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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

1. Landauer’s Principle

Landauer’s setup (1/4)

Goal: Erasure process: E : {0, 1} → {0}.

RESTORE TO ONE, which leaves the particle in the ONE 
state,  regardless of its  initial  location. If we are told that 
the  particle is in  the ONE state, then  it is easy to leave it in 
the ONE state, without spending  energy. If on  the  other 
hand we are told that  the particle is in the ZERO state, we 
can  apply a force  to  it, which will push it over the  barrier, 
and  then,  when it has passed the  maximum, we can apply 
a retarding  force, so that when the particle  arrives at ONE, 
it will have no  excess kinetic  energy, and we  will not  have 
expended any energy in  the whole process, since we ex- 
tracted energy from  the particle in its  downhill  motion. 
Thus  at first sight it seems possible to RESTORE TO ONE 
without any  expenditure of energy. Note, however, that 
in order  to avoid energy  expenditure we have used two 
different routines,  depending on  the initial state of the 
device. This is not how  a computer operates. In most 
instances a computer pushes information  around in  a 
manner  that is independent of the  exact  data which are 
being handled,  and is only  a function of the physical 
circuit  connections. 

Can we then construct a single time-varying  force, 
F ( t ) ,  which when  applied to  the conservative system of 
Fig. 1 will cause the particle to  end  up in the ONE state, 
if it was initially in either the ONE state or the ZERO state? 
Since the system is conservative,  its  whole  history can be 
reversed in  time, and we will still have a system satisfying 
the laws of motion. In  the time-reversed system we then 
have the possibility that for a single initial  condition 
(position  in the ONE state, zero velocity) we can  end  up 
in  at least two places: the ZERO state  or  the ONE state. 
This,  however, is impossible. The  laws of mechanics are 
completely  deterministic and a trajectory is determined 
by an initial  position and velocity. (An initially unstable 
position can, in a sense, constitute an exception.  We can 
roll  away from  the unstable point  in  one of at least  two 
directions. Our initial point ONE is, however, a point of 
stable  equilibrium.)  Reverting to  the original  direction 
of time  development, we see then that  it is not possible to 
invent a single F (  t )  which causes the particle to  arrive  at 
ONE regardless of its  initial  state. 

If, however, we  permit  the potential well to be lossy, 
this becomes easy. A very strong positive initial force 
applied slowly enough so that  the  damping prevents oscil- 
lations will push  the  particle  to  the right,  past ONE, re- 
gardless of the particle's initial  state. Then if the  force is 
taken away slowly enough, so that  the  damping  has a 
chance to prevent  appreciable oscillations, the particle is 
bound  to  arrive  at ONE. This example also illustrates  a 
point argued elsewhere2 in  more  detail: While  a  heavily 
overdamped system is obviously undesirable,  since it is 
made sluggish, an extremely underdamped  one is also not 
desirable for switching, since then  the system may  bounce 
back into  the wrong state if the switching force is applied 
and removed too quickly. 

2. Classification 

Before  proceeding to  the  more detailed arguments we 
will need to classify data processing equipment by the 

184 means used to hold information, when it is not interacting 

IBM JOURNAL JULY 1961 
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x is a generalized coordinate representing 
quantity  which is switched. 
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Figure 2 Potential well  in which ZERO and ONE state 
are not separated by barrier. 
Information is preserved because random 
motion is slow. 

or being processed. The simplest class and  the  one  to 
which all the arguments of subsequent  sections will be 
addressed consists of devices which can  hold  information 
without dissipating energy. The system illustrated  in 
Fig.  1 is in  this class. Closely related to  the mechanical 
example of Fig. 1 are ferrites,  ferroelectrics and  thin 
magnetic films. The  latter, which can switch  without 
domain wall motion,  are  particularly close to  the one- 
dimensional device shown  in  Fig. 1. Cryotrons  are also 
devices which show dissipation  only  when  switching. They 
do differ, however, from  the device of Fig. 1 because the 
ZERO and ONE states  are  not  particularly  favored  ener- 
getically. A cryotron is somewhat  like the mechanical 
device illustrated in Fig. 2,  showing a  particle in a box. 
Two  particular positions in  the  box  are chosen to repre- 
sent ZERO and ONE, and  the preservation of information 
depends on  the  fact  that Brownian motion in the box is 
very slow. The reliance on  the slowness of Brownian 
motion rather  than  on restoring  forces is not only charac- 
teristic of cryotrons,  but of most of the  more familiar 
forms of information storage:  Writing, punched cards, 
microgroove  recording,  etc. It is clear from  the  literature 
that all essential logical functions  can be performed by 

Two states in an analog system. Fix ρf = 0 as the “erased” state.
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the ONE state, without spending  energy. If on  the  other 
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or being processed. The simplest class and  the  one  to 
which all the arguments of subsequent  sections will be 
addressed consists of devices which can  hold  information 
without dissipating energy. The system illustrated  in 
Fig.  1 is in  this class. Closely related to  the mechanical 
example of Fig. 1 are ferrites,  ferroelectrics and  thin 
magnetic films. The  latter, which can switch  without 
domain wall motion,  are  particularly close to  the one- 
dimensional device shown  in  Fig. 1. Cryotrons  are also 
devices which show dissipation  only  when  switching. They 
do differ, however, from  the device of Fig. 1 because the 
ZERO and ONE states  are  not  particularly  favored  ener- 
getically. A cryotron is somewhat  like the mechanical 
device illustrated in Fig. 2,  showing a  particle in a box. 
Two  particular positions in  the  box  are chosen to repre- 
sent ZERO and ONE, and  the preservation of information 
depends on  the  fact  that Brownian motion in the box is 
very slow. The reliance on  the slowness of Brownian 
motion rather  than  on restoring  forces is not only charac- 
teristic of cryotrons,  but of most of the  more familiar 
forms of information storage:  Writing, punched cards, 
microgroove  recording,  etc. It is clear from  the  literature 
that all essential logical functions  can be performed by 

Two states in an analog system. Fix ρf = 0 as the “erased” state.
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Three ingredients

1. Landauer’s Principle

Landauer’s setup (2/4)
0 → 0

RESTORE TO ONE, which leaves the particle in the ONE 
state,  regardless of its  initial  location. If we are told that 
the  particle is in  the ONE state, then  it is easy to leave it in 
the ONE state, without spending  energy. If on  the  other 
hand we are told that  the particle is in the ZERO state, we 
can  apply a force  to  it, which will push it over the  barrier, 
and  then,  when it has passed the  maximum, we can apply 
a retarding  force, so that when the particle  arrives at ONE, 
it will have no  excess kinetic  energy, and we  will not  have 
expended any energy in  the whole process, since we ex- 
tracted energy from  the particle in its  downhill  motion. 
Thus  at first sight it seems possible to RESTORE TO ONE 
without any  expenditure of energy. Note, however, that 
in order  to avoid energy  expenditure we have used two 
different routines,  depending on  the initial state of the 
device. This is not how  a computer operates. In most 
instances a computer pushes information  around in  a 
manner  that is independent of the  exact  data which are 
being handled,  and is only  a function of the physical 
circuit  connections. 

Can we then construct a single time-varying  force, 
F ( t ) ,  which when  applied to  the conservative system of 
Fig. 1 will cause the particle to  end  up in the ONE state, 
if it was initially in either the ONE state or the ZERO state? 
Since the system is conservative,  its  whole  history can be 
reversed in  time, and we will still have a system satisfying 
the laws of motion. In  the time-reversed system we then 
have the possibility that for a single initial  condition 
(position  in the ONE state, zero velocity) we can  end  up 
in  at least two places: the ZERO state  or  the ONE state. 
This,  however, is impossible. The  laws of mechanics are 
completely  deterministic and a trajectory is determined 
by an initial  position and velocity. (An initially unstable 
position can, in a sense, constitute an exception.  We can 
roll  away from  the unstable point  in  one of at least  two 
directions. Our initial point ONE is, however, a point of 
stable  equilibrium.)  Reverting to  the original  direction 
of time  development, we see then that  it is not possible to 
invent a single F (  t )  which causes the particle to  arrive  at 
ONE regardless of its  initial  state. 

If, however, we  permit  the potential well to be lossy, 
this becomes easy. A very strong positive initial force 
applied slowly enough so that  the  damping prevents oscil- 
lations will push  the  particle  to  the right,  past ONE, re- 
gardless of the particle's initial  state. Then if the  force is 
taken away slowly enough, so that  the  damping  has a 
chance to prevent  appreciable oscillations, the particle is 
bound  to  arrive  at ONE. This example also illustrates  a 
point argued elsewhere2 in  more  detail: While  a  heavily 
overdamped system is obviously undesirable,  since it is 
made sluggish, an extremely underdamped  one is also not 
desirable for switching, since then  the system may  bounce 
back into  the wrong state if the switching force is applied 
and removed too quickly. 
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Before  proceeding to  the  more detailed arguments we 
will need to classify data processing equipment by the 
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or being processed. The simplest class and  the  one  to 
which all the arguments of subsequent  sections will be 
addressed consists of devices which can  hold  information 
without dissipating energy. The system illustrated  in 
Fig.  1 is in  this class. Closely related to  the mechanical 
example of Fig. 1 are ferrites,  ferroelectrics and  thin 
magnetic films. The  latter, which can switch  without 
domain wall motion,  are  particularly close to  the one- 
dimensional device shown  in  Fig. 1. Cryotrons  are also 
devices which show dissipation  only  when  switching. They 
do differ, however, from  the device of Fig. 1 because the 
ZERO and ONE states  are  not  particularly  favored  ener- 
getically. A cryotron is somewhat  like the mechanical 
device illustrated in Fig. 2,  showing a  particle in a box. 
Two  particular positions in  the  box  are chosen to repre- 
sent ZERO and ONE, and  the preservation of information 
depends on  the  fact  that Brownian motion in the box is 
very slow. The reliance on  the slowness of Brownian 
motion rather  than  on restoring  forces is not only charac- 
teristic of cryotrons,  but of most of the  more familiar 
forms of information storage:  Writing, punched cards, 
microgroove  recording,  etc. It is clear from  the  literature 
that all essential logical functions  can be performed by 

If the system is in 0, we don’t have to do anything to erase.
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Three ingredients

1. Landauer’s Principle

Landauer’s setup (3/4)
1 → 0

RESTORE TO ONE, which leaves the particle in the ONE 
state,  regardless of its  initial  location. If we are told that 
the  particle is in  the ONE state, then  it is easy to leave it in 
the ONE state, without spending  energy. If on  the  other 
hand we are told that  the particle is in the ZERO state, we 
can  apply a force  to  it, which will push it over the  barrier, 
and  then,  when it has passed the  maximum, we can apply 
a retarding  force, so that when the particle  arrives at ONE, 
it will have no  excess kinetic  energy, and we  will not  have 
expended any energy in  the whole process, since we ex- 
tracted energy from  the particle in its  downhill  motion. 
Thus  at first sight it seems possible to RESTORE TO ONE 
without any  expenditure of energy. Note, however, that 
in order  to avoid energy  expenditure we have used two 
different routines,  depending on  the initial state of the 
device. This is not how  a computer operates. In most 
instances a computer pushes information  around in  a 
manner  that is independent of the  exact  data which are 
being handled,  and is only  a function of the physical 
circuit  connections. 

Can we then construct a single time-varying  force, 
F ( t ) ,  which when  applied to  the conservative system of 
Fig. 1 will cause the particle to  end  up in the ONE state, 
if it was initially in either the ONE state or the ZERO state? 
Since the system is conservative,  its  whole  history can be 
reversed in  time, and we will still have a system satisfying 
the laws of motion. In  the time-reversed system we then 
have the possibility that for a single initial  condition 
(position  in the ONE state, zero velocity) we can  end  up 
in  at least two places: the ZERO state  or  the ONE state. 
This,  however, is impossible. The  laws of mechanics are 
completely  deterministic and a trajectory is determined 
by an initial  position and velocity. (An initially unstable 
position can, in a sense, constitute an exception.  We can 
roll  away from  the unstable point  in  one of at least  two 
directions. Our initial point ONE is, however, a point of 
stable  equilibrium.)  Reverting to  the original  direction 
of time  development, we see then that  it is not possible to 
invent a single F (  t )  which causes the particle to  arrive  at 
ONE regardless of its  initial  state. 

If, however, we  permit  the potential well to be lossy, 
this becomes easy. A very strong positive initial force 
applied slowly enough so that  the  damping prevents oscil- 
lations will push  the  particle  to  the right,  past ONE, re- 
gardless of the particle's initial  state. Then if the  force is 
taken away slowly enough, so that  the  damping  has a 
chance to prevent  appreciable oscillations, the particle is 
bound  to  arrive  at ONE. This example also illustrates  a 
point argued elsewhere2 in  more  detail: While  a  heavily 
overdamped system is obviously undesirable,  since it is 
made sluggish, an extremely underdamped  one is also not 
desirable for switching, since then  the system may  bounce 
back into  the wrong state if the switching force is applied 
and removed too quickly. 

2. Classification 

Before  proceeding to  the  more detailed arguments we 
will need to classify data processing equipment by the 
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or being processed. The simplest class and  the  one  to 
which all the arguments of subsequent  sections will be 
addressed consists of devices which can  hold  information 
without dissipating energy. The system illustrated  in 
Fig.  1 is in  this class. Closely related to  the mechanical 
example of Fig. 1 are ferrites,  ferroelectrics and  thin 
magnetic films. The  latter, which can switch  without 
domain wall motion,  are  particularly close to  the one- 
dimensional device shown  in  Fig. 1. Cryotrons  are also 
devices which show dissipation  only  when  switching. They 
do differ, however, from  the device of Fig. 1 because the 
ZERO and ONE states  are  not  particularly  favored  ener- 
getically. A cryotron is somewhat  like the mechanical 
device illustrated in Fig. 2,  showing a  particle in a box. 
Two  particular positions in  the  box  are chosen to repre- 
sent ZERO and ONE, and  the preservation of information 
depends on  the  fact  that Brownian motion in the box is 
very slow. The reliance on  the slowness of Brownian 
motion rather  than  on restoring  forces is not only charac- 
teristic of cryotrons,  but of most of the  more familiar 
forms of information storage:  Writing, punched cards, 
microgroove  recording,  etc. It is clear from  the  literature 
that all essential logical functions  can be performed by 

Now consider if the system starts in state 1
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Three ingredients
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RESTORE TO ONE, which leaves the particle in the ONE 
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it will have no  excess kinetic  energy, and we  will not  have 
expended any energy in  the whole process, since we ex- 
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manner  that is independent of the  exact  data which are 
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circuit  connections. 
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F ( t ) ,  which when  applied to  the conservative system of 
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directions. Our initial point ONE is, however, a point of 
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of time  development, we see then that  it is not possible to 
invent a single F (  t )  which causes the particle to  arrive  at 
ONE regardless of its  initial  state. 

If, however, we  permit  the potential well to be lossy, 
this becomes easy. A very strong positive initial force 
applied slowly enough so that  the  damping prevents oscil- 
lations will push  the  particle  to  the right,  past ONE, re- 
gardless of the particle's initial  state. Then if the  force is 
taken away slowly enough, so that  the  damping  has a 
chance to prevent  appreciable oscillations, the particle is 
bound  to  arrive  at ONE. This example also illustrates  a 
point argued elsewhere2 in  more  detail: While  a  heavily 
overdamped system is obviously undesirable,  since it is 
made sluggish, an extremely underdamped  one is also not 
desirable for switching, since then  the system may  bounce 
back into  the wrong state if the switching force is applied 
and removed too quickly. 
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or being processed. The simplest class and  the  one  to 
which all the arguments of subsequent  sections will be 
addressed consists of devices which can  hold  information 
without dissipating energy. The system illustrated  in 
Fig.  1 is in  this class. Closely related to  the mechanical 
example of Fig. 1 are ferrites,  ferroelectrics and  thin 
magnetic films. The  latter, which can switch  without 
domain wall motion,  are  particularly close to  the one- 
dimensional device shown  in  Fig. 1. Cryotrons  are also 
devices which show dissipation  only  when  switching. They 
do differ, however, from  the device of Fig. 1 because the 
ZERO and ONE states  are  not  particularly  favored  ener- 
getically. A cryotron is somewhat  like the mechanical 
device illustrated in Fig. 2,  showing a  particle in a box. 
Two  particular positions in  the  box  are chosen to repre- 
sent ZERO and ONE, and  the preservation of information 
depends on  the  fact  that Brownian motion in the box is 
very slow. The reliance on  the slowness of Brownian 
motion rather  than  on restoring  forces is not only charac- 
teristic of cryotrons,  but of most of the  more familiar 
forms of information storage:  Writing, punched cards, 
microgroove  recording,  etc. It is clear from  the  literature 
that all essential logical functions  can be performed by 

f(t)

To get to zero, we could apply a force f (t) to the left
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Three ingredients

1. Landauer’s Principle

Landauer’s setup (3/4)
1 → 0

RESTORE TO ONE, which leaves the particle in the ONE 
state,  regardless of its  initial  location. If we are told that 
the  particle is in  the ONE state, then  it is easy to leave it in 
the ONE state, without spending  energy. If on  the  other 
hand we are told that  the particle is in the ZERO state, we 
can  apply a force  to  it, which will push it over the  barrier, 
and  then,  when it has passed the  maximum, we can apply 
a retarding  force, so that when the particle  arrives at ONE, 
it will have no  excess kinetic  energy, and we  will not  have 
expended any energy in  the whole process, since we ex- 
tracted energy from  the particle in its  downhill  motion. 
Thus  at first sight it seems possible to RESTORE TO ONE 
without any  expenditure of energy. Note, however, that 
in order  to avoid energy  expenditure we have used two 
different routines,  depending on  the initial state of the 
device. This is not how  a computer operates. In most 
instances a computer pushes information  around in  a 
manner  that is independent of the  exact  data which are 
being handled,  and is only  a function of the physical 
circuit  connections. 

Can we then construct a single time-varying  force, 
F ( t ) ,  which when  applied to  the conservative system of 
Fig. 1 will cause the particle to  end  up in the ONE state, 
if it was initially in either the ONE state or the ZERO state? 
Since the system is conservative,  its  whole  history can be 
reversed in  time, and we will still have a system satisfying 
the laws of motion. In  the time-reversed system we then 
have the possibility that for a single initial  condition 
(position  in the ONE state, zero velocity) we can  end  up 
in  at least two places: the ZERO state  or  the ONE state. 
This,  however, is impossible. The  laws of mechanics are 
completely  deterministic and a trajectory is determined 
by an initial  position and velocity. (An initially unstable 
position can, in a sense, constitute an exception.  We can 
roll  away from  the unstable point  in  one of at least  two 
directions. Our initial point ONE is, however, a point of 
stable  equilibrium.)  Reverting to  the original  direction 
of time  development, we see then that  it is not possible to 
invent a single F (  t )  which causes the particle to  arrive  at 
ONE regardless of its  initial  state. 

If, however, we  permit  the potential well to be lossy, 
this becomes easy. A very strong positive initial force 
applied slowly enough so that  the  damping prevents oscil- 
lations will push  the  particle  to  the right,  past ONE, re- 
gardless of the particle's initial  state. Then if the  force is 
taken away slowly enough, so that  the  damping  has a 
chance to prevent  appreciable oscillations, the particle is 
bound  to  arrive  at ONE. This example also illustrates  a 
point argued elsewhere2 in  more  detail: While  a  heavily 
overdamped system is obviously undesirable,  since it is 
made sluggish, an extremely underdamped  one is also not 
desirable for switching, since then  the system may  bounce 
back into  the wrong state if the switching force is applied 
and removed too quickly. 

2. Classification 

Before  proceeding to  the  more detailed arguments we 
will need to classify data processing equipment by the 
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Figure 2 Potential well  in which ZERO and ONE state 
are not separated by barrier. 
Information is preserved because random 
motion is slow. 

or being processed. The simplest class and  the  one  to 
which all the arguments of subsequent  sections will be 
addressed consists of devices which can  hold  information 
without dissipating energy. The system illustrated  in 
Fig.  1 is in  this class. Closely related to  the mechanical 
example of Fig. 1 are ferrites,  ferroelectrics and  thin 
magnetic films. The  latter, which can switch  without 
domain wall motion,  are  particularly close to  the one- 
dimensional device shown  in  Fig. 1. Cryotrons  are also 
devices which show dissipation  only  when  switching. They 
do differ, however, from  the device of Fig. 1 because the 
ZERO and ONE states  are  not  particularly  favored  ener- 
getically. A cryotron is somewhat  like the mechanical 
device illustrated in Fig. 2,  showing a  particle in a box. 
Two  particular positions in  the  box  are chosen to repre- 
sent ZERO and ONE, and  the preservation of information 
depends on  the  fact  that Brownian motion in the box is 
very slow. The reliance on  the slowness of Brownian 
motion rather  than  on restoring  forces is not only charac- 
teristic of cryotrons,  but of most of the  more familiar 
forms of information storage:  Writing, punched cards, 
microgroove  recording,  etc. It is clear from  the  literature 
that all essential logical functions  can be performed by 

g(t)

Then remove the energy we added with a force g(t) to the right
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Resulting in the system “erased” in state zero without any net energy
cost.
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

1. Landauer’s Principle

Landauer’s setup (4/4)
Landauer’s formulation

Wrong.

I We used two different processes depending on the initial state
I Our erasure operation should take any initial state ρi to the

given final state ρf

I Landauer’s motivation [Lan61]: computers operate as a
function of circuit connections, not the specific data being
handled

I Landauer 1961: If we had friction, this would work (with
g(t) ≡ 0)

I On the other hand, our erasure map E cuts the size of phase
space; since entropy shouldn’t decrease, we must have heat
output.
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

1. Landauer’s Principle

Modern (finite-dimensional) quantum formulation (1/3)
The process

S
(HS , hS , ρi)

Arbitrary ρi

ρf = TrHE (Uρi ⊗ ξiU∗) E
(HE , hE , ξi)

Thermal: ξi = exp(−βhE)/Tr(. . .)

ξf = TrHS (Uρi ⊗ ξiU∗)

coupling

Initial joint state: ρi ⊗ ξi.
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Modern (finite-dimensional) quantum formulation (1/3)
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S
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Arbitrary ρi
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

1. Landauer’s Principle

Modern (finite-dimensional) quantum formulation (2/3)
Quantities of interest

Def: S(ρ) := −Tr ρ log ρ, S(η|ν) := Tr
(
η(log η− log ν)

)

≥ 0.
I Entropy change of system: ∆SS := S(ρi)− S(ρf)
I Energy change of reservoir: ∆QE := Tr(hEξf)− Tr(hEξi).
I Entropy production: σ := S(Uρi ⊗ ξi U∗|ρf ⊗ ξi) ≥ 0

I Computation of σ using ξi is Gibbs:

σ = −S(Uρi ⊗ ξiU∗)− Tr
(
Uρi ⊗ ξiU∗ (log ρf ⊗ Id)

)
− Tr

(
Uρi ⊗ ξiU∗ (Id⊗ log ξi)

)
= −S(ρi ⊗ ξi) + S(ρf)− Tr(ξf log ξi)

= −S(ρi)− S(ξi) + S(ρf)− Tr(ξf log ξi)

σ

= −∆SS + β∆QE .

the balance equation
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

1. Landauer’s Principle

Modern (finite-dimensional) quantum formulation (3/3)
The Principle

σ ≥ 0 =⇒ ∆QE ≥ β−1∆SS . Landauer’s Principle

Special case: Erasure process of qubit: HS = C2, ρi = 1
2 Id,

ρf = |0〉 〈0|. Then ∆SS = log 2, and LP becomes

∆QE ≥ T log 2. (T = β−1, kB ≡ 1)

When do we have the equality ∆QE = β−1∆SS?

When σ = 0,

which in this process occurs only when
∆SS = ∆QE = 0 [JP14].

In fact, tighter bounds exist in finite dimensions [RW14].
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

2. Adiabatic theorems

The adiabatic limit

I In this unitary time evolution set up, we write Schrödinger’s
equation

i
d
ds

U(s) = h(s)U(s), s ∈ [0, 1], with U(0) = Id.

I Then adiabatic limit concerns the solution UT (s) of the
rescaled Schrödinger equation

i
d
dt

UT (t) = h(t/T )UT (t), t ∈ [0,T ], with UT (0) = Id,

in the limit T →∞.
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

2. Adiabatic theorems

Kato’s adiabatic theorem
Many, but Kato’s is representative [Kat50].

Assumptions:
1. e(s) be a continuous parametrization of an eigenvalue of h(s)

for s ∈ [0, 1].
2. e(s) separated from the rest of the spectrum by a constant

gap.
3. Let P(s) be the projection onto the eigenspace of e(s). Then

we assume s 7→ P(s) is C 2.
Kato: Then there exists a unitary operator-valued function
[0,T ] 3 t 7→W (t) that
1. Intertwine with P : W (t)P(0) = P(t/T )W (t).
2. Approximate time evolution on RanP(0):(

UT (t)− exp
(
− iT

∫ t/T

0
e(s) ds

)
W (t)

)
P(0) = O(T−1)

uniformly in t ∈ [0,T ].
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

2. Adiabatic theorems

Adiabatic limit of Landauer’s Principle

At fixed T > 0, we can consider the quantities ∆ST , ∆QT defined
through the time evolution UT = UT (1). Then we obtain our
balance equation

∆ST + σT = β∆QT ,

with
σT = S(UT (ρi ⊗ ξi)U∗T |ρf

T ⊗ ξiT ).

I In [JP14], the authors use a different adiabatic theorem and
show σT → 0, when the reservoir is infinite dimensional, with
the help of an ergodicity assumption.
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

RIS Setup (1/2)

1. System S starts in state ρi

2. S interacts with a chain of probes {Ek}∞k=1, one at a time.
3. Assume after interacting with k − 1 probes, the system is in

state ρk−1. Then S interacts with kth probe Ek , which is
initially in state ξik , via potential vk with coupling constants λk
for a time τk , by the unitary operator

Uk := exp
(
− iτk(hS ⊗ Id + Id⊗ hEk + λkvk)

)
4. We trace out Ek to obtain the system state

ρk = TrE
(
Uk(ρk−1 ⊗ ξik)U∗k

)
.
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Three ingredients

3. Repeated Interaction Systems

RIS Setup (2/2)

ρk−1

S, hS

λkvk

Ek , hEk

ξik

Ek−1, hEk−1

Ek−2, hEk−2 Ek+2, hEk+2

ξik+2
Ek+1, hEk+1

ξik+1

· · · · · ·
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Simplifications

I Here we will take τk ≡ τ > 0 constant.

I We may always take λk ≡ λ constant, because vk can change.
We don’t remove λ altogether though, because we may be
interested in the λ→ 0 limit later.

I We will also take ξik to be a thermal state at some inverse
temperature βk .
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Favorite example(s) (1/2)

I Qubits: HS = C2, HEk ≡ HE = C2.

I We define hS = E a∗a and hEk ≡ hE = E0 b
∗b, where a/a∗,

resp. b/b∗, are the annihilation/creation operators for S, resp.
E :

a = b =

(
0 1
0 0

)
, a∗ = b∗ =

(
0 0
1 0

)
, a∗a = b∗b =

(
0 0
0 1

)
.

 hS =

(
0 0
0 E

)
and hEk ≡ hE =

(
0 0
0 E0

)
.

I Take constant potential vk ≡ v .
I Take ξik = exp(−βkhEk )/Tr(. . .) Gibbs state at inverse

temperature βk .

← only parameter which changes between
probes
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.

I Take constant potential vk ≡ v .
I Take ξik = exp(−βkhEk )/Tr(. . .) Gibbs state at inverse

temperature βk . ← only parameter which changes between
probes
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Favorite example(s) (2/2)

I Two choices of potential for our qubits:

1. Full dipole:

vFD =
1
2

(a∗+a)⊗(b∗+b) =
1
2

(a⊗b+a∗⊗b+a⊗b∗+a∗⊗b∗).

2. Rotating wave (common approx. when |E − E0| � min{E ,E0}
and λ� |E0|):

vRW =
1
2

(a∗ ⊗ b + a⊗ b∗).

We will consider both potentials.



17/31

Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Favorite example(s) (2/2)

I Two choices of potential for our qubits:
1. Full dipole:

vFD =
1
2

(a∗+a)⊗(b∗+b) =
1
2

(a⊗b+a∗⊗b+a⊗b∗+a∗⊗b∗).

2. Rotating wave (common approx. when |E − E0| � min{E ,E0}
and λ� |E0|):

vRW =
1
2

(a∗ ⊗ b + a⊗ b∗).

We will consider both potentials.



17/31

Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Favorite example(s) (2/2)

I Two choices of potential for our qubits:
1. Full dipole:

vFD =
1
2

(a∗+a)⊗(b∗+b) =
1
2

(a⊗b+a∗⊗b+a⊗b∗+a∗⊗b∗).

2. Rotating wave (common approx. when |E − E0| � min{E ,E0}
and λ� |E0|):

vRW =
1
2

(a∗ ⊗ b + a⊗ b∗).

We will consider both potentials.



17/31

Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Favorite example(s) (2/2)

I Two choices of potential for our qubits:
1. Full dipole:

vFD =
1
2

(a∗+a)⊗(b∗+b) =
1
2

(a⊗b+a∗⊗b+a⊗b∗+a∗⊗b∗).

2. Rotating wave (common approx. when |E − E0| � min{E ,E0}
and λ� |E0|):

vRW =
1
2

(a∗ ⊗ b + a⊗ b∗).

We will consider both potentials.



18/31

Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Reduced dynamics

I We can consider only the dynamics on the system. Define

Lk : I1(HS) → I1(HS)

key object #2

η 7→ TrE
(
Uk(η ⊗ ξik)U∗k

)
where I1(HS) are the trace-class operators on HS , i.e., all
linear operators.

I Then
ρk = LkLk−1 · · · L1ρ

i.

This is a Markovian form for the sequence of states (ρk)k .
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Landauer’s Principle in Repeated Interaction Systems

Three ingredients

3. Repeated Interaction Systems

Reduced dynamics in our favorite examples

I With both vRW and vFD, we’ve computed a 4x4 matrix
representation of the reduced dynamics L(β) in terms of
E ,E0, β, τ and λ. Recall only β changes with the step, so we
may obtain Lk = L(βk).

iR

R
1

Numerically obtained eigenvalues of LFD with λ = 2, τ = 0.5,
E0 = 0.8, and E = 0.9. The evals of LFD are independent of β.
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Three ingredients

3. Repeated Interaction Systems

Properties of the reduced dynamics

I Lk is trace preserving

I Lk is completely positive: if η ≥ 0 is a matrix on HS ⊗ Cn,
then (Lk ⊗ Id)(η) ≥ 0, for every n ∈ N.

I Fact: if we choose the trace norm on our domain I1(HS),
(namely, ‖η‖1 = Tr(

√
η∗η)) then the operator norm of Lk is

‖Lk‖ := sup
‖η‖1=1

‖Lkη‖1 = 1.

I However, in general, we could have ‖Lk‖ > 1 when considered
as an operator on (I1(HS), ‖ · ‖2), where ‖A‖2 =

√
Tr(A∗A).
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Outline

Three ingredients
1. Landauer’s Principle
2. Adiabatic theorems
3. Repeated Interaction Systems

Combining the ingredients

Two tools
1. An adiabatic theorem for RIS
2. Perturbation of relative entropy

Entropy production of RIS in adiabatic limit



21/31

Landauer’s Principle in Repeated Interaction Systems

Combining the ingredients

Landauer’s Principle at step k of an RIS
I The entropy change of S and energy change of Ek at step k is

given by

∆Sk := S(ρk−1)− S(ρk) = S(ρk−1)− S(Lk(ρk−1)),

∆Qk := Tr
(
hEk TrS

(
Uk(ρk−1 ⊗ ξik)U∗k

)︸ ︷︷ ︸
ξfk

)
− Tr(hEk ξ

i
k),

I So the balance equation holds at step k

∆Sk + σk = βk∆Qk ,

with
σk := S

(
Uk(ρk−1 ⊗ ξik)U∗k |Lk(ρk−1)⊗ ξik

)
.



21/31

Landauer’s Principle in Repeated Interaction Systems

Combining the ingredients

Landauer’s Principle at step k of an RIS
I The entropy change of S and energy change of Ek at step k is

given by

∆Sk := S(ρk−1)− S(ρk) = S(ρk−1)− S(Lk(ρk−1)),

∆Qk := Tr
(
hEk TrS

(
Uk(ρk−1 ⊗ ξik)U∗k

)︸ ︷︷ ︸
ξfk

)
− Tr(hEk ξ

i
k),

I So the balance equation holds at step k

∆Sk + σk = βk∆Qk ,

with
σk := S

(
Uk(ρk−1 ⊗ ξik)U∗k |Lk(ρk−1)⊗ ξik

)
.



22/31
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Combining the ingredients

Adiabatic RIS

I To consider an “adiabatic limit” of an RIS process, we will
consider T � 0 interactions (i.e., S interacts with
E1, E2, . . . , ET ), and

I We will sample the probe and interaction parameters from C 2

functions. That is, define C 2 functions

s 7→ hE(s), s 7→ β(s), s 7→ v(s)

for s ∈ [0, 1],

and choose

hEk,T = hE(k/T ), βk,T = β(k/T ), vk,T = v(k/T ).
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Landauer’s Principle in Repeated Interaction Systems

Combining the ingredients

LP in RIS in the adiabatic limit (1/2)

I At each step, we have σk,T a relative entropy, which depends
on T as it depends on our parameters e.g. βk,T = β(k/T ).

I We may sum over the first T steps and define
σT :=

∑T
k=1 σk,T .

I Depends on T in two ways: each σk,T has parameters
depending on T , and we consider T probes.

I We are interested in limT→∞ σT . Does this vanish?
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Landauer’s Principle in Repeated Interaction Systems

Combining the ingredients

LP in RIS in the adiabatic limit (2/2)

I We are in a fundamentally different setup that the
Hamiltonian/unitary evolution considered earlier.

I We are also secretly in an infinite dimensional system: each
probe has a different Hilbert space, and we are taking the
number of probes T to infinity.

I Each σk,T ≥ 0, so we need vanishing entropy production at
each step.

I In fact, want σk,T = O(1/T 2), so σT = O(1/T ).
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Landauer’s Principle in Repeated Interaction Systems

Combining the ingredients

Strategy

I Our key object:

σk,T = S
(
Uk,T (ρk−1,T ⊗ ξik,T )U∗k,T |Lk,T (ρk−1,T )⊗ ξik,T

)
,

where ρk−1,T = Lk−1,TLk−2,T · · · L1,Tρ
i.

I σk,T depends on parameters at step k and {Lj ,T}kj=0

I Assume ρi is an eigenstate of L0,T . Then our adiabatic
intuition tells us that for T large, ρ1,T = L1,T (ρi) is close to
an eigenstate of L1,T .

I Repeating this, we hope that adiabatically, ρk−1,T is close to
ρk,T , which we hope is close to an eigenstate of Lk,T .

I Then σk,T approximately only depends on parameters at step
k , and not on steps 0, . . . , k − 1.
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Entropy production of RIS in adiabatic limit
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Landauer’s Principle in Repeated Interaction Systems

Two tools

1. An adiabatic theorem for RIS

Two assumptions
Assume s 7→ L(s) is obtained as an adiabatic RIS, i.e. parameters
are sampled from C 2 functions, and

A1 L(s) is irreducible for each s ∈ [0, 1]. That is, if P is a
Hermitian projector such that L(PI1(HS)P) ⊂ PI1(HS)P
then P ∈ {0, Id}.

We know ‖L(s)‖ = 1, so all eigenvalues are on or within the unit
circle. Let P(s) denote the eigenprojection onto eigenvalues on the
unit circle.
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` := sup
s∈[0,1]

‖L(s)Q(s)‖ < 1.
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Landauer’s Principle in Repeated Interaction Systems

Two tools

1. An adiabatic theorem for RIS

Implications of these assumptions

1. At each step 1 ≤ k ≤ T , Lk,T := L(k/T ) has a unique
invariant state ρinv

k,T > 0.

Notation: P j
k,T is the projection on to the jth peripheral eigenvalue

at step k , with adiabatic parameter T .
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2. The theorem: there exist constants T0 > 0 and C > 0 such
that for all T > T0, there exists maps (Ak,T )Tk=1 such that

‖Lk,T · · · L1,TP0 − Ak,T‖ ≤
C

T (1− `)
,

Ak,TP
j
0 = P j

k,TAk,T , Ak,TQ0 = 0.
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Two tools

2. Perturbation of relative entropy

Perturbation theory applied to relative entropy

For any state η and small enough perturbations D1,D2,

S(η + D1|η + D2) = O((D1 − D2)2).

In fact, if η =
∑

i µipi is the eigendecomposition of η, then∣∣S(η + D1|η + D2)− Fη(D1 − D2)
∣∣ = O((‖D1‖+ ‖D2‖)3)

where Fη(A) := Fη(A,A) for

Fη(A,B) :=
∑
i

Tr(ApiBpi )
1
2µi

+
∑
i<j

Tr(ApjBpi )
log(µi )− log(µj)

µi − µj
.
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2nd order term: ‖Fη(A)‖ = O(‖A‖2).
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Perturbing σk ,T
Now we want to write σk,T = S(η + D1|η + D2). But

σk,T := S
(
Uk,T (ρk−1,T ⊗ ξik,T )U∗k,T |Lk,T (ρk−1,T )⊗ ξik,T

)
.

So we want to approximate ρk−1,T ≈ ρk,T ≈ ρinv
k . The error is the

difference

Dk,T := Lk,T (ρk−1,T−ρinv
k,T )⊗ξik,T−Uk,T

(
(ρk−1,T−ρinv

k,T )⊗ξik,T
)
U∗k,T .

Next, we’ll try to approximate
Uk,T

(
(ρinv

k,T )⊗ ξik,T
)
U∗k,T ≈ ρinv

k,T ⊗ ξik,T . So the error is

Xk,T := Uk,T ρ
inv
k,T ⊗ ξik,T U∗k,T − ρinv

k,T ⊗ ξik,T .

Using our adiabatic theorem and perturbation of entropy, we can
find

σk,T = Fρinv
k,T⊗ξ

i
k,T

(Dk,T − Xk,T ) + O(1/T 3).
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Back to our examples

Consider our 2x2 examples.
I With vRW, Xk,T ≡ 0. Then

σk,T = Fρinv
k,T

(Dk,T ) + O(1/T 3)

= O(1/T 2)

and the entropy production σT → 0.

I With vFD, Xk,T = O(λ). We in fact find σT →∞, even in
the small coupling limit λ2T → 0 which I have not discussed.1

1

There are subtleties about A2 that require a modification to the setup.
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Bonus: adiabatic state preparation
Consider our 2x2 example with the RW approximation.

The
invariant state of Lk,T is

ρinv
k,T =

exp(−E0
E βk,ThS)

Tr(. . .)
.

I Since any qubit state ρf > 0 may be written as a Gibbs state
at some temperature βf, we may choose our temperatures so
that βT ,T = β(1) = βf. Then the system will be driven to
ρinv
T ,T = ρf, and thus drive initial states to our target state.

I If the initial state is in the eigenspace of the invariant state,
our adiabatic theorem tells us we create σT ∼ 1

T entropy
production, and approximate ρT ,T = ρf + O(T−1).

I Otherwise, we create σT ∼ 1
T + 1

(1−`) entropy production, and
approximate ρT ,T = ρf + O(1/T ) + O(`T ).
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