε centred at x:∫∫∫

Ω(ε)

∇·FdV =

∫∫
∂Ω(ε)

F · n dS. (4.60)

∂Ω

c

x

Ω

By the Mean Value Theorem for integrals there exists a point c ∈ Ω such that∫∫∫
Ω(ε)

(∇·F)dV = [∇·F(c)]V (ε),

(∇·F is continuous since F is of class C1), where V (ε) is the volume of the sphere. By (4.60),

∇·F(c) =
1

V (ε)

∫∫
∂Ω(ε)

F · n dS.

Taking the limit as ε→ 0+, so that c→ x, we get

∇·F(x) = lim
ε→0+

1

V (ε)

∫∫
∂Ω(ε)

F · n dS.

For ε sufficiently close to 0 we can write the approximation

∇·F(x) ≈ 1

V (ε)

∫∫
∂Ω(ε)

F · n dS. (4.61)
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Thus, the divergence ∇·F(x) equals the flux per unit volume at x of the vector field F. �

Exercise 4.6:
The figure shows four vector fields in R3 – the x-axis is out of the page and there is no

dependence on x. For each vector field estimate geometrically whether the flux through the
surface of a small cube is positive, negative or zero. Then equation (4.61) gives a prediction
about ∇·F. Verify your prediction by inventing a vector field for each picture and calculating
∇·F.

z

z

z

z

y

y y

y

Figure 4.9: Four vector fields.

4.2.2 Conservation laws and PDEs

Gauss’ theorem plays a fundamental role in deriving the partial differential equations (PDEs)
that govern a variety of physical phenomena. We will illustrate how the theorem is used by
considering the law of conservation for a physical quantity described by a density scalar and
a flux density vector field (e.g. mass or heat energy).

Let ψ(x, t) be a C1 scalar field that represents the density of some physical quantity Q
(amount of Q per unit volume. It follows that the amount of Q in a bounded subset Ω ⊂ R3

is given by ∫∫∫
Ω

ψdV.

Let j(x, t) be a C1 vector field that represents the flux density of the physical quantity Q
(rate of flow of Q per unit area). It follows that the flux of Q across the boundary surface
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∂Ω is ∫∫
∂Ω

j · ndS,

where n is the unit outward normal.
We now formulate the law of conservation in integral form for the physical quantity Q.

Let D ⊂ R3 be the domain of ψ and j, and let Ω be an arbitrary bounded subset, as in the
statement of Gauss’ theorem. If the quantity Q is neither created nor destroyed in D (i.e.
no sources or sinks), then conservation of Q has the following form:


the rate at which the

amount of Q in Ω

increases


= −

 the rate at which Q

leaves Ω across ∂Ω

 .

The minus sign is needed because the amount of Q in Ω decreases if the flux across ∂Ω is
positive.

In terms of ψ and j the above conservation law reads

d

dt

∫∫∫
Ω

ψdV = −
∫∫
∂Ω

j · n dS. (4.62)

Since ψ is of class C1 and Ω does not change with time,

d

dt

∫∫∫
Ω

ψdV =

∫∫∫
Ω

∂ψ

∂t
dV.

In addition we can use Gauss’ theorem to write the surface integral as a triple integral,∫∫
∂Ω

j · n dS =

∫∫∫
Ω

∇·j dV.

Equation (4.62) then assumes the form∫∫∫
Ω

(
∂ψ

∂t
+∇·j

)
dV = 0. (4.63)

We now invoke a famous lemma from analysis (that applies to any type of integral).

Lemma 4.1:
If the scalar field h is continuous on D ⊂ R3 and∫∫∫

Ω

hdV = 0
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for any subset of Ω ⊂ D, then
h = 0 on D.

Proof:
Suppose h(a) > 0 for some a ∈ D. Since h is continuous on D, h(x) > 0 for all x in some

neighbourhood N of a. Then

∫∫∫
N

hdV > 0, contradicting the hypothesis. Thus h(x) = 0

for all x ∈ D. �

Since the integral in equation (4.63) is evaluated over an arbitrary subset Ω ∈ D, the
lemma implies that

∂ψ

∂t
+∇·j = 0 (4.64)

in D. This equation is the differential form of the conservation law.
We consider two special cases. In the first ψ is mass density of a fluid and j = ρv is the

mass flux density, where v is the velocity of the fluid. The conservation law (4.64) becomes

∂ρ

∂t
+∇ ··· (ρv) = 0, (4.65)

which is called the equation of continuity for the fluid.
In the second case, we consider a conducting medium whose temperature u(x, t) is a

function of position and time. The scalar field ψ is the heat energy density given by

ψ = cρu,

where c is the specific heat of the material (the amount of heat required to raise the tem-
perature of unit mass by one degree), and ρ is the density. The vector field j is the heat flux
density, given by

j = −k∇u,

where k is the thermal conductivity (Fourier’s law). The conservation law (4.64) assumes
the form

∂

∂t
(cρu) +∇ ··· (−k∇u) = 0. (4.66)

We assume that the medium is homogeneous so that k, c and ρ are independent of position,
and we also assume that they do not change with time. Recalling the definition of the
Laplacian, ∇2u = ∇ ··· (∇u) (see equation (4.13)), equation (4.66) assumes the form

∂u

∂t
− a2∇2u = 0, (4.67)

where a2 = k
cρ

is called the thermal diffusivity. Equation (4.67) is one of the fundamental
equations of mathematical physics, and is called the heat diffusion equation.

The heat diffusion equation also governs other diffusive processes. If a chemical is dis-
solved in a solvent and the concentration is not uniform, then the chemical will diffuse (be
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transported) from regions of high concentration to regions of law concentration. If C(x, t) is
the concentration, then the flux vector field will be given by Fick’s law:

j = −D∇C, (4.68)

where D is the diffusion coefficient. The conservation law (4.64), with ψ = C gives

∂C

∂t
−D∇2C = 0, (4.69)

which has the same form as the heat diffusion equation.

4.2.3 The Generalized Divergence Theorem

Consider a subset Ω of R3 with boundary ∂Ω, as in Gauss’ theorem. Suppose that the vector
field F is C1 on Ω ∪ ∂Ω except at one point a in the interior of Ω. In this situation Gauss’
theorem cannot be applied. The theorem can, however, be generalized so as to apply in this
case, as follows.

Surround the point a by a closed surface ∂H, lying entirely in Ω – a sufficiently small
sphere centred at a will do. Remove the region H inside ∂H from Ω. Then F is C1 on the
resulting set Ω−H. In this situation Gauss’ theorem holds in the following modified form:

Ω

n

H

∂Ω 

∂ H

n
a

Figure 4.10: A set Ω ⊂ R3 with a hole H enclosing the point a.

∫∫
∂Ω

F · n dS =

∫∫∫
Ω−H

∇·FdV +

∫∫
∂H

F · n dS, (4.70)

where the normals on both ∂Ω and H are outward.
Intuitively, you can think of the surface integral over ∂H as compensating for the fact

that you had to delete part of the original set Ω, thereby creating a hole H, in order to
obtain a set Ω−H on which F is C1.

Equation (4.70) is proved by subdividing Ω−H into two regions on which the usual form
of Gauss’ theorem can be applied. The details are left as a challenging exercise.

We now briefly discuss an important application of the generalized divergence theorem
(4.70).
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Gauss’ Law:

Let Ω be a bounded subset of R3 whose boundary ∂Ω is a single piecewise smooth oriented
closed surface. Suppose that (0, 0, 0) /∈ ∂Ω. Then

∫∫
∂Ω

r · n
r3

dS =


4π if (0, 0, 0) ∈ Ω

0 if (0, 0, 0) /∈ Ω.

where r = xi + yj + zk, r =‖ r ‖ and n is the unit outward normal on ∂Ω.

Proof:
The proof depends on two facts, which we leave as exercises:

i) ∇ ···
( r

r3

)
= 0 for r 6= 0,

ii)

∫∫
∂Hε

r · n
r3

dS = 4π,

where ∂Hε is the sphere of radius ε centred at (0, 0, 0).

Apply Gauss’ theorem in one case, and the generalized form (4.70) in the other case. �

Why is Gauss’ law important? Consider a point charge, such as an electron. The electric

force field around an electron placed at the origin is proportional to
r · n
r3

. Now assume we

integrate the electric field over the surface ∂Ω of a region Ω. By Gauss’ law, depending on
whether Ω contains the electron or not, the result is zero or it is proportional to the charge
of the electron. More generally, the integral of an electric field over ∂Ω can be used to count
electrons. Similarly, a point mass creates a gravitational force field of the same type around
it. Therefore, the surface integral over the gravitational force field over Ω measures the
amount of mass contained in Ω.

4.3 Stokes’ Theorem

Stokes’ theorem relates the integral of the curl of a vector field over a surface Σ to the
line integral of the vector field around the boundary ∂Σ of Σ. The theorem is the natural
generalization in R3 of Green’s theorem.

4.3.1 The theorem

We motivate the form of the theorem by writing Green’s theorem in a vector form in R3.
The formula in Green’s theorem is∫

C

F·dx =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy, (4.71)
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D = Σ

Figure 4.11: The plane region D viewed as a surface Σ in R3.

where F = (F1, F2). We can think of F as a vector field F = (F1, F2, 0) in R3 in which case
we can write

∂F2

∂x
− ∂F1

∂y
= (∇× F) ··· k, (4.72)

using the definition (4.6) of ∇ × F. We can also regard the plane region D as a surface Σ
in R3 whose unit normal n is n = k. It follows that a surface integral over Σ is simply a
double integral over D: ∫∫

Σ

(G · n)dS =

∫∫
D

(G · k)dxdy,

for any vector field G. With these changes, (4.71) becomes∫
C

F·dx =

∫∫
Σ

(∇× F)·n dS,

which gives the form of Stokes’ theorem.

Theorem 4.2: (Stokes’ theorem)
Let Σ be a piecewise C1 orientable surface whose boundary ∂Σ is a simple piecewise C1

closed curve. If F is of class C1 on some open set in R3 containing Σ ∪ ∂Σ, then∫∫
Σ

(∇× F) ··· n dS =

∫
∂Σ

F·dx, (4.73)

where ∂Σ is oriented counter-clockwise when viewed from the side on which the unit normal
n points.

Proof: (outline)
Suppose that Σ is given by

z = f(x, y), (x, y) ∈ Dxy.
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∂Σ

n

Σ

Figure 4.12: An oriented surface Σ with piecewise C1 boundary ∂Σ.

Suppose that ∂Dxy is given by

h(t) = (x(t), y(t), 0), t1 ≤ t ≤ t2.

Then ∂Σ is given by

g(t) = (x(t), y(t), f(x(t), y(t))), t1 ≤ t ≤ t2.

∂D    xy

∂Σ

n

Σ

    D xy
( z= 0)

Step 1: Using x, y as parameters on Σ, expand

∫∫
Σ

(∇×F)·n dS in terms of components,

and write it as a double integral over Dxy.

Step 2: Show that

line
integral
in R3

↓∫
∂Σ

F·dx =

line
integral
in R2

↓∫
∂Dxy

(G1, G2) ··· (dx, dy),
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where

G1(x, y) = F1(x, y, f(x, y)) + F3(x, y, f(x, y))
∂f

∂x
,

G2(x, y) = F2(x, y, f(x, y)) + F3(x, y, f(x, y))
∂f

∂y
.

Step 3: Apply Green’s theorem to

∫
∂Dxy

(G1, G2) ··· (dx, dy), and compare the results to

Step 1. �

Exercise 4.7: Do #14 in Problem Set 4. The common answer is π.
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Corollary:
If Σ1 and Σ2 are two oriented piecewise C1 surfaces with

∂Σ1 = ∂Σ2 = C,

where C is a simple closed curve, and A is a C1 vector field, then∫∫
Σ1

(∇×A)·n1dS =

∫∫
Σ2

(∇×A)·n2dS.

n1

Σ1

Σ2

C

n2

Figure 4.13: Two surfaces with the same boundary C.

Proof:

By Stokes’ theorem both surface integrals equal

∫
C

A·dx. �

Comment:
Given a simple closed curve C we can imagine infinitely many surfaces Σ with ∂Σ = C.

The Corollary implies that the value of

∫∫
Σ

(∇ × A)·ndS is independent of which surface

Σ we choose. One can thus talk about a surface integral being independent of surface, in

analogy with a line integral being independent of path. Moreover, since

∫∫
Σ

(∇×A)·ndS is

independent of the surface and depends only on the simple closed curve C = ∂Σ, one can
talk about the flux of the vector field F = ∇×A through the simple closed curve C.

Example 4.2: Calculate the flux of the vector field
F = ∇×A, where

A = (2z − y, x− z, y − x),

through the hemisphere
Σ1 : x2 + y2 + z2 = a2,

with z − y ≥ 0.
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Figure 4.14: A hemisphere Σ1 and a plane surface Σ2 with the same boundary C.

Solution: By the corollary we can replace the hemisphere Σ1 by the plane surface Σ2, i.e.
the equatorial disc: ∫∫

Σ1

(∇×A)·n1dS =

∫∫
Σ2

(∇×A)·n2dS.

The unit normal to the plane is n2 = 1√
2
(0,−1, 1), and the definition of ∇×A gives

∇×A = (2, 3, 2),

and hence
(∇×A)·n2 = − 1√

2
.

Thus ∫∫
Σ1

(∇×A)·n1d =

∫∫
Σ2

(
− 1√

2

)
dS

= − 1√
2
πa2,

since the disc Σ2 has radius a. �

4.3.2 Faraday’s law

As an illustration of the use of Stokes’ theorem in deriving field equations in physics, we
consider Faraday’s law in the theory of electromagnetism, which states:

“The voltage change around a loop1 is proportional to the negative of the time rate of change
of the magnetic flux through the loop.”

The change in voltage ∆V across a curve segment ∆x is approximated by

∆V ≈ E·∆x.

1“loop” is synonymous with “simple closed curve”.
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Thus, the change in voltage around the loop is∫
C

E·dx.

H E

C

∆ x

magnetic field line

Figure 4.15: Magnetic field lines passing through a loop.

To write an expression for the magnetic flux through the loop we imagine a fixed surface Σ
whose boundary is C, and calculate the flux of the magnetic field H through Σ:∫∫

Σ

H · n dS.

Note: In calculating the flux in this way, we are tacitly assuming that the flux integral is
independent of the surface Σ. That a magnetic field has this property is in fact a consequence
of the fact that the magnetic field satisfies ∇·H = 0. This surface-independence property of
H will be established in the next section.

Faraday’s law in integral form thus reads

d

dt

∫∫
Σ

H · ndS

 = −c
∫
C

E·dx, (4.74)

where c is a constant.
We now use Stokes’ theorem to write the line integral in (4.74) as a surface integral. In

addition, since Σ does not change with time, we can take the t-derivative inside the surface
integral, giving ∫∫

Σ

(
∂H

∂t
+ c∇× E

)
·n dS = 0.

Since Σ is an arbitrary surface in the domain U in which we are working, and the integrand
is continuous by assumption, it follows that

∂H

∂t
+ c∇× E = 000,

one of Maxwell’s equations (see Section 4.1.1).
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4.3.3 The physical interpretation of ∇× F

In Section 2.5 (see equation (2.53)) we showed that(
∂F2

∂x
− ∂F1

∂y

)
(x) = lim

ρ→0

1

πρ2

∫
∂Dρ

F·dx, (4.75)

where F = (F1, F2), and Dρ is a disc of radius ρ centred at x. Thinking of F as a vector field
in R3, F = (F1, F2, 0) we can use (4.72) to write (4.75) in the form

[(∇× F)·k] (x) = lim
ρ→0

1

πρ2

∫
∂Dρ

F·dx.

∂ Dρ

x

k

∂ Dρ

x

n

One can now use Stokes’ theorem and the Mean Value Theorem for Integrals to generalize
this result to a circle of radius ρ lying in an inclined plane in R3:

[(∇× F)·n] (x) = lim
ρ→0

1

πρ2

∫
∂Dρ

F·dx,

leading to the following interpretation:

The component of the curl ∇× F in the direction n, is the circulation per unit
area around a circle lying in the plane orthogonal to n. Moreover, the direction
of ∇× F gives the direction of n for which the circulation is a maximum.

Thus, we see that the curl of a vector field on R3 is the appropriate generalization of the
vorticity Ω(F) for a vector field in R2, i.e. ∇ × F describes the rotational aspects of the
vector field F (see Section 2.5). In fluid dynamics, given a C1 velocity field v, the vector
field

w = ∇× v

is called the vorticity field of the fluid. If w = 000 the fluid is said to be irrotational.

4.4 The Potential Theorems

There are two classes of vector fields that are special from a mathematical point of view
and important from a physical point of view. The first is the class of irrotational vector
fields and the second is the class of divergence-free vector fields. The mathematical bond
between them is that, subject to a restriction on the domain, both classes are derivable from
a potential, a scalar potential in the first case (F = ∇φ) and a vector potential in the second
case (F = ∇×A).
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4.4.1 Irrotational vector fields

Consider a gradient vector field (a.k.a. a conservative vector field) in R3

F = ∇φ, (4.76)

where φ is a C2 scalar field, called a scalar potential. We first summarize the principal
properties of gradient fields (already known in R2).

Proposition 4.1: If F = ∇φ, where φ is C2 in U ⊂ R3, then

i)

∫
C

F·dx = φ(b) − φ(a), for any curve C in U joining a to b (i.e. the line integral is

path-independent in U),

ii)

∫
C

F·dx = 0 for any simple closed curve in U ,

iii) ∇× F = 000 in U .

Proof:

i) is the second Fundamental Theorem for line integrals, valid in Rn.

ii) is an immediate consequence of i), by choosing b = a.

iii) is a consequence of the “zero identity” Z1. �

The key question is: how does one determine whether a given vector field F is a gradient
field, i.e. has a scalar potential φ?

In view of Proposition 4.1 iii) one might conjecture that if F is irrotational (∇×F = 000),
then F = ∇φ for some C2 scalar field. As in R2 (see Theorem 2.4) one needs a restriction
on the domain U ⊂ R3 in question. The following theorem generalizes Theorem 2.4.

Theorem 4.3 (scalar potential):

If F is of class C1 and ∇×F = 000 in U ⊂ R3, and U is simply-connected, then there exists
a single-valued C2 scalar field φ such that F = ∇φ in U .

Proof:
Let C be a simple closed curve in U . Since U is simply-connected it is plausible2 that

there exists an oriented C1 surface Σ in U such that C = ∂Σ. Apply Stokes’ theorem to F
on Σ and C: ∫

C

F·dx =

∫∫
Σ

(∇× F)·n dS = 0.

2See the comment at the end of the proof.
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Since

∫
C

F·dx = 0 for any simple closed curve in U , it follows that the line integral is

independent of path in U and hence that there exists a potential function φ in U (see
Proposition 2.3, Section 2.4.2). �

Comment:
It is difficult to prove that for any simple closed curve C in a simply-connected set U ⊂ R3,

there exists a surface Σ such that C = ∂Σ. We followed Marsden & Tromba (page 520) in
relying on geometrical intuition. Some authors (e.g. Corwin & Szczarba, page 343), define
a simply-connected set U in R3 to be a set such that for any simple closed curve C there
is a surface Σ with C = ∂Σ, thereby side-stepping the problem. If one wants to avoid this
problem completely, one can give a direct proof of Theorem 4.3 by defining a potential φ
as a line integral along a specific path and explicitly verifying that ∇φ = F (see Davis &
Snider, page 206). We also refer to Flanigan & Kazdan for a simple proof of this theorem in
Rn (see the final conclusion Theorem 10.42, proved on page 574). �

Here is a classical counter-example to show that the requirement that U be simply-
connected is essential.

Example 4.3:
Consider the vector field

F =

(
−y

x2 + y2
,

x

x2 + y2
, 0

)
on the subset

U = R3 − {(x, y, z)|x = y = 0, z ∈ R}.

Then F is C1 on U , and it follows from the definition (4.6) of ∇ × F that ∇ × F = 000 (do
it!). Since a circle encircling the z-axis cannot be shrunk to a point in U the set U is not
simply-connected.3 Thus theorem 4.3 is not applicable, and leaves open the question as to
whether a potential exists in U . This question can be answered using Proposition 4.1 ii). A
straight-forward calculation shows that for the circle C : x2 + y2 = b2, z = 0,∫

C

F·dx = 2π.

If F = ∇φ, this integral would be zero. Hence a potential φ does not exist in U . �

Exercise 4.8:
Show that the vector field

F = (y + z, z + x, x+ y)

is a gradient field on R3, and find a potential φ.

Answer: φ = xy + yz + zx. �

3Equivalently, for such a circle, there is no surface Σ in U such that C = ∂Σ.
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We now give a simple application of these ideas to fluid dynamics.

An irrotational and incompressible fluid:

Consider a vector field v(x, t) in R3 which represents the velocity of a fluid, and a scalar
field ρ(x, t) which represent its density. We have seen that conservation of mass leads to the
equation of continuity (4.65):

∂ρ

∂t
+∇ ··· (ρv) = 0. (4.77)

We assume that the fluid is incompressible i.e. that its density does not depend on time or
on position (ρ = constant). Then (4.77) reduces to

∇·v = 0. (4.78)

We now assume that the motion is steady state i.e. v is independent of time, and irrotational,
∇× v = 000, in R3. By Theorem 4.3 there exists a potential φ:

v = ∇φ. (4.79)

Substituting (4.79) in (4.78) gives ∇ ··· (∇φ) = 0, i.e.

∇2φ = 0,

where ∇2 is the Laplacian (see (4.13)). Thus, the velocity potential φ of an incompressible
fluid in steady state motion with zero vorticity satisfies Laplace’s equation ∇2φ = 0. �

4.4.2 Divergence-free vector fields

Consider a vector field F defined by

F = ∇×A,

where A is a C2 vector field, called a vector potential for F. We first summarize the principal
properties of such vector fields.

Proposition 4.2:

If F = ∇×A, where A is C2 in U ⊂ R3, then

i)

∫∫
Σ

F · ndS =

∫
C

A·dx,

where Σ is any surface such that C = ∂Σ, (i.e. the surface integral is surface-
independent in U).

ii)

∫∫
Σ

F · ndS = 0 for any closed surface in U .

iii) ∇·F = 0.
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Proof:
i) is simply the statement of Stokes’ Theorem.
ii) follows from Stokes’ Theorem by subdividing the closed surface Σ into two surfaces

Σ1 and Σ2, with common boundary C (see Figure 4.13).
iii) is a consequence of the zero identity Z2 (see (4.12)).

The key question is: how does one determine whether a given vector field F has a vector
potential A (F = ∇×A)?

In view of Proposition 4.2, it is natural to conjecture that if F is divergence-free (∇·F =
0), then there will exist a vector potential A. This conjecture is in fact true, provided that
we impose a restriction on the set U .

Definition:
A subset U ⊂ R3 (or R2) is star-shaped means that there is a point P ∈ U such that for

any point Q ∈ U the line segment PQ is contained in U (see for example, Davis & Snider,
page 159).

U1

Q1

Q2

P
P

U2

Q

Figure 4.16: U1 is star-shaped, but U2 is not.

Comment:

i) The set U = R3 − {(0, 0, 0)} is not star-shaped, but is simply-connected. In fact if U
is star-shaped, then U is simply-connected.

ii) If U ⊂ R3 is star-shaped and Σ is a closed surface in U , then the interior of Σ lies in
U .

Theorem 4.4 (vector potential):

If F is of class C1 and ∇·F = 0 in U ⊂ R3, and U is star-shaped, then there exists a
vector field A such that F = ∇×A in U .

Proof:
We refer to Davis & Snider (pages 214-5). �
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Example 4.4:
Any constant vector field B satisfies ∇·B = 0, and hence has a vector potential A in any

star-shaped set U . The identity
∇× (B× r) = 2B, (4.80)

where B is a constant vector field and r = (x, y, z) (see Exercise 1 in Section 4.1.1) shows
that

A = 1
2
B× r

is a vector potential4 for B i.e. B = ∇×A. �

Exercise 4.9:
Show that the vector field F = (y, z, x) is divergence-free in R3, and find a vector potential

A.

Answer: A = 1
2
(z2, x2, y2) �

Exercise 4.10:
Show that any vector field of the form

F = (∇f)×B,

where B is a constant vector field and f is a C2 scalar field, is divergence-free on R3, and
find a vector potential A.

Answer: A = fB (see identities D3 and C2).

As a physical example of Theorem 4.4 we note that a magnetic field H is divergence-free
(∇·H = 0), by Maxwell’s equations. Hence any magnetic field in a star-shaped set U ⊂ R3

has a vector potential, H = ∇ ×A. It follows that the magnetic flux through a surface Σ
bounded by a simple closed curve C = ∂Σ is independent of Σ (see the comment after the
corollary to Stokes’ theorem). Thus given a simple closed curve C, one can talk about the
magnetic flux through C (see the discussion of Faraday’s law in Section 4.3.2). �

Note: Because of the connection with magnetic fields, a vector field that satisfies ∇·H = 0
is also called a solenoidal field.

We finally give a classical counter-example for Theorem 4.4, to show that the requirement
that U be star-shaped is essential.

Example 4.5:
Consider the inverse square law vector field

F = − r

r3
,

with r = (x, y, z) and r =‖ r ‖. Then F is C1 on the set U = R3−{(0, 0, 0)} and a standard
calculation (do it!) shows that ∇·F = 0. However, U is not star-shaped (missing a point!).

4Since (4.80) holds in any subset, A is a vector potential in any subset of R3.
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Thus Theorem 4.4 is not applicable and leaves open the question of whether F has a vector
potential A in U . This question can be answered using Proposition 4.2 ii). We have seen
that if Σ is any sphere centred on (0, 0, 0), then∫∫

Σ

F · n dS = −4π,

(see Gauss’ Law in Section 4.2.3). If F = ∇×A, then this surface integral would be zero.
Hence a vector potential does not exist. �
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Chapter 5

Fourier Series and Fourier Transforms

In this Chapter we give an introduction to the branch of mathematics called Fourier analysis.
The essential idea is that one can write a given function f(x) as a “sum” of sinusoidal
functions sinωx and cosωx (or more concisely, eiωx, thinking of Euler’s formula). If the
given function is periodic, the “sum” is an infinite series, the Fourier series of f , while if
f is not periodic, the sum is an improper integral, the Fourier integral of f . The Fourier
series is obtained by calculating the Fourier coefficients of f , and the Fourier integral, by
calculating the Fourier transform of f . These are the key concepts that we shall discuss in
what follows.

Historically, Fourier analysis first gained prominence in the early part of the nineteenth
century, through the work of Joseph Fourier concerning the diffusion of heat.1 Earlier in this
course we showed that this process is described by a partial differential equation (PDE), the
so-called diffusion equation (see equation (4.67)). Fourier showed that the solutions of this
PDE, subject to appropriate boundary and initial conditions, could be written as Fourier
series. This development exemplifies one area of application of Fourier analysis, namely the
solution of problems involving linear PDEs.2

In the twentieth century, Fourier analysis found application in a totally different area,
namely signal processing. The idea is that the Fourier coefficients or the Fourier transform
of a signal f(t), where t is time, represent the analysis of the signal into its constituent fre-
quencies. This representation is of fundamental importance in connection with the problem
of sampling a continuous signal in order to create a discretized version of it, which forms the
theoretical foundation for technological developments such as digital signal processing.

5.1 Fourier Series

In connection with his work on the diffusion of heat, Fourier argued that any3 function of
period 2π, even discontinuous ones, can be written as the sum of a series of sine and cosine

1Fourier’s book on this subject, “Théorie Analytique de la Chaleur”, was published in 1822, but he began
his work in 1804. We refer to Körner 1988, pages 478-480, for a short biographical essay on Fourier.

2This topic forms a major part of AMATH 353.
3We know now that the function has to satisfy certain restrictions.
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functions of the form:

f(x) = 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx), (5.1)

where a0, an and bn are constants. The series (5.1), with the coefficients calculated in an
appropriate way (see Section 5.1.1), is called the Fourier series of the function f .

Figure 5.1:

Partial sums S1, S3, S7 and S21 of the Fourier series

sinx+
sin 3x

3
+

sin 5x

5
+ · · ·

of the function f(x) =


π
4
, 0 < x < π

−π
4
, −π < x < 0.
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A remarkable fact about Fourier series is that the sum function f(x) is not necessarily
continuous even though the terms in the series are continuous. This behaviour is in strong
contrast to the case of Taylor series, namely

f(x) =
∞∑
n=0

an(x− b)n,

for which the sum function has derivatives of all orders. Both Fourier series and Taylor
series, although differing significantly in their properties, provide an approximation of the
given function by a finite sum of simpler terms, if one truncates the series after n terms.
In Figure 5.1 we show a succession of partial sums for a Fourier series of a discontinuous
function. Observe that the accuracy of the approximation increases as the number of terms
increases.

The goal of this section is to give the reader a working knowledge of Fourier series. We
first show how to find the Fourier coefficients of a given function, using symmetry to simplify
the calculations where possible. We then discuss (but do not prove) a convergence theorem
which enables one to find the sum of a Fourier series.

5.1.1 Calculating Fourier coefficients

We begin by assuming that the given function f on the interval −π < x < π can be written
as the sum of a trigonometric series

f(x) = 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx). (5.2)

Whereas the coefficients of a Taylor series are determined by the derivatives of the function
f , it turns out that the coefficients in a Fourier series can be expressed as integrals.

So we have to assume that the given function f is integrable i.e. that its Riemann integral
exists on the interval −π ≤ x ≤ π. To proceed we need certain trigonometric integrals:

∫ π

−π
cosmx cosnx dx =



0 if m 6= n

π if m = n 6= 0

2π if m = n = 0

(5.3)

∫ π

−π
cosmx sin nx dx = 0, (5.4)

∫ π

−π
sinmx sinnx dx =


0, if m 6= n

π, if m = n 6= 0,

(5.5)

119



where m and n are non-negative integers.
These formulas can be verified by writing the products of the trigonometric functions as

sums, e.g.,

cos(m+ n)x = cosmx cosnx− sinmx sinnx

cos(m− n)x = cosmx cosnx+ sinmx sinnx,

giving
cosmx cosnx = 1

2
[cos(m+ n)x+ cos(m− n)x],

etc.

Exercise 5.1:
Verify the formulae (5.3)-(5.5).

To find the coefficient a0 in (5.2) we integrate (5.2) from −π to π:∫ π

−π
f(x)dx =

∫ π

−π

1
2
a0dx+

∫ π

−π

∞∑
n=1

(an cosnx+ bn sinnx)dx. (5.6)

We now make the assumption (which we shall justify in Section 5.3.2) that we can integrate
the series term-by-term i.e.∫ π

−π

[
∞∑
1

( )

]
dx =

∞∑
1

[∫ π

−π
( )dx

]
.

Since cosnx and sinnx are 2π periodic, the integral of the nth term of the series in (5.6)
equals 0. Equation (5.6) thus gives ∫ π

−π
f(x)dx = πa0, (5.7)

a formula for a0.
We next multiply (5.2) by cosmx and integrate from −π to π. Again assuming we can

integrate the series term-by-term we get∫ π

−π
f(x) cosmxdx =

∫ π

−π

1
2
a0 cosmxdx

+
∞∑
n=1

[
an

∫ π

−π
cosmx cosnx dx+ bn

∫ π

−π
cosmx sinnx dx

]
.

On using (5.3) and (5.4) this equation simplifies to∫ π

−π
f(x) cosmxdx = πam, (5.8)

giving a formula for am,m = 1, 2, . . ..
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Finally, we multiply (5.2) by sinnx and integrate from −π to π. Again assuming we can
integrate the series term-by-term we get∫ π

−π
f(x) sinmxdx =

∫ π

−π

1
2
a0 sinmxdx

+
∞∑
n=1

[
an

∫ π

−π
sinmx cosnx dx+ bn

∫ π

−π
sinmx sinnx dx

]
.

On using (5.4) and (5.5) this equation simplifies to∫ π

−π
f(x) sinmxdx = πbm, (5.9)

giving a formula for bm,m = 1, 2, . . . .
We now summarize the results given by equations (5.7)-(5.9):

an =
1

π

∫ π

−π
f(x) cosnx dx, (5.10)

for n = 0, 1, 2, . . . , and

bn = 1
π

∫ π

−π
f(x) sinnx dx, (5.11)

for n = 1, 2, 3, . . .. Equations (5.10) and (5.11) are the formula for the Fourier coefficients
of an integrable function f .

Example 5.1: Calculate the Fourier series for the
function

f(x) = 1
2
(π− | x |), (5.12)

for −π < x < π.

y

xπ− π

  

π
2

Figure 5.2: Graph of the function (5.12).

Solution: We begin by observing that f(x) is an even function. It thus follows immediately
from (5.11) that

bn =
1

π

∫ π

−π
f(x) sin(nx)dx = 0,
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since f(x) sin(nx) is an odd function4 and∫ π

−π
( )dx = 0

for any odd function.
By (5.10)

an =
1

2π

∫ π

−π
(π− | x |) cosnx dx.

Observe that (π− | x |) cosnx is an even function4 since both π− | x | and cosnx are both
even. For an even function ∫ π

−π
( )dx = 2

∫ π

0

( )dx.

Thus the formula for an can be written

an = 1
π

∫ π

0

(π − x) cosnx dx,

since | x |= x on the interval 0 ≤ x ≤ π. For n = 0 we obtain directly

a0 = 1
π

∫ π

0

(π − x)dx = 1
2
π.

For n > 0 we integrate by parts, obtaining

an = 1
π

[
(π − x) 1

n
sinnx

∣∣∣∣π
0

−
∫ π

0

(−1) 1
n

sinnx dx

]
= − 1

πn2
cosnx

∣∣∣∣π
0

=
1

πn2
(1− cosnπ) =


0 if n is even

2
πn2 if n is odd.

It is more convenient to relabel the coefficients by writing

a2n = 0, a2n−1 =
2

π(2n− 1)2
, n = 1, 2, . . . .

Thus the Fourier series of the function f(x) = 1
2
(π− | x |) is

1
4
π + 2

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
. (5.13)

We discuss the convergence of this series in Section 5.1.2. �

The following table gives some simple Fourier series and the functions from which they
arise. The functions we have chosen are either even, in which case the Fourier series is
a cosine series, or odd, in which case the Fourier series is a sine series. The symmetry
determines f(x) in the interval −π < x < 0.

4We discuss the use of symmetry to simplify the calculation of Fourier coefficients further in Section 5.1.3.
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Table 5.1: Examples of Fourier series

f(x) 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

i) 1
2
x, 0 < x < π

∞∑
n=1

(−1)n+1 sinnx

n

ii) 1
2
(π − x), 0 < x < π

∞∑
n=1

sinnx

n

iii) 1
4
π, 0 < x < π

∞∑
n=1

sin(2n− 1)x

2n− 1

iv)

{
1
4
π, 0 < x < 1

2
π

−1
4
π, 1

2
π < x < π

∞∑
n=1

(−1)n−1 cos(2n− 1)x

2n− 1

v) 1
12

(π2 − 3x2), 0 < x < π
∞∑
n=1

(−1)n−1 cosnx

n2

vi) 1
4
(π − x)2 − 1

12
π2, 0 < x < π

∞∑
n=1

cosnx

n2

vii) 1
8
π(π − 2x), 0 < x < π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2

viii)

{
1
4
πx, 0 < x < 1

2
π

1
4
π(π − x), 1

2
π < x < π

∞∑
n=1

(−1)n−1 sin(2n− 1)x

(2n− 1)2

Exercise 5.2: Verify the Fourier series i)-iv) in Table 5.1. Hint: if on the right the expansion
is an expansion in sines then this series represents a 2π-periodic function which is odd
(because each of the sines in the series is 2π-periodic and odd). Therefore, the series extends
the function on the left as an odd function to the interval [−π, 0]. Similarly, if the series on
the right is an expansion in cosines then this series represents a 2π-periodic function which
is even (because everyone of the cosines in the series is 2π-periodic and even). Therefore,
the series extends the function on the left as an even function to the interval [−π, 0]. In
practice, this means that to verify one of the entries in the table, check if the entry on the
right contains sines or cosines and based on that do either a do a sine or a cosine expansion
of the function on the left hand side.

5.1.2 Pointwise convergence of a Fourier series

We were led to the formulae (5.10)-(5.11) for the Fourier coefficients an, bn by a heuristic
argument starting with the assumed series (5.2). We now regard (5.10) and (5.11) as the
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definition of the Fourier coefficients of the given integrable function f . We are then faced
with the question: if we use these coefficients to form the Fourier series

1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

does this series converge pointwise, and does its sum equal f(x)? The answer is that if f
satisfies certain conditions the series does converge for all x. Whether the sum of the series
equals f(x) for −π < x < π depends on whether f is continuous at x.

In order to state the standard theorem on pointwise convergence of a Fourier series, we
need to introduce the notion of a function f being “piecewise C1” on an interval. Geomet-
rically this means that the graph of f consists of a finite number of smooth sections. For
later use we also define the related concept of “piecewise continuous”.

Definition 5.1:
A function f : [a, b]→ R is piecewise continuous (respectively C1) means that there is a

partition
a = x0 < x1 < x2 < · · · < xn = b

such that f , when restricted to each open interval xi−1 < x < xi, coincides with a function
that is continuous (respectively C1) on the closed interval xi−1 ≤ x ≤ xi. �

Four examples are shown in Figure 5.3. The function H(x) is the Heaviside function:

H(x) =


0 if x < 0

1 if x ≥ 0.

a)

y

x

1

-1 1

b)

y

x

1

-1 1

c)

y

1

-1 1
x

d)

y

x

1

-1 1

Figure 5.3:

a) f(x) = 1− | x | is continuous and piecewise C1.
b) f(x) = 1− x2/3 is continuous but not piecewise C1.
c) f(x) = H(x)(1− | x |) is piecewise continuous and piecewise C1.
d) f(x) = H(x)(1− x2/3) is piecewise continuous but not piecewise C1.
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If a function is piecewise continuous but not continuous on a finite interval, it will have
a finite number of jump discontinuities, characterized by the fact that

lim
x→x+

0

f(x) 6= lim
x→x−0

f(x).

For convenience we introduce the notation

f(x+
0 ) = lim

x→x+
0

f(x), f(x−0 ) = lim
x→x−0

f(x). (5.14)

If a Fourier series converges pointwise on the interval −π ≤ x ≤ π, then the series will
converge pointwise for all x ∈ R and its sum will be a periodic function of period 2π (since
each term in the series is of period 2π). It is thus necessary to use period 2π functions when
stating theorems concerning convergence of Fourier series. This restriction does not limit
the scope of the theorems, since given any function f defined on the interval −π ≤ x ≤ π
we can introduce a period 2π extension of f : this is simply a function fp of period 2π that
equals the given function f on the open interval −π < x < π.

y = f ( x)
π

−π

y = fp ( x)

x x
π−π

π

€ 

−π

€ 

π

€ 

2π

Figure 5.4: A period 2π extension of f(x) = x, −π < x < π.

If the given function f satisfies f(π) 6= f(−π), any period 2π extension fp will have jump
discontinuities at x = nπ. The value of fp(x) at x = nπ can be assigned arbitrarily, but it is
natural to choose the average,

fp(x) = 1
2
[fp(x

+) + fp(x
−)], (5.15)

in terms of the notation (5.14), as in Figure 5.4.5

We can now state the convergence theorem.

Theorem 5.1 (Pointwise convergence of a Fourier series):
If fp has period 2π and is piecewise C1, then the Fourier series of fp converges pointwise

for all x, and

i) if fp is continuous at x, the sum is fp(x),

5If f satisfies f(π) = f(−π) then it will have a unique continuous period 2π extension fp.
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ii) if fp is not continuous at x, the sum is 1
2
[fp(x+) + fp(x−)].

Proof: See Churchill and Brown, pages 91-4, Theorem 1. The proof is lengthy. �

Example 5.2: The Fourier series of f(x) = 1
2
(π − |x|) on the interval −π ≤ x ≤ π is

1
4
π + 2

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
. (5.16)

(see Example 5.1).
Sketch the graph of the period 2π function to which the series (5.16) converges pointwise

for all x ∈ R.

Solution: The period 2π extension fp of the given function f(x) is shown in Figure 5.5.
Since f(−π) = f(π), the extension fp is continuous,6 as can be seen from the Figure. Since
fp is also piecewise C1 as can be seen by inspection, Theorem 5.1 implies that the Fourier
series (5.16) converges pointwise to fp for all x, and we can write

fp(x) = 1
4
π + 2

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
, for all x ∈ R. (5.17)

− π
AAAAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAAy = f(x)

x
π

y = fp(x)

− π π
AA
AA

AA
AA

− 3π 3π x

  

π
2

Figure 5.5: The period 2π extension of f(x) = 1
2
(π− | x |).

Example 5.3: The Fourier series of the function

f(x) = 1
2
x, 0 < x < π,

is
∞∑
n=1

(−1)n+1 sinnx

n
(5.18)

(see #i) in Table 5.1). Sketch the graph of the period 2π function to which the series (5.18)
converges pointwise for all x ∈ R.

6Compare with Example 5.3 to follow, in which case f(−π) 6= f(π), leading to an extended function that
is discontinuous.
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Solution: The sum of the series (5.18) on R is an odd function, since sin(nx), n = 1, 2, . . .
is odd. So we first construct the odd extension of f(x) to 0 < x < π, shown in Figure 5.6(a).
We then extend the function to have period 2π. Since f(−π) 6= f(π), the 2π − periodic
extension fp has a jump discontinuity at x = kπ, k ∈ Z. At these points we define fp(x) by
(5.15), leading to Figure 5.6(b). Since fp is piecewise C1 by inspection, Theorem 5.1 implies
that the series (5.18) converges pointwise to fp(x) for all x ∈ R, and we can write

fp(x) =
∞∑
n=1

(−1)n+1 sinnx

n
, for all x ∈ R. (5.19)

Example 5.4: Use the Fourier series (5.16) to sum
∞∑
n=1

1

(2n− 1)2
.

Solution: We can choose x = 0 in (5.17), obtaining

fp(0) = 1
4
π + 2

π

∞∑
n=1

1

(2n− 1)2
(5.20)

But fp(0) = f(0) = π
2
. Hence equation (5.20) gives

∞∑
n=1

1

(2n− 1)2
=
π2

8
.

Exercise 5.3: Use the Fourier series (5.18) to show that

∞∑
n=1

(−1)n−1

2n− 1
=
π

4
.

Hint: Choose x = π
2
.

Exercise 5.4: Sketch the graph of the period 2π function to which each of the Fourier
series in Table 5.1 converges pointwise for all x ∈ R. The previous example 5.3 gives the
result for series i).

The Gibbs phenomenon:

The graphs of selected partial sums of the series #iii) in Table 5.1 are shown in Figure
5.1 (restricted to the interval 0 ≤ x ≤ 2π). The graphs illustrate a special feature of
the convergence of Fourier series at a point of discontinuity, namely that the partial sums
“overshoot” on either side of a jump discontinuity. One might expect that as the number
of terms in the partial sum increases the overshoot would tend to zero. The overshoot peak
does become increasingly narrow as n increases and it moves successively closer to the point
of discontinuity, but its amplitude does not tend to zero, and in fact approaches a value of
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Figure 5.6: (a) shows the odd extension of f(x) = 1
2
x, 0 < x < π. (b) shows the period 2π

extension fp of the function (a).

approximately 0.09H, where H is the jump in the function at the point of discontinuity. It
is important to note that the overshoot does not prevent the Fourier series from converging
pointwise at each point.

This behaviour, which is referred to as the Gibbs phenomenon, is illustrated schematically
in Figure 5.7, for the function in # ii) in Table 5.1.

y

x

y

x

a)
b)

≈ 0.09 H

graph of f

graph of Sn

H

Figure 5.7: The Gibbs phenomenon. The amplitude of the overshoot in Sn, shown in a),
does not tend to 0 as n→∞, and is illustrated schematically in b).

5.1.3 Symmetry properties

As illustrated in Example 5.1, symmetry properties of the given function can simplify the
calculation of the Fourier coefficients. In this section we discuss symmetry properties in more
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detail.
We begin by briefly reviewing the properties of even and odd functions:

i) f is even means that f(−x) = f(x) for all x.

f is odd means that f(−x) = −f(x) for all x.

ii) The product of two even or two odd functions is even.

The product of an odd and an even function is odd.

iii) If f is even, then

∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx. If f is odd, then

∫ a

−a
f(x)dx = 0.

y

x

y

x

a) b)

AAAAA
AAAAA

AA
AA
AA

AA
AA
AA

AA
AA

AA
AA
AA

AAA
AAA
AA
AA
AA

f (-x) 

-x 

f (x) 

x -x x 

Figure 5.8: a) f is even, f(−x) = f(x). b) f is odd, f(−x) = −f(x).

Special cases of Fourier series:

i) Cosine series:

Suppose that f is an even function. Equations (5.10) and (5.11) for the Fourier coeffi-
cients simplify to

an = 1
π

∫ π

−π
f(x) cosnx dx = 2

π

∫ π

0

f(x) cosnx dx,

bn = 1
π

∫ π

−π
f(x) sinnx dx = 0.

The Fourier series (5.2) then reduces to a cosine series:

1
2
a0 +

∞∑
n=1

an cosnx, (5.21)

with

an = 2
π

∫ π

0

f(x) cosnx dx.

Thus any integrable function f on 0 < x < π has a cosine series (5.21). This cosine
series can be thought of as the full Fourier series for an even function feven on −π <
x < π that coincides with f on 0 < x < π.
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ii) Sine series:

Suppose f is an odd function. Equations (5.10) and (5.11) for the Fourier coefficients
simplify to

an = 1
π

∫ π

−π
f(x) cosnx dx = 0,

bn = 1
π

∫ π

−π
f(x) sinnx dx = 2

π

∫ π

0

f(x) sinnx dx.

The Fourier series (5.2) then reduces to a sine series:

∞∑
n=1

bn sinnx, (5.22)

with

bn = 2
π

∫ π

0

f(x) sinnx dx.

Thus any integrable function f on 0 < x < π has a sine series (5.22). This sine series
can be thought of as the full Fourier series for an odd function fodd on −π < x < π
that coincides with f on 0 < x < π.

Symmetry about the line x = π
2
:

When working with cosine and sine series it is helpful to think of symmetry about the
line x = π

2
.

i) f is even with respect to the line x = π
2

means

f(π − x) = f(x) for all x.

ii) f is odd with respect to the line x = π
2

means

f(π − x) = −f(x) for all x.

Exercise 5.5:

Show that

i) cos 2nx and sin(2n− 1)x are even with respect to x = π
2
.

ii) cos(2n− 1)x and sin 2nx are odd with respect to x = π
2
.

Symmetry with respect to x = π
2

and the cosine series:
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Figure 5.9: a) f is even with respect to x = π
2
. b) f is odd with respect to x = π

2
.

i) If f(π − x) = f(x) on 0 < x < π, then by (5.21),

a2n−1 = 2
π

∫ π

0

f(x) cos (2n− 1)x dx = 0,

↑
even

↑
odd

and the cosine series is

1
2
a0 +

∞∑
n=1

a2n cos 2nx. (5.23)

ii) If f(π − x) = −f(x) on 0 < x < π, then

a2n = 2
π

∫ π

0

f(x) cos 2nx dx = 0,

↑
odd

↑
even

and the cosine series is
∞∑
n=1

a2n−1 cos(2n− 1)x. (5.24)

Symmetry with respect to x = π
2

and the sine series:

i) If f(π − x) = f(x) on 0 < x < π, then by (5.22),

b2n = 2
π

∫ π

0

f(x) sin 2nx dx = 0,

↑
even

↑
odd

and the sine series is
∞∑
n=1

b2n−1 sin(2n− 1)x. � (5.25)
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ii) If f(π − x) = −f(x) on 0 < x < π, then

b2n−1 = 2
π

∫ π

0

f(x) sin (2n− 1)x dx = 0,

↑
odd

↑
even

and the sine series is
∞∑
n=1

b2n sin 2nx. (5.26)

Example 5.5: Find the Fourier sine series of

f(x) = π
4
, 0 < x < π.

Use the fact that f is even with respect to x = π
2
.

(This series is # iii) in Table 5.1.)

Solution: Since we want the Fourier sine series, we first extend f to be an odd function
fodd on −π < x < π:

fodd(x) =


π
4
, 0 < x < π

−π
4
, −π < x < 0.

The Fourier sine coefficients are then giving by (5.11):

bn =
1

π

∫ π

−π
fodd(x) sin(nx)dx.

Since fodd(x) sin(nx) is even (the product of two odd functions), we can write

bn = 2
π

∫ π

0

fodd(x) sin(nx)dx

= 2
π

∫ π

0

(
π
4

)
sin(nx)dx.

Next, since the given function is symmetric about x = π
2
, we have

b2n = 0, (since sin(2nx) is antisymmetric)

and

b2n−1 = 2
π

∫ π

0

π
4

sin(2n− 1)x dx

= 4
π

∫ π
2

0

π
4

sin(2n− 1)x dx

= −cos(2n− 1)x

(2n− 1)

∣∣∣∣π2
0

=
1

2n− 1
.
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The Fourier sine series is thus
∞∑
n=1

sin(2n− 1)x

2n− 1
.

π−π

y = f p ( x)

x

y = f ( x)

x
π

x
π−π

y = f_(x) 

AAA
AAA

Figure 5.10: The odd, period 2π extension of f(x) = 1
2
(π − x), 0 < x < π.

5.1.4 Complex form of the Fourier series

The general Fourier series (5.2) can be written more concisely by using complex numbers,
i.e. by writing the nth term in terms of einx. This complex representation leads naturally
to the Fourier integral and Fourier transform, and is the most convenient representation for
applications to signal processing.

For a τ -periodic function f , the complex Fourier series is

f(t) =
∞∑

n=−∞

cne
inω0t, (5.27)

where

ω0 =
2π

τ
(5.28)

is the fundamental frequency. The complex Fourier coefficients cn, n = 0,±1,±2, . . . , are
given by the formula

cn =
1

τ

∫ τ
2

− τ
2

f(t)e−inω0tdt, (5.29)

and satisfy
c−n = c̄n, (5.30)

where the overbar denotes complex conjugation. This condition ensures that the function
f(t) in (5.27) is real-valued. The complex basis functions

en(t) = einω0t (5.31)

satisfy the orthogonality condition

∫ τ/2

−τ/2
en(t)em(t)dt =


0, if m 6= n

τ if m = n

(5.32)
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(verify as an exercise).
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Derivation of equation (5.29):

As in section 5.1.1, we use the fact that Fourier series can be integrated term-by-term
(to be justified in Section 5.3.2). Using (5.31), write (5.27) as

f(t) =
∞∑

n=−∞

cnen(t).

Multiply by em(t) and integrate from − τ
2

to τ
2
:∫ τ

2

− τ
2

f(t)em(t)dt =

∫ τ
2

− τ
2

(
∞∑

n=−∞

cnen(t)em(t)

)
dt

=
∞∑

n=−∞

cn

∫ τ
2

− τ
2

en(t)em(t)dt (integrate term-by-term)

= τcm (by (5.32)).

Since em(t) = e−imω0t (see (5.31)), we obtain (5.29), with n replaced by m.

Relation between the real and complex forms

Write cn, n = 0, 1, 2, . . . in terms of real and imaginary parts:

cn = 1
2
(an − ibn). (5.33)

Then by (5.30),
c−n = 1

2
(an + ibn). (5.34)

Setting n = 0 in these equations shows that

b0 = 0, c0 = 1
2
a0. (5.35)

By Euler’s formula (eiθ = cos θ + i sin θ), the basis vectors (5.31) have the form

en(t) = cos(nω0t) + i sin(nω0t). (5.36)

We can write (5.27) as a series summed from 1 to ∞:

f(t) = 1
2
a0 +

∞∑
n=1

(
cne

inω0t + c−ne
−inω0t

)
, (5.37)

where we have made use of (5.35). It now follows, using (5.33), (5.34), (5.31) and (5.36)
that

cne
inω0t + c−ne

−inω0t = an cos(nω0t) + bn sin(nω0t)

(verify as an exercise). Thus (5.37) becomes the real form of the Fourier series of a τ -periodic
function f(t):

f(t) = 1
2
a0 +

∞∑
n=1

[an cos(nω0t) + bn sin(nω0t)] , (5.38)
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with ω0 = 2π/τ . If we specialize to τ = 2π, then ω0 = 1, and (5.38) agrees with (5.2), with
x replaced by t.

Exercise 5.6: Choose τ = 2τ in (5.29). Show that (5.29) and (5.33) lead to equations
(5.10) and (5.11) for the real Fourier coefficients an and bn.

The Fourier spectrum and Parseval’s theorem

We think of the Fourier series of a τ -periodic function f as the decomposition of a signal
f(t) into its constituent frequencies or harmonics

ω0, 2ω0, 3ω0, . . .

where ω0 = 2π
τ

is the fundamental frequency. The Fourier coefficients cn describe the relative
importance of the various harmonics. We write

cn = |cn|eiψn

where |cn| is the amplitude and ψn is the phase of the nth harmonic. The Fourier coefficients
cn essentially contain all information about the τ -periodic function f , and the set of numbers

{cn}n∈Z

is called the Fourier spectrum of f . In particular, the real numbers |cn| form the amplitude
spectrum of f . The upshot is that we can represent a τ -periodic signal either directly as a
function of time t in the time domain, or through its spectrum in the frequency domain. We
illustrate this duality schematically below.

f(t) ←−−−−−−−−→ {cn}n∈Z Fourier spectrum

One can measure the strength of a signal in two ways, either in the time domain using the
integral

1

τ

∫ τ
2

− τ
2

[f(t)]2dt,

or in the frequency domain, using the series

∞∑
n=−∞

|cn|2.

Parseval’s theorem states that these two quantities are equal.

Theorem 5.2 (Parseval’s formula for a τ -periodic function):
If a τ -period function f has a complex Fourier series

f(t) =
∞∑

n=−∞

cne
inω0t, (5.39)
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Figure 5.11: The amplitude spectrum of a τ -periodic signal.

then
1

τ

∫ τ
2

− τ
2

f(t)2dt =
∞∑

n=−∞

|cn|2. (5.40)

Proof: Multiply (5.39) by f(t) and integrate from − τ
2

to τ
2
:∫ τ

2

− τ
2

f(t)2dt =

∫ τ
2

− τ
2

(
∞∑

n=−∞

cnf(t)einω0t

)
dt

=
∞∑

n=−∞

(
cn

∫ τ
2

− τ
2

f(t)einω0tdt

)
(integrate term-by-term)

= τ
∞∑

n=−∞

cnc̄n (using the complex conjugate of (5.29))

= τ

∞∑
n=−∞

|cn|2 (since zz̄ = |z|2 for a complex number). �

While the main significance of Parseval’s formula is in connection with signal analysis, it
is also useful for evaluating the sums of series that are impossible to do by direct means.

Example 5.6: Prove that
∞∑
n=1

1

n2
=
π2

6
. (5.41)

Solution: We have seen (Table 5.1, ii) that the Fourier series of

f(t) = 1
2
(π − t), 0 < t < π,
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is
∞∑
n=1

sinnt

n
.

By (5.33)-(5.34) the complex Fourier coefficients are

cn = − i

2n
, c−n =

i

2n
, c0 = 0,

which implies

|cn| = |c−n| =
1

2n
.

We apply Parseval’s theorem (5.40) with τ = 2π, writing the 2-sided series as a 1-sided
series:

1

2π

∫ π

−π
[fodd(t)]2dt = 2

∞∑
n=1

|cn|2,

where fodd is the odd extension of f to −π < t < π.
Using the fact that fodd(t)2 is even we obtain

1

π

∫ π

0

1
4
(π − t)2dt = 2

∞∑
n=1

1

(2n)2
.

Evaluating the integral gives the desired result.

Comment: The key to doing this problem is to pick a function whose Fourier coefficients
have a suitable form. There is no unique choice. For example, you could also use example i)
in Table 3,

f(x) = 1
2
x, −π < x < π.

whose Fourier series is
∞∑
n=1

(−1)n+1 sinnx

n
.

Exercise 5.7: Use this series to verify (5.41).

5.2 Convergence of series of functions

In this section we discuss the convergence of series of functions in more depth. We have seen
in Section 5.1.2 that if a series of functions converges pointwise to a function f ,

f(x) =
∞∑
n=1

an(x),

the sum function may be discontinuous even though the terms of the series are continuous.
In Section 5.1.1, when calculating Fourier coefficients we encountered the need to integrate
a series of functions term-by-term. For these reasons it is necessary to discuss the following
questions.
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Q1: Under what conditions is the sum of a series of continuous functions itself continuous?

Q2: Under what conditions can a series of (integrable) functions be integrated term-by-
term? i.e. under what conditions is it true that∫ b

a

∞∑
n=1

an(x)dx =
∞∑
n=1

∫ b

a

an(x)dx. (5.42)

The key point as regards these questions is this: results that are valid for finite sums
of functions are not necessarily valid for infinite series of functions. In order to answer the
above questions, we have to introduce two new types of convergence for series of functions,
namely

i) uniform convergence, and

ii) mean square convergence.

In studying the convergence of a series of functions
∞∑
n=1

an(x), one considers the Nth partial

sum

SN(x) =
N∑
n=1

an(x).

Convergence of the series is then defined in terms of convergence of the sequence {SN} of
partial sums, i.e. does this sequence have a limit as N →∞ in some suitably defined sense.
Thus the discussion in this section is initially formulated in terms of sequences of functions.

5.2.1 A deficiency of pointwise convergence

Any definition of convergence of a sequence of functions {fn} to a limit function f must
require that the difference | fn(x) − f(x) | becomes small in some sense as n → ∞. So
far (in Section 5.1.2), we have worked with pointwise convergence. We now give the formal
definition, and then illustrate the “deficiency” with an example.

Definition 5.2:
A sequence of functions {fn} converges pointwise to f on [a, b] means that7

lim
n→∞

| fn(x)− f(x) |= 0, (5.43)

for all x ∈ [a, b].

7You could equivalently write lim
n→∞

fn(x) = f(x) for all x ∈ [a, b]. Equation (5.43) is preferable, however,

because it emphasizes that one is interested in the difference between fn(x) and f(x).
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Definition 5.3:

A series of functions
∞∑
n=1

an converges pointwise to a function f on [a, b] means that the

sequence of partial sums, defined by

SN(x) =
N∑
n=1

an(x),

converges pointwise to f on [a, b]. The function f is called the sum of the series, and we
write

f(x) =
∞∑
n=1

an(x) pointwise on [a, b]. �

The intention in defining convergence of a sequence of functions {fn} is that one wants
fn, for n sufficiently large, to approximate the limit function f with specified accuracy

f(x) ≈ fn(x) for n > N.

Heuristically, one wants the graph of fn to approximate the graph of f with specified accuracy
over the whole interval. Surprisingly, the notion of pointwise convergence (5.30) does not
guarantee this type of approximation, as we now show with a simple example.

Example 5.7: Consider the sequence of functions {fn} defined by

fn(x) =
2nx

1 + n2x2
, 0 ≤ x ≤ 1. (5.44)

Show that
lim
n→∞

fn(x) = 0 for all x ∈ [0, 1], (5.45)

but that
max
0≤x≤1

|fn(x)| = 1, for all n ∈ N. (5.46)

Sketch the graphs of f2 and fn, for n large.

Solution: Consider x ∈ [0, 1], x 6= 0. Then

lim
n→∞

fn(x) = lim
n→∞

(
1
n

)( 2x

x2 + 1
n2

)
= (0)

(
2
x

)
= 0.

Consider x = 0. Then
lim
n→∞

fn(0) = lim
n→∞

(0) = 0.

We have thus established (5.45).
Next, using first year calculus, it follows that fn has a maximum value of 1 at x = 1

n
:

fn
(

1
n

)
= 1, for all n ∈ N,
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Figure 5.12: The graphs of the functions f2, fn.

which establishes (5.46). The graphs are shown in Figure 5.11. �

Discussion: The existence of the peaks may lead one to doubt (5.45) for x very close to 0.
But the definition of pointwise convergence says: first pick an x-value and then let n→ +∞.
So no matter how close to zero your x-value is, call it x∗, for n large enough the peaks will
lie to the left of x∗, and so lim

n→∞
fn(x∗) = 0.

The main conclusion from Example 5.5 is this: if a sequence {fn} converges pointwise
to f on an interval a ≤ x ≤ b, the graph of the function fn does not necessarily lie close to
the graph of the limit function f over the whole interval, no matter how large n is. We say
colloquially that “pointwise convergence permits the function fn to have spikes”, i.e. spike-
like deviations from the graph of the limit function f . The situation can in fact be worse
than that depicted in Figure 5.11, since the height of the spikes can increase without bound
as n → ∞. Consider, for example, gn(x) =

√
nfn(x), where fn(x) is given by (5.44). The

function gn will have a spike of height
√
n. Finally, we note that the Gibbs phenomenon for

Fourier series, mentioned in Section 5.1.2, is reminiscent of the behaviour of fn in Example
5.6.

5.2.2 The maximum norm and mean square norm

In order to define uniform and mean square convergence we have to introduce a concept of
distance between two functions. Instead of focusing on individual values of functions we have
to simultaneously consider all values of the functions over the given interval, i.e. we have to
think of a function f as a single mathematical entity, as an element of a function space, and
define a notion of distance in this space.

We begin by considering the space of all continuous functions on a finite interval [a, b],
denoted by

C[a, b].

We recognize that C[a, b] is a vector space over the reals, with addition defined by

(f + g)(x) = f(x) + g(x) for all x ∈ [a, b], (5.47)
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and multiplication by a scalar defined by

(λf)(x) = λf(x) for all x ∈ [a, b]. (5.48)

We now rely on the vector space Rn to provide an analogy. In Rn we introduce the Euclidean
norm (i.e. the magnitude of a vector)

‖ x ‖2=
√
x2

1 + · · ·+ x2
n, (5.49)

where
x = (x1, x2, . . . , xn),

and then define the distance d(x,y) between two points x and y by

d(x,y) =‖ x− y ‖2 . (5.50)

x - yx

yd (x,y)

Figure 5.13: Euclidean distance in Rn.

So we need to define a norm in C[a, b], which will give the magnitude of a continuous
function. There are two “reasonable” ways to do this:

i) use the maximum value of |f(x)| over the interval, and

ii) use the mean value 〈|f |〉 of |f(x)| over the interval, defined by

〈|f |〉 =
1

b− a

∫ b

a

|f(x)| dx.

Definition 5.4:
The maximum norm ‖ f ‖∞ on the space C[a, b] is defined by

‖ f ‖∞= max
a≤x≤b

| f(x) | . (5.51)

For the norm based on the mean of the function it turns out to be more convenient to
consider the square root of the mean of the function squared,[∫ b

a

f(x)2dx

] 1
2

, (5.52)
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b x

AAA
AAA
AAA

AAA
AAA
AA
AA
AA
AA
AA
AA
AAA
AAA

y = | f(x)|

a

max | f(x)|

Figure 5.14: The Maximum value of | f(x) |.

y = | f (x)|

xba

  

 f  

Figure 5.15: The mean value of |f |.

omitting the normalizing factor (b − a). The reason for this preference will become clear
later, but for the moment we point out the analogy between the expression (5.52) and the
Euclidean norm (5.49) in Rn, thinking of the integral as the limit of a sum.

Definition 5.5:
The mean square norm ‖ f ‖2 on the space C[a, b] is defined by

‖ f ‖2=

[∫ b

a

f(x)2 dx

] 1
2

. (5.53)

The two norms are related by an important inequality, which we shall refer to as the basic
inequality for function norms.

Proposition 5.1:

‖ f ‖2≤
√
b− a ‖ f ‖∞, (5.54)

for all functions f in C[a, b].
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Proof:
By definition of ‖ f ‖2:

‖ f ‖2
2 =

∫ b

a

f(x)2dx

≤ max
a≤x≤b

[f(x)]2 (b− a) (property of the integral)

=
[

max
a≤x≤b

| f(x) |
]2

(b− a)

= (b− a) ‖ f ‖2
∞ (by definition of ‖ f ‖∞). �

Technical digression:

i) Properties of norms

It should be verified that ‖ f ‖∞ and ‖ f ‖2, as defined by (5.39) and (5.42), do satisfy
the properties of a norm on a vector space X over R:

N1 : ‖ f ‖≥ 0 for all f ∈ X; ‖ f ‖= 0 iff f = 0.

N2 : ‖ f + g ‖≤‖ f ‖ + ‖ g ‖, for all f, g ∈ X.
(the triangle inequality)

N3 : ‖ λf ‖=| λ |‖ f ‖, for all f ∈ X, λ ∈ R.

We leave these details as an exercise.

ii) We have mentioned that the mean square norm ‖ f ‖2 on C[a, b] is analogous to the
Euclidean norm ‖ x ‖2 on Rn. One can define another norm ‖ x ‖∞ on Rn, called the
max norm, analogous to the max norm on C[a, b]:

‖ x ‖∞= max
1≤i≤n

| xi |,

where x = (x1, x2, . . . , xn).

This norm has computational advantages over ‖ x ‖2, and is used in scientific compu-
tation.

iii) Norms of piecewise C1 functions

When working with Fourier series we encounter piecewise continuous differentiable
functions, i.e. functions that are piecewise in C1. The set of all piecewise continuous
differentiable functions on an interval a ≤ x ≤ b forms a vector space, which we denote
by PC[a, b].

It is clear that the mean square norm ‖ f ‖2 can be defined for f ∈ PC[a, b] using
(5.52), since the integral of a piecewise continuous differentiable function is defined as
a sum of integrals over subintervals.

On the other hand, in defining the max norm (5.51) we are making use of the theorem
according to which a function continuous on a finite closed interval attains a maximum
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value on that interval. However, a piecewise continuous differentiable function does
not necessarily attain a maximum value on a finite closed interval, as shown in Figure
5.15, and for such a function

‖ f ‖∞= max | f(x) |

does not exist. But observe that in the example of Fig.5.16 below, we have that
f(x) < 1

2
for all x and f(x) attains values arbitrarily close to 1

2
. So one calls 1

2
the

least upper bound or supremum of f on the interval 0 ≤ x ≤ 1 and we write

y

x0 1

1
2

1
2

Figure 5.16: A piecewise continuous differentiable function that does not attain a maximum.

sup
0≤x≤1

| f(x) |= 1
2
.

More generally, for any piecewise continuous differentiable function on an interval a ≤
x ≤ b, | f(x) | is bounded above and hence has a least upper bound. So for functions
in PC[a, b] we define the max norm (also called the sup norm) by

‖ f ‖∞= sup
a≤x≤b

| f(x) | . (5.55)

More generally, (5.55) is defined for any bounded function on [a, b].

5.2.3 Uniform and Mean Square Convergence

We now return to one of our main goals in this section, to define uniform convergence
and mean square convergence (also called convergence in the mean). The definitions are
formulated using the function norms ‖ ‖∞ and ‖ ‖2, as defined by equations (5.51) and
(5.53), respectively.

Definition 5.6:
A sequence {fn} in C[a, b] converges uniformly to f ∈ C[a, b] means that

lim
n→∞

‖ fn − f ‖∞= 0,

i.e.

lim
n→∞

[
max
a≤x≤b

| fn(x)− f(x) |
]

= 0. (5.56)
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Definition 5.7:
A sequence {fn} in C[a, b] converges in the mean to f ∈ C[a, b] means that

lim
n→∞

‖ fn − f ‖2= 0,

i.e.

lim
n→∞

[∫ b

a

(fn(x)− f(x))2 dx

] 1
2

= 0. (5.57)

Note: These definitions are also valid on the set PC[a, b] of piecewise continuous functions,
with ‖ f ‖∞ defined by (5.55).

Discussion:
In order to understand the difference between pointwise convergence (5.43) and uniform

convergence (5.56) it is helpful to think in terms of an ε-neighbourhood defined by a norm.

In R2, an ε-neighbourhood of a point x0 is defined by{
x ∈ R2| ‖ x− x0 ‖2< ε

}
,

and is a disc of radius ε, centred at x0.

AA
AA
AA

AA
AA
AAA
AAA
AAA
AAA
AA
AA
AAA
AAA
AA
AA
AA
AA
AA
AAA
AAA
AAA
AA
AA
AAA
AAA
AA
AA

AA
AA
AA

AA
AA
AA
AA

ε
x0

x

Figure 5.17: An ε-neighbourhood in R2.

In C[a, b] an ε-neighbourhood of a function f0, relative to the max norm, is similarly
defined by

{f ∈ C[a, b]| ‖ f − f0 ‖∞< ε} ,

and is the set of functions whose graphs lie within a strip of width 2ε, centred on the graph
of f0.

Thus, if {fn} converges uniformly to f , given any ε > 0 it follows that for all n sufficiently
large, the graph of fn will lie within the strip of width 2ε centred on the graph of f . In other
words, for n sufficiently large, the graph of fn approximates the graph of f over the whole
interval. This means that uniform convergence eliminates the possibility of “spikes” in the
graph of fn, as in example 5.6. On the other hand, convergence in the mean does not
eliminate “spikes” in fn, since it only requires that the mean of | fn(x) − f(x) |2 over [a, b]
tends to zero.

We note in passing that Figure 5.18 provides heuristic justification for the following result:

If the sequence {fn} converges uniformly to f on [a, b] and fn is continuous for
all n, then f is continuous.
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Figure 5.18: An ε-neighbourhood in C[a, b].

The idea is that if the graph of each fn has no “breaks” and convergence is uniform, then
the graph of f is forced to have no “breaks”. �

We now give an example in which we use the definition to prove that a sequence converges
uniformly.

Example 5.8: Consider the sequence {fn} in C[−1, 1] defined by

fn(x) =

√
x2 +

1

n2
. (5.58)

Find the function f to which the sequence {fn} converges pointwise. Prove that the sequence
{fn} converges uniformly to f .

Solution: Observe that for any x ∈ [−1, 1],

lim
n→∞

fn(x) =
√
x2 =| x |,

i.e. {fn} converges pointwise to
f(x) =| x | .

We now calculate ‖ fn − f ‖∞. We have

| fn(x)− f(x) | =
√
x2 +

1

n2
−
√
x2

=
1
n2√

x2 + 1
n2 +

√
x2
.

By inspection, the maximum occurs at x = 0 (when the denominator is a minimum). Thus

‖ fn − f ‖∞= max
−1≤x≤1

| fn(x)− f(x) |= 1
n
.
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x-1 1

y

 f

 fn , n large

Figure 5.19: The graph of fn, n large, approximates the graph of f .

Since
lim
n→∞

‖ fn − f ‖∞= lim
n→∞

(
1
n

)
= 0.

the sequence {fn} converges uniformly to f on the interval −1 ≤ x ≤ 1. �

It is important to note that the three types of convergence in C[a, b] are not equivalent.
From the discussion so far one expects that uniform convergence is the strongest of the three
types. This expectation is confirmed by the proposition to follow.

Proposition 5.2:

If {fn} converges uniformly to f in C[a, b] (or in PC[a, b]), then

i) {fn} converges in the mean to f , and

ii) {fn} converges pointwise to f .

Proof:

i) By Proposition 5.1,
‖ fn − f ‖2≤

√
b− a ‖ fn − f ‖∞,

for all n. Since lim
n→∞

‖ fn − f ‖∞= 0 by hypothesis, the Squeeze theorem implies that

lim
n→∞

‖ fn − f ‖2= 0, i.e. {fn} converges to f in the mean. �

ii) It follows from the definition (5.51) that

| fn(x)− f(x) | ≤ ‖ fn − f ‖∞ (5.59)

for all x ∈ [a, b]. Thus, since lim
n→∞

‖ fn−f ‖∞= 0 it follows that lim
n→∞

| fn(x)−f(x) |= 0

for all x ∈ [a, b], i.e. {fn} converges pointwise to f , by definition (see (5.43)). �
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Comment: There is no simple relation between convergence and the mean and pointwise
convergence. This fact is illustrated by examples in Problem Set 5.

Having discussed uniform convergence and convergence in the mean for sequences of

functions, we can now define these concepts for a series
∞∑
n=1

an of continuous functions, i.e.

an ∈ C[a, b]. The definition is based on the sequence {Sn} of partial sums, defined by

Sn =
n∑
k=1

ak.

Definition 5.8:

A series
∞∑
k=1

ak in C[a, b] converges uniformly to f means that the sequence {Sn} of partial

sums converges uniformly to f , i.e.

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

ak

∥∥∥∥∥
∞

= 0. (5.60)

Definition 5.9:

A series
∞∑
k=1

ak in C[a, b] converges in the mean to f means that the sequence {Sn} of

partial sums converges in the mean to f , i.e.

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

ak

∥∥∥∥∥
2

= 0. (5.61)

Note: These definitions are also valid in the space of piecewise continuous functions, PC[a, b].
�

We now discuss a test for proving that a series of functions converges uniformly on an
interval.

Proposition 5.3 (Weierstrass M-test):

If H1 : | an(x) | ≤Mn for all x ∈ [a, b],

H2 :
∞∑
n=1

Mn converges,

then

i)
∞∑
n=1

an(x) converges absolutely for each x ∈ [a, b], with sum f(x), and
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ii)
∞∑
n=1

an(x) converges uniformly to f(x) on [a, b].

Proof:

By H1 and H2,
∞∑
n=1

|an(x)| converges by the comparison test, for all x ∈ [a, b], i.e.
∞∑
n=1

an(x)

converges absolutely. Hence we can define a function f on [a, b] by

f(x) =
∞∑
n=1

an(x).

We also let

Sn(x) =
n∑
k=1

ak(x).

Then

| f(x)− Sn(x) | =

∣∣∣∣∣
∞∑

k=n+1

ak(x)

∣∣∣∣∣ ,
≤

∞∑
k=n+1

|ak(x)| (since the series converges absolutely),

≤
∞∑

k=n+1

Mk for all x ∈ [a, b] (by H1),

It follows that

‖ f − Sn ‖∞ ≤
∞∑

k=n+1

Mk

< ε for n sufficiently large,

since
∞∑
k=1

Mk converges. Thus lim
n→∞

‖ f − Sn ‖∞= 0, and the series converges uniformly on

[a, b], by the definition. �

Example 5.9: Prove that the Fourier series
∞∑
n=1

cosnx

n2
converges uniformly on any finite

closed interval.

Solution: Observe that
∣∣∣cosnx

n2

∣∣∣ ≤ 1

n2
for all x, and the series

∞∑
n=1

1

n2
converges.
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Thus by the Weierstrass M-test the result follows. �

Continuity of the sum function

The continuity result for sequences stated in the discussion prior to Example 5.8 suggests
an analogous result for series.

Theorem 5.3: If the series
∞∑
k=1

ak(x) converges uniformly to f(x) on [a, b], and if each term

of the series is continuous, then the sum function is continuous.

Proof: See Taylor and Mann, 1983, pg. 620, Theorem III. �

This result and Example 5.9 shows that the function

f(x) =
∞∑
n=1

cosnx

n2
, −π ≤ x ≤ π,

is continuous. We find f(x) explicitly later (see Example 5.12).

5.2.4 Termwise integration of series

The theorem that we prove in this section states that if a series of functions converges in the
mean on some interval, then the series can be integrated term-by-term, and the integrated
series converges uniformly.

Theorem 5.4: If
∞∑
k=1

ak(t) converges in the mean on the interval a ≤ t ≤ b, then the

integrated series
∞∑
k=1

(∫ x

a

ak(t)dt

)
converges uniformly on the interval a ≤ x ≤ b, and

∫ x

a

(
∞∑
k=1

ak(t)dt

)
=
∞∑
k=1

(∫ x

a

ak(t)dt

)
.

The proof follows quickly from the following lemma, which states that if f and fn are close
in the mean square norm, then their integrals are close in the max norm.

Lemma: If

g(x) =

∫ x

a

f(t)dt, gn(x) =

∫ x

a

fn(t)dt, (5.62)

for a ≤ x ≤ b, then
‖ g − gn ‖∞≤

√
b− a ‖ fn − f ‖2 .
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Proof: For any x ∈ [a, b],

|g(x)− gn(x)| =
∣∣∣∣∫ x

a

[f(t)− fn(t)]dt

∣∣∣∣ (property of the integral)

≤
∫ x

a

|f(t)− fn(t)|dt (property of the integral)

≤
∫ b

a

|f(t)− fn(t)|dt (since x ≤ b and the integrand is positive)

≤
[∫ b

a

|f(t)− fn(t)|2dt
] 1

2
[∫ b

a

1dt

] 1
2

(by the Cauchy-Schwarz inequality8)

=
√
b− a ‖ f − fn ‖2 .

Since x is arbitrary, it follows that

‖ g − gn ‖∞≤
√
b− a ‖ f − fn ‖2 .

�

Proof of the theorem:

Choose

f(t) =
∞∑
k=1

ak(t), fn(t) =
n∑
k=1

ak(t)

in the lemma. Then by (5.62),

g(x) =

∫ x

a

(
∞∑
k=1

ak(t)

)
dt (5.63)

and

gn(x) =

∫ x

a

(
n∑
k=1

ak(t)

)
dt =

n∑
k=1

(∫ x

a

ak(t)dt

)
, (5.64)

where we are integrating a finite sum. It follows from the Lemma and (5.64) that∥∥∥∥∥g(t)−
n∑
k=1

(∫ x

a

ak(t)dt

)∥∥∥∥∥
∞

≤
√
b− a

∥∥∥∥∥f(t)−
n∑
k=1

ak(t)

∥∥∥∥∥
2

. (5.65)

Since
∞∑
k=1

ak(t) converges in the mean to f(t) on the interval a ≤ t ≤ b,

lim
n→∞

∥∥∥∥∥f(t)−
n∑
k=1

ak(t)

∥∥∥∥∥
2

= 0,

8The Cauchy-Schwarz inequality:

[∫ b

a

p(x)q(x)dx

]2
≤

[∫ b

a

p(x)2dx

][∫ b

a

q(x)2dx

]
.
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by definition (see (5.61)). It thus follows from (5.65) and the Squeeze Theorem that

lim
n→∞

∥∥∥∥∥g(x)−
n∑
k=1

(∫ x

a

ak(t)dt

)∥∥∥∥∥
∞

= 0.

Hence, by definition of uniform convergence (see (5.61)),
∞∑
k=1

(∫ x

a

ak(t)dt

)
converges uni-

formly to g(x), and

∞∑
k=1

(∫ x

a

ak(t)dt

)
= g(x) =

∫ x

a

(
∞∑
k=1

ak(t)

)
dt,

by (5.63). �

In Section 5.3.2 we shall apply this theorem to Fourier series.

5.3 A Second Look at Fourier Series

In this section we use the results from Section 5.2 to discuss the convergence of Fourier series
in greater depth. We are then in a position to prove that Fourier series can be integrated
termwise.

5.3.1 Uniform and mean square convergence

We now give conditions that guarantee convergence in the mean and uniform convergence
for a Fourier series. For convenience we also repeat the conditions that guarantee pointwise
convergence (Theorem 5.1).

Given an integrable function f defined on the interval −π ≤ x ≤ π, we construct the
Fourier series (5.2):

1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

with an, bn given by (5.10) and (5.11). As in Section 5.1.2, we let fp denote the period 2π
extension of f that satisfies

fp(x) = 1
2

[
fp(x

+) + fp(x
−)
]

(5.66)

at any point of discontinuity of fp (see (5.15)). We now assume that fp satisfies one of the
following hypotheses9:

H1 : fp is piecewise continuous.

H2 : fp is piecewise C1.

H3 : fp is piecewise C1 and continuous.

9The weakest hypothesis is that the function be square integrable, i.e.

∫ π

−π
[fp(x)]2dx < ∞. Such a

function describes a signal of finite energy. If fp is square integrable, then its Fourier series converges in the
mean to fp. The proof of this result is advanced (see J.D. Pryce, Basic methods of linear functional analysis,
Theorem 13.5(ii), p. 195).
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Theorem 5.5: (Convergence of Fourier series)

i) If fp satisfies H1, then the Fourier series of f converges in the mean to f on any finite
interval,

ii) If fp satisfies H2, then the Fourier series of f converges pointwise to fp(x) for all x ∈ R,

iii) If fp satisfies H3, then the Fourier series of f converges uniformly to fp on any finite
interval.

Proofs:

i) Davis, 1989, page 145,

ii) Churchill & Brown 1978, pages 91-4, Theorem 1,

iii) Davis, 1989, page 142, Theorem 1.

We illustrate these theorems with some examples.

Example 5.10: We have seen (Example 5.1) that the Fourier series of the function

f(x) = 1
2
(π− | x |), −π < x < π

is

1
4
π + 2

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
.

The period 2π extension fp of f is shown in Figure 5.5. Since fp is continuous and piecewise
C1, Theorem 5.6 implies that the Fourier series of f converges uniformly to fp on any finite
closed interval, and we write

fp(x) = 1
4
π + 2

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
uniformly.

This result is in agreement with Theorem 5.3 that the sum of a uniformly convergent series
of continuous functions is a continuous function. �

Example 5.11: We have seen (Example 5.3) that the Fourier series of the function

f(x) =


1
4
π, 0 < x < π

−1
4
π, −π < x < 0.

is
∞∑
n=1

sin(2n− 1)x

2n− 1
.
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Let us now consider the period 2π extension fp of f that satisfies

fp(x) = 1
2

[fp(x+) + fp(x−)]

at any jump discontinuity (see (5.66)). Since fp is piecewise continuous, Theorem 5.5, part
i), implies that the Fourier series of f converges in the mean to fp. In addition, since fp is
piecewise C1, Theorem 5.5, part ii), implies that the Fourier series converges pointwise to fp
on R. Hypothesis H3 of Theorem 5.6 is not satisfied. One cannot infer from Theorem 5.5,
however, that the Fourier series does not converge uniformly. This conclusion does in fact
follow from the contrapositive of Theorem 5.3 (the Continuity Theorem). �

Exercise 5.8:
Discuss the convergence properties on R of the Fourier cosine series of the function f

shown in Figure 5.20. Sketch the graph of the sum function. It is not necessary to find the
series.

y

x
π
2

π
2

π

Figure 5.20:

5.3.2 Integration of Fourier series

We can now establish a useful property of Fourier series, namely that term-wise integration
is permissible.

Theorem 5.6: The Fourier series of a period 2π piecewise continuous function can be
integrated term-by-term, over any finite interval.

Proof: Let fp be a period 2π piecewise continuous function. Theorem 5.5 implies that
the Fourier series of fp converges in the mean to fp. We can thus apply Theorem 5.4 (the
integration theorem) to conclude that the Fourier series of fp can be integrated term-by-term
over any finite interval. �

For clarity we state the theorem explicitly:

If

fp(t) = 1
2
a0 +

∞∑
n=1

(an cosnt+ bn sinnt) in the mean,
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then ∫ x

a

fp(t)dt =

∫ x

a

1
2
a0dt+

∞∑
n=1

∫ x

a

(an cosnt+ bn sinnt)dt, (5.67)

and the convergence is uniform.

Comment: Theorem 5.6 provides the justification for the derivation of the formulae for
the Fourier coefficients in Section 5.1 (see equation (5.6)), and for the proof of Parseval’s
theorem in Section 5.1.4 (see equation (5.40)).

We now give an example to show how term-by-term integration can be used to derive a
new Fourier series expansion from a known one.

Example 5.12: Given that

1
2
(π − x) =

∞∑
n=1

sinnx

n
, 0 < x < π,

(see # ii), Table 5.1, show that

1
4
(π − x)2 =

π2

12
+
∞∑
n=1

cosnx

n2
, (5.68)

uniformly on 0 < x < π.

Solution: We have

1
2
(π − t) =

∞∑
n=1

sinnt

n
, 0 < t < π,

using t as the independent variable. The given series converges in the mean by Theorem
5.5(i), since its odd period 2π extension is piecewise continuous. We can thus use Theorem
5.6 to integrate term-by-term from 0 to x, x < π:∫ x

0

1
2
(π − t)dt =

∫ x

0

(
∞∑
n=1

sinnt

n

)
dt

=
∞∑
n=1

(∫ x

0

sinnt

n
dt

)
(the key step!, using Theorem 5.6)

Evaluating the integrals leads to

−1
4
(π − t)2

∣∣∣∣x
0

=
∞∑
n=1

(
−cosnt

n2

∣∣∣∣x
0

)
,

and hence

−1
4
(π − x)2 + 1

4
π2 = −

∞∑
n=1

cosnx

n2
+
∞∑
n=1

1

n2
. (5.69)
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In Section 5.1.4 we used Parseval’s theorem to show that
∞∑
n=1

1
n2 = π2

6
, (see Example 5.5)

which, when substituted in (5.69), leads to (5.68). �

Exercise 5.9:
Sketch the graph of the sum function on R of the Fourier series (5.68).

Exercise 5.10:
Use the Fourier series (5.68) to show that

1
12
x(π − x)(2π − x) =

∞∑
n=1

sinnx

n3
, 0 < x < π.

Discuss convergence of the series on R.

Exercise 5.11:
Verify the Fourier series # vii) in Table 5.1 by integrating the series # iii) in the table.

5.4 The Fourier transform & Fourier integral

In this section we introduce the Fourier transform and the Fourier integral of a non-periodic
function f(t). We begin with the Fourier coefficients and Fourier series for a τ -periodic
function and then let τ → +∞.

5.4.1 The definition

Given a τ -periodic function f (a periodic signal), we have seen that the Fourier coefficients
cn of f are defined by

cn =
1

τ

∫ τ
2

− τ
2

f(t)e−inω0tdt, (5.70)

where ω0 = 2π
τ

is the fundamental frequency (see (5.29)). The function f can be expressed
in terms of the Fourier coefficients through the Fourier series

f(t) =
∞∑

n=−∞

cne
inω0t, (5.71)

(see (5.27)). We refer to (5.70) as the analysis equation (one is decomposing the periodic
signal into pure sinusoids), while (5.71) is the synthesis equation (one is reconstructing the
original signal from the pure sinusoids – the harmonics).

We now extend these ideas to non-periodic functions f , defined on the whole real line R.
We restrict our considerations to functions that are square-integrable10 on R, i.e.∫ ∞

−∞
f(t)2dt <∞, (5.72)

10Engineers refer to such a function as a finite-energy signal.
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and satisfy
lim
t→±∞

f(t) = 0. (5.73)

It turns out that the complex Fourier coefficients

{cn}n∈Z,

which constitute the discrete Fourier spectrum of f , have to be replaced by a complex-valued
function

F (ω), ω ∈ R.

This function, called the Fourier transform of f , is defined by

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt, (5.74)

and is said to constitute the continuous Fourier spectrum of f . In this situation the Fourier
series (5.71) is replaced by the Fourier integral, given by

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdω. (5.75)

Derivation of equation (5.75) from equation (5.74)

We give a heuristic derivation, by applying a limiting process to equations (5.70) and
(5.71). Let f(t) be a function which is zero outside a finite interval. Construct the τ -periodic
extension fτ (t) of f(t), with τ sufficiently large (see the figure).

  
− τ

2

  
− τ

2
  
τ
2

  
τ
2  

− 3τ
2   

3τ
2

  f(t)
  fτ (t )

t t

Figure 5.21: A function f(t), zero outside a finite interval, and its τ -periodic extension fτ (t).

It follows that for all t ∈ R,
lim
τ→∞

fτ (t) = f(t) (5.76)

(all humps except the central one get pushed out to infinity as τ →∞).
We can represent fτ (t) by its complex Fourier series

fτ (t) =
∞∑

n=−∞

cne
inω0t, (5.77)
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with

cn =
1

τ

∫ τ
2

− τ
2

fτ (t)e
−inω0tdt,

and

ω0 =
2π

τ
. (5.78)

By definition of fτ (t) (see the figure) we can write

cn =
1

τ

∫ ∞
−∞

f(t)e−inω0tdt. (5.79)

Comparing (5.74) and (5.79) yields

cn =
1

τ
F (nω0). (5.80)

In the limit as τ →∞, the fundamental frequency ω0 tends to zero, by (5.78). We introduce
the increment in the frequency domain:

∆ω =
2π

τ
. (5.81)

We now substitute (5.80) into (5.77), and express ω0 and τ in terms of ∆ω using (5.78) and
(5.77). The result is

fτ (t) =
1

2π

∞∑
n=−∞

F (n∆ω)ein∆ωt∆ω.

We finally take the limit as τ →∞ and hence ∆ω → 0 by (5.81). On account of (5.76) we
obtain

f(t) =
1

2π
lim

∆ω→0

∞∑
n=−∞

F (n∆ω)ein∆ωt∆ω. (5.82)

We recognize the series as a Riemann sum for the improper integral∫ ∞
−∞

F (ω)eiωtdω,

so that (5.82) becomes (5.75).
We conclude this section by summarizing in the following table the four key formulae of

Fourier analysis .
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τττ-periodic functions (ω0 = 2π/τ)(ω0 = 2π/τ)(ω0 = 2π/τ) square-integrable functions on RRR

Fourier coefficients Fourier transform

cn = 1
τ

∫ τ
2

− τ
2

f(t)e−inω0tdt F (ω) =

∫ ∞
−∞

f(t)e−iωtdt

Fourier series Fourier integral

f(t) =
∞∑

n=−∞

cne
inω0t f(t) = 1

2π

∫ ∞
−∞

F (ω)eiωtdω

5.4.2 Calculating Fourier transforms using the definition

The rectangular window function, defined by

W (t) =


1, if |t| < 1

2

0, if |t| > 1
2

(5.83)

and the sinc function, defined by

sinc(x) =
sinx

x
, x 6= 0, (5.84)

with sinc(0) = 1, play an important role in Fourier analysis and in its application to signal
processing.

Example 5.13: Calculate the Fourier transform of

f(t) = W (t).

Solution: By definition (5.74),
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F (ω) =

∫ ∞
−∞

W (t)e−iωtdt

=

∫ 1
2

− 1
2

e−iωtdt (by (5.83))

= − 1

iω
(e−iωt)

∣∣∣t= 1
2

t=− 1
2

(by the FTC)

= − 1

iω
(e−

1
2
iω − e

1
2
iω)

= − 1

iω

[(
cos 1

2
ω − i sin 1

2
ω
)
−
(
cos 1

2
ω + i sin 1

2
ω
)]

(by Euler’s formula)

=
2

ω
sin 1

2
ω

= sinc
(ω

2

)
(by (5.84)).

To summarize,

the Fourier transform of the window function W (t) is sinc
(

1
2
ω
)
.

We write this result symbolically as

F(W (t)) = sinc
(

1
2
ω
)
, (5.85)

where we think of F as the operation of taking the Fourier transform.

The graphs of W (t) and its Fourier transform are shown in the figure.

Figure 5.22: The graph of W (t) and its Fourier transform.
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Comment: If f(t) is even, the Fourier transform F (ω) is real, and the formula (5.74) can
be written in a real form, as follows:

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt

=

∫ ∞
0

f(t)e−iωtdt+

∫ 0

−∞
f(t)e−iωtdt

=

∫ ∞
0

f(t)e−iωtdt−
∫ 0

∞
f(−t̂)eiωt̂dt̂ (make the change of variable t̂ = −t)

=

∫ ∞
0

f(t)(eiωt + e−iωt)dt (use f(−t̂) = f(t̂) and relabel t̂ as t)

= 2

∫ ∞
0

f(t) cosωt dt (by Euler’s formula)

In summary, if f(t) is even, the Fourier transform of f can be written in the form

F (ω) = 2

∫ ∞
0

f(t) cosωt dt. (5.86)

Exercise 5.12: Verify (5.85) using (5.86).

Similarly it follows that if f is odd, then

F(f(t)) = −2i

∫ ∞
0

f(t) sinωt dt.

We now give a table containing a list of simple functions and their Fourier transforms.
Two of the functions are the rectangular window functionW (t) (see (5.83)) and the triangular
window function T (t):

W (t) =


1, if |t| < 1

2

0, if |t| > 1
2

T (t) =


1− |t|, if |t| < 1

0, if |t| > 1.

(5.87)
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Table 5.2: Functions f(t) and their Fourier transforms F (ω)

f(t) F (ω)

W (t) sinc
(

1
2
ω
)

sinc(t) πW
(

1
2
ω
)

e−|t|
2

1 + ω2

1

1 + t2
πe−|ω|

e−
1
2
t2

√
2πe−

1
2
ω2

T (t)
[
sinc

(
1
2
ω
)]2

5.4.3 Properties of the Fourier transform

In this section we develop some general properties of the Fourier transform operator F ,
which maps a signal f(t) to its Fourier transform F (ω):

F(f(t)) = F (ω), (5.88)

where F (ω) is defined by

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt. (5.89)

These properties are needed when applying Fourier analysis (e.g., solving PDEs in AMATH
353), and are also useful for calculating specific Fourier transforms.

• Linearity

A fundamental property of F is that it is a linear operator:

F(f + g) = F(f) + F(g)

F(cf) = cF(f),

where c is a constant.

• Scaling formula

We know the Fourier transform of the unit gate function W (t), defined by (5.83). How
can we calculate the Fourier transform of the gate function W (at) of width 1/a? We can do
this without resorting to the definition, by using the dilation formula.

If F(f(t)) = F (ω)

then F(f(at)) =
1

a
F
(ω
a

)
,

(5.90)
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where a > 0 is a constant.

Derivation: We use the definition (5.74) of the Fourier transform, and then make a change
of variable t̂ = at:

F(f(at)) =

∫ ∞
−∞

f(at)e−iωtdt

=
1

a

∫ ∞
−∞

f(t̂)e−i(
ω
a )t̂dt̂

=
1

a
F
(ω
a

)
( replace ω by

ω

a
in (5.74)) �

Comment: In performing a change of variable in an improper integral one should, strictly
speaking, use the definition, as follows. With a > 0, make a change of variable t̂ = at:∫ ∞

0

f(at)dt = lim
r→∞

∫ r

0

f(at)dt = lim
r→∞

1

a

∫ ar

0

f(t̂)dt̂ =
1

a

∫ ∞
0

f(t̂)dt̂.

In these notes we will omit the intermediate steps.

Example 5.14: Calculate the Fourier transform of the gate function f(t) = W (at), a > 0,
and sketch both graphs. This example illustrates the effect of a scaling in time.

Solution: By (5.85)
F(W (t)) = sinc

(
1
2
ω
)
.

The dilation formula (5.90) gives

F(W (at)) =
1

a
sinc

( ω
2a

)
. (5.91)

The graphs are plotted in Fig. 5.23. Thus, if 0 < a� 1, the gate is wide and the sinc graph
is sharply peaked, with rapid oscillations. On the other hand, if a � 1, the gate is narrow
and the sinc graph is very flat.

Exercise 5.13: Show that

i)

F(T (at)) =
1

a

[
sinc

( ω
2a

)]2

, (5.92)

where T is the triangular window function defined by (5.87).

ii) F(e−a|t|) =
2a

a2 + ω2
, (see Table 5.2).

In both cases, sketch the graphs and indicate how their shape changes as the positive
constant a changes.
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  f(t)

1

t
  
− 1

2a   
1

2a

ω

  
1

a

  2aπ

  F(ω)

time domain

frequency domain

Figure 5.23: The graph of W (t) and its Fourier transform.

• Shift formula (aka the frequency shifting property).

Suppose you know the Fourier transform of f(t):

F(f(t)) = F (ω).

Is there an easy way to calculate the Fourier transform of

g(t) = f(t) cos(ω0t),

i.e., the given signal is multiplied11 by a signal of frequency ω0?
We can calculate such a Fourier transform without resorting to the definition, by using

the marvellous shift formula.

If F(f(t)) = F (ω),

then F(eiω0tf(t)) = F (ω − ω0),

(5.93)

i.e., multiplying the given signal f(t) by a sinusoid eiω0t in the time domain causes a trans-
lation (aka a shift) in the frequency domain.

Derivation: By the definition (5.74) we have

F(f(t)) = F (ω) =

∫ ∞
−∞

f(t)eiωtdt. (5.94)

11This process is called amplitude modulation of the “carrier” cos(ω0t) by the signal f(t).
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Hence,

F(eiω0tf(t)) =

∫ ∞
−∞

eiω0tf(t)e−iωtdt (replace f(t) by eiω0tf(t) in (5.94))

=

∫ ∞
−∞

f(t)e−i(ω−ω0)tdt (rearrange)

= F (ω − ω0) (replace ω by ω − ω0 in (5.94)) �

Example 5.15: Calculate the Fourier transform of a gate-pulse modulated carrier cos(ω0t).

f(t) = W (at) cos(ω0t),

where W (t) is the unit gate function, and a > 0, ω0 > 0 are constants. Sketch both graphs.

Solution: We write f(t) in complex form by using Euler’s formula:

f(t) = 1
2
W (at)

(
eiω0t + e−iω0t

)
.

By (5.91)

F(W (at)) =
1

a
sinc

( ω
2a

)
.

By linearity and the shift formula (5.93),

F(W (at) cosω0t) = 1
2

[
F(W (at)eiω0t) + F(W (at)e−iω0t)

]
=

1

2a

[
sinc

(
ω − ω0

2a

)
+ sinc

(
ω + ω0

2a

)]
.

The graphs are shown in Figure 5.24.

Figure 5.24: The graph of f(t) = 1
2
W (at) cos(W0t) and its Fourier transform.

Exercise 5.14: Calculate the Fourier transform of a triangular-pulse modulated carrier
cos(ω0t).

f(t) = T (at) cos(ω0t),

where T (t) is the triangular window function defined by (5.87). Sketch the graphs of f(t)
and F (ω).
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5.4.4 Parseval’s formula for a non-periodic function

As you might imagine, Parseval’s formula for a periodic function

1

τ

∫ τ
2

− τ
2

f(t)2dt =
∞∑

n=−∞

|cn|2,

can be generalized to non-periodic functions.

• Parseval’s formula:

If F(f(t)) = F (ω),

then

∫ ∞
−∞

f(t)2dt =
1

2π

∫ ∞
−∞
|F (ω)|2dω.

(5.95)

Derivation: We have the Fourier integral (5.75):

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdω (5.96)

and the Fourier transform (5.74):

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt. (5.97)

Multiply (5.96) by f(t) and integrate from −∞ to ∞:∫ ∞
−∞

f(t)2dt =
1

2π

∫ ∞
t=−∞

(∫ ∞
ω=−∞

f(t)F (ω)eiωtdω

)
dt

=
1

2π

∫ ∞
ω=−∞

F (ω)

(∫ ∞
t=−∞

f(t)eiωtdt

)
dω (interchange the order of integration,

valid subject to suitable restrictions on f and F )

=
1

2π

∫ ∞
ω=−∞

F (ω)F (ω)dω (by the complex conjugate of (5.97)

=
1

2π

∫ ∞
ω=−∞

|F (ω)|2dω. �

Example 5.16: (an impossible integral!)

Show that ∫ ∞
−∞

sin2 x

x2
dx = π.
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Solution: Recognizing the integrand as [sinc(x)]2, which is related to the Fourier transform
of the gate function W (t), we think of using Parseval’s formula.

Choose a = 1
2

in (5.91):
F
(
W (1

2
t)
)

= 2sinc(ω).

Thus, by Parseval’s formula:

1

2π

∫ ∞
−∞

[2sinc(ω)]2dω =

∫ ∞
−∞

[
W
(

1
2
t
)]2

dt. (5.98)

On noting that

W
(

1
2
t
)

=


1 if |t| < 1

0 if |t| > 1

we obtain ∫ ∞
−∞

W
(

1
2
t
)2
dt =

∫ 1

−1

(1)dt = 2.

Thus (5.98) leads to ∫ ∞
−∞

[sinc(ω)]2dω = π.

Exercise 5.15: Use the Fourier transform

F(e−|t|) =
2

1 + ω2

to show that ∫ ∞
−∞

1

(1 + x2)2
dx =

π

2
.

5.4.5 Relation between the continuous spectrum and the discrete
spectrum

A τ -periodic signal f(t) has a discrete Fourier spectrum determined by the complex Fourier
coefficients {cn}n∈Z, with discrete frequencies nω0, where ω0 = 2π/τ is the fundamental
frequency (see Figure 5.11). A non-periodic finite-energy signal f(t) has a continuous Fourier
spectrum determined by the complex Fourier transform F (ω), where the frequency ω assumes
all real values (see figures 5.21 and 5.23). In this section we show that there is a simple
relation between the discrete spectrum and the continuous spectrum.

For fixed τ > 0 consider a signal f(t) that is non-zero only on a subinterval of the interval
− τ

2
≤ t ≤ τ

2
(see Figure 5.25 a)). The Fourier transform of f(t), as given by equation (5.74),

becomes

F (ω) =

∫ τ
2

− τ
2

f(t)e−iωtdt. (5.99)
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Let g(t) be the τ -periodic function such that

g(t) = f(t), if − τ

2
≤ t ≤ τ

2
, (5.100)

(see Figure 5.25 b)). The Fourier coefficients of g(t) are given by

cn =
1

τ

∫ τ
2

− τ
2

g(t)e−inω0tdt, (5.101)

with ω0 = 2π/τ being the fundamental frequency (see (5.70)). We can substitute (5.100) in
(5.101) and if we then compare (5.101) with (5.99), we obtain

τcn = F (nω0).

This equation gives the desired relation between the discrete spectrum and the continuous
spectrum. Note that the continuous spectrum forms an “envelope” for the discrete spectrum
(compare b) and d) in Figure 5.25). As τ → ∞, the discrete spectrum (d) becomes finer
and finer (the spacing → 0) and approaches the continuous spectrum b).

Figure 5.25: A non-periodic signal a) and its continuous spectrum b), and the associated
periodic signal c) and its discrete spectrum d), scaled by the period τ .
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5.4.6 Things are simpler in the frequency domain

We give three brief illustrations of the claim made in the title of this section.

• Signal separation

Consider a signal of finite duration in the time domain consisting of the superposition of
two high frequency components of widely differing frequencies:

f(t) = (A1 cosω1t+ A2 cosω2t)W (at),

with ω2 � ω1. The graph of this function is complicated and it is not helpful to draw it. On
the other hand, the Fourier transform of this signal is relatively simple. Using linearity and
the shift formula we obtain

F (ω) = F(f(t)) =
1

2a
A1

[
sinc

(
ω − ω1

2a

)
+ sinc

(
ω + ω1

2a

)]

+
1

2a
A2

[
sinc

(
ω − ω2

2a

)
+ sinc

(
ω + ω2

2a

)]
(exercise, similar to Example 5.15). The graph of F (ω) is shown in Figure 5.26.

Figure 5.26: Signal separation in the frequency domain.

We say the signals have been separated in the frequency domain.

• Differentiation

Differentiation in the time domain becomes multiplication by iω (i.e., a purely algebraic
operation) in the frequency domain.

Differentiation formula

If F(f(t)) = F (ω)

then F(f ′(t)) = iωF (ω),

(5.102)
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provided that f is a suitably regular function on R.

Derivation: We apply the definition (5.74) and then integrate by parts:

F(f ′(t)) =

∫ ∞
−∞

f ′(t)e−iωtdt

= f(t)e−iωt
∣∣∣∞
−∞

+iω

∫ ∞
−∞

f(t)e−iωtdt

= 0 + iωF (ω). (by the definition (5.74)).

Note that the first term is zero since we require that lim
t→±∞

f(t) = 0 (see equation (5.73)).

Exercise 5.16: Use (5.102) and a result from Table 5.2 to find F(te−
1
2
t2).

• Response of a linear time-invariant system

Many signal processing devices can be modelled by using a so-called linear time-invariant
(LTI) system, illustrated schematically below.

outputinput
system

  fin( t)   fout (t )  L

“Linear” means that the output (aka the response) is determined from the input by the
action of a linear operator L:

fout(t) = Lfin(t). (5.103)

“Time-invariant” means that if the input is translated in time, then the output is translated
in time by the same amount.

One can show that if the input to an LTI system is a sinusoid eiωt then the output is a
sinusoid of the same frequency, but the amplitude and phase may change, depending on the
frequency:

L(eiωt) = α(ω)eiωt, (5.104)

where α(ω) is a complex function of frequency ω, called the system function.
The key point is that the system function α(ω) determines the Fourier transform Fout(ω)

of the output fout(t) in a simple algebraic way in terms of the Fourier transform of the Fin(ω)
of the input fin(t):

Fout(ω) = α(ω)Fin(ω). (5.105)

Derivation: Assuming that fin(t) has a Fourier integral representation

fin(t) =
1

2π

∫ ∞
−∞

Fin(ω)eiωtdω,
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we obtain, using (5.103),

fout(t) = Lfin(t) =
1

2π
L

(∫ ∞
−∞

Fin(ω)eiωtdω

)

=
1

2π

∫ ∞
−∞

Fin(ω)L(eiωt)dω (by linearity)

=
1

2π

∫ ∞
−∞

Fin(ω)α(ω)eiωtdω (by (5.104)).

But by definition the Fourier integral representation of fout(t) is

fout(t) =
1

2π

∫ ∞
−∞

Fout(ω)eiωtdω.

Comparing these two expressions yields (5.105).

5.5 Digitized signals – a glimpse

We end by briefly discussing two topics relating to digitized signals, that is, signals that are
obtained when a given signal is sampled at discrete times. For example, digitized signals,
sampled at a frequency of around 40,000 Hz, are recorded in computer files.

5.5.1 The sampling theorem

We first discuss the Sampling Theorem.12 one of the most important results in the analysis
of digitized signals.

A signal f(t) is called band-limited if its Fourier transform F (ω) is zero except in a finite
interval, that is, if

F (ω) = 0 for |ω| ≥ Ω. (5.106)

Then fB = Ω/2π is called the cut-off frequency. The sampling theorem essentially shows
that a band-limited signal f(t) with cut-off frequency Ω/2π can be reconstructed exactly
using only the values of f(t) at the discrete sampling times t = 0, ± π

Ω
, ±2π

Ω
, . . . i.e. using

a time spacing ∆t = π/Ω, or equivalently, a sampling frequency fs = Ω/π. Thus, provided
the sampling frequency is twice the cut-off frequency (fs = 2fB), one can reconstruct the
continuous signal f(t) exactly. This is another situation in which the sinc function

sinc(x) =
sinx

x
, x 6= 0; sinc(0) = 1,

comes into play.

12The origins of the Sampling Theorem can be traced to Cauchy and Borel in the nineteenth century,
followed by E.T. Whittaker in 1915, motivated by interpolation theory. The theorem was rediscovered
by Nyquist in 1928 in the context of signal processing, while working at Bell Labs, and was subsequently
incorporated into information theory by Claude Shannon in the late 1940’s.
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Theorem 5.7 (Sampling theorem):
If f(t) is a band-limited signal with cut-off frequency Ω/2π, then

f(t) =
∞∑

n=−∞

f
(nπ

Ω

)
sinc(Ωt− nπ). (5.107)

Proof: Since f(t) is band-limited, i.e. (5.106) holds, equation (5.75) for the Fourier integral
becomes

f(t) =
1

2π

∫ Ω

−Ω

F (ω)eiωtdω. (5.108)

We now take the unexpected step of writing the function F (ω) as a complex Fourier series
on the interval −Ω < ω < Ω. Replacing t by ω in (5.71), and choosing the period τ to be
2Ω, we get

F (ω) =
∞∑

n=−∞

cne
inπω

Ω , −Ω < ω < Ω. (5.109)

The coefficients cn are given by (5.70), again with t replaced by ω, and τ = 2Ω:

cn =
1

2Ω

∫ Ω

−Ω

F (ω)e−
inπω

Ω dω. (5.110)

Comparing (5.108) with t = −nπ
Ω

and (5.110) leads to the conclusion that

cn =
π

Ω
f
(
−nπ

Ω

)
.

We now substitute this result in (5.85), obtaining

F (ω) =
π

Ω

∞∑
n=−∞

f
(
−nπ

Ω

)
e
inπω

Ω

=
π

Ω

∞∑
n=−∞

f
(nπ

Ω

)
e−

inπω
Ω , (5.111)

for −Ω < ω < Ω. In the last step we simply replaced n by −n. We finally obtain the desired
expression for f(t) by substituting (5.111) in (5.108) and rearranging:

f(t) =
1

2Ω

∞∑
n=−∞

f
(nπ

Ω

)∫ Ω

−Ω

e−
inπω

Ω eiωtdω.

Evaluating the integral and using Euler’s identity gives

1

2Ω

∫ Ω

−Ω

e−
inπω

Ω eiωtdω =
1

2Ω

∫ Ω

−Ω

e
i(Ωt−nπ)

Ω
ωdω

= sinc (Ωt− nπ)

(fill in the details as an exercise), leading to the desired result (5.107). �
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5.5.2 The discrete Fourier transform (DFT)

The problem of numerically computing the Fourier coefficients cn of a τ -periodic function
f(t) leads to another aspect of Fourier analysis, the discrete Fourier transform, as follows.
It is convenient to write the formula for cn (see (5.70)) as an integral over the interval [0, τ ],
instead of

[
− τ

2
, τ

2

]
:

cn =
1

τ

∫ τ

0

f(t)e−2πint/τdt. (5.112)

Given n, choose N > n, and consider a uniform partition of the interval [0, τ ] into N
subintervals of length

∆t =
τ

N
,

and with left end points

tk = k
( τ
N

)
, k = 0, 1, . . . , N − 1. (5.113)

The integral is then approximated by the Riemann sum associated with this partition, and
(5.112) becomes

cn ≈
1

N

N−1∑
k=0

f

(
kτ

N

)
e−2πikn/N . (5.114)

This equation approximates the Fourier coefficients cn, n = 0, 1, . . . , N − 1 in terms of the
values of f(t) at the N discrete points given by (5.113). We can think of the signal as having
been sampled at these discrete time values. We introduce the notation

f [k] = f

(
kτ

N

)
, k = 0, 1, . . . , N − 1.

These N numbers then represent a digitized signal. Motivated by (5.114) we define the
discrete Fourier transform of f [k] (DFT) by

F [n] =
1

N

N−1∑
k=0

f [k]e−2πikn/N , (5.115)

n = 0, 1, . . . , N − 1. We can think of this formula as approximating the first N Fourier
coefficients cn of a τ -periodic signal f(t), or as giving the exact Fourier coefficients F [n] in
the frequency domain of a digitized signal f [k] in the time domain. It can be shown that
the inverse of the DFT (5.115) is given by

f [n] =
N−1∑
k=0

F [k]e2πikn/N . (5.116)

In mathematical terms, the DFT (5.115) is a linear transformation from CN to CN , i.e.
it maps a vector

f = (f [0], . . . , f [N − 1])
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onto a vector
F = (F [0], . . . , F [N − 1]).

We can then write (5.115) in matrix form as

F =
1

N
FN f , (5.117)

where the N ×N matrix FN is given by

FN =



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

...
...

...
...

1 ωN−1 ω2N−2 · · · ω(N−1)(N−1)


,

with
ω = e−2πi/N .

This matrix is called the Fourier matrix.
In exploring large sets of data in many areas including digital signal analysis, it is nec-

essary to calculate the Fourier coefficients F [n], n = 0, 1, . . . , N − 1, as given by (5.115), for
large values of N . Doing the matrix multiplication in (5.117) directly requires N2 opera-
tions, which is time consuming for large N . The Fast Fourier Transform (FFT), introduced
in 1965 by Cooley and Tukey, exploits the symmetry properties of FN to do the calculation
using O(N logN) operations, a significant saving. The FFT is one of the topics studied in
the numerical computation course AM 371/CM 271/CS 371.

Reference (a famous mathematical paper):
Cooley, J.W. and Tukey, J.W. (1965) An algorithm for the machine computation of complex
Fourier series, Math. Comp. 19, 297-301.
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