

Spacetime's curvature can be seen directly :



How to describe spacetime?

A. Math

Strategy: \square Start with a mere "set" of points (events), M

Then add structure:

\square Define open neighborhoods (i.e., a "topology" on M)

\square Define "separability" of points (i.e. Hausdorff condition)

\square Define "continuity" (preimage of open sets is open)

\square Define "differentiability" (via chart change diffability)

later: \square Define tangent & tensor spaces

Curvature = nontriviality of parallel transport

Other descriptions of curvature?

$\left. \begin{array}{l} \text{Why consider others? May be useful} \\ \text{for quantum gravity b/c what's on} \\ \text{previous page is likely over idealized.} \end{array} \right\}$

\square Curvature = sum of angles in triangle $\neq \pi$

\square Curvature = nontriviality of Pythagoras law

\square Curvature = tidal forces. Math of it: Sectional curvatures

\square Curvature $\stackrel{?}{=}$ nontrivial sound of object when vibrating

This field is called Spectral geometry.

Interesting b/c connects mathematical languages
of quantum theory (spectra etc) and general relativity.

\square Curvature $\stackrel{?}{=}$ nontrivial entanglement in vacuum fluctuations

B) Structure and properties of General Relativity?

□ Equations of motion

for scalars, vectors, spinors and curvature

□ Symmetries

local and global conservation laws, if any!

□ Tetrad formulation, GR as a gauge theory

□ Singularities, and their unavoidability

C) Applications to cosmology

□ Classification of exact solutions

□ Models of cosmological matter

□ FRW models, while

using the tetrad formalism

to exercise it. (e.g. for later use)
(in quantum gravity)

□ Cosmic inflation

□ Black holes



A. Pseudo-Riemannian Differential Geometry

□ Differentiable Manifolds

(Riemann \approx 1850s, Poincaré \approx 1890s, Whitney \approx 1930s...)

Def: An n -dimensional topological Manifold, M , is a Hausdorff space which is locally homeomorphic to \mathbb{R}^n .

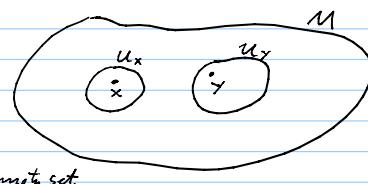
Here:

Def: A topological space, M , is a set, together with a specification of subsets U_i , which will be called "open subsets", which must obey $U_i \cap U_j$ is open, and $\bigcup U_i$ is open.

Def: A topological space M is called Hausdorff, if it is separable, i. e., if $x, y \in M$ and $x \neq y$ then x, y are elements of some disjoint open sets.

$\forall x, y: x \neq y \exists U_x, U_y \text{ open: } x \in U_x, y \in U_y \text{ and } U_x \cap U_y = \emptyset$

\uparrow "for all" \uparrow "there exist"



Notice: Now M has a topology consisting of open sets. And, of course, \mathbb{R}^n also does.

Recall: If A, B are topol. spaces, then $f: A \rightarrow B$ is called continuous if $\forall V \subset B, U := f^{-1}(V) : (U \text{ open} \Rightarrow V \text{ open})$

→ We can now express the idea that M is continuously parametrizable:

Def: M is called locally homeomorphic to \mathbb{R}^n , if each point, p , has a neighborhood $U(p)$, and an invertible continuous map $h: U(p) \rightarrow \mathbb{R}^n$.

Def: A local homeomorphism,

$h: U \rightarrow \mathbb{R}^n$, $U \subset M$
↑ called "domain"

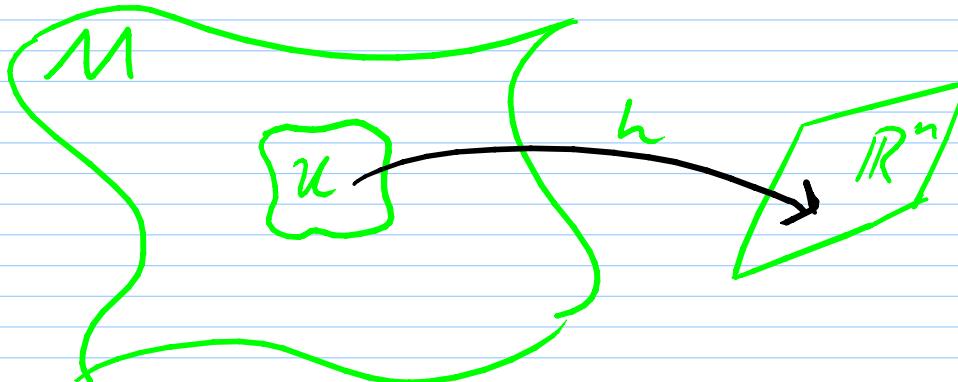
is called a chart of M .

For any point $q \in U$ its image

$h(q) \in \mathbb{R}^n$

is a set of n numbers (x_1, x_2, \dots, x_n) called the coordinates of q .

Def: A chart, h , with domain U ,

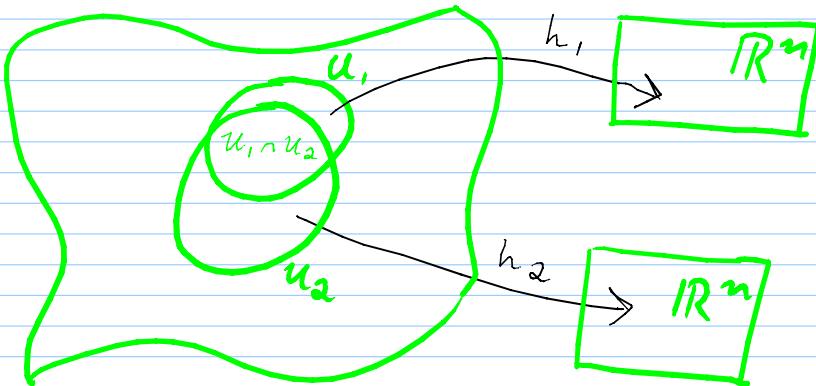


is also called a
local coordinate system for U .

Def: A collection of charts h_α
with domains U_α is called an
atlas if $\bigcup_\alpha U_\alpha = M$.

→ What, if we want to change coordinates,
i.e. if we want to re-label the
points of (e.g. a subset of) the manifold?

Consider 2 charts h_1, h_2 , with intersecting domains $U_1 \cap U_2 \neq \emptyset$:



Then, $h_{12} = h_2 \circ h_1^{-1}$ is a continuous change of coordinates map $h_{12} : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

Notice: For maps $\mathbb{R}^n \rightarrow \mathbb{R}^n$ we know what differentiability means!

Strategy: Let us define the differentiability of an atlas through the differentiability of its chart changes:

Def: An atlas is called C^r differentiable, if all its coordinate changes, h_{12} , are C^r diffeomorphisms, i.e., r times continuously differentiable.

Strategy: Enlarge atlas so every point of M is in multiple charts.

Then, diffability of M is definable through atlas diffability

Def: Given a C^r differentiable atlas, A , we can generate a maximal C^r differentiable atlas, $D(A)$, by adding all charts whose chart changes with charts in A are differentiable.

Def: $D(A)$ is also called a "Differentiable Structure" of class C^r for M .

Def: A differentiable manifold of class C^r is a topol. manifold with a maximal atlas of class C^r , i.e., with a differentiable structure of class C^r .

Theorem: (Whitney)

Every C^k structure with $k \geq 1$ is C^k equivalent to a C^∞ structure (i.e. there is always a suitable set of charts).

I.e. any diffable structure can be smoothed. Any lack of higher diffability is due to unlucky choice of chart.

Def: Since any C^r manifold is also a C^∞ manifold, we also call diffable manifolds simply smooth manifolds.