Hearing the spacetime curvature in quantum noise

Achim Kempf

Departments of Applied Mathematics and Physics and Institute for Quantum Computing University of Waterloo Perimeter Institute for Theoretical Physics

M. Saravani, S. Aslanbeigi, A. Kempf, Phys. Rev. D 93, 045026 (2016)

Background

• Why is quantum gravity hard?

GR is structurally very different from quantum theories

- Any bridge between GR and QT desirable.
- Here: build one of those bridges.

Idea

• Quantum fields fluctuate, have quantum noise

• Spacetime curvature affects that quantum noise

Key question:

• Can we get the curvature back from the quantum noise?

• Is the metric expressible in terms of quantum noise?

How could this work?

• First in flat spacetime:

$$\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{m^2 c^2}{\hbar^2} \psi$$

- Coupled harmonic oscillators
- Their quantum fluctuations are correlated
- Quantified by: 2-point functions such as the propagator

In curved spacetime

• Klein Gordon equation now:

$$\left(\frac{1}{\sqrt{g}}\partial_{\mu}\sqrt{g}g^{\mu\nu}\partial_{\nu}+\frac{m^{2}c^{2}}{\hbar^{2}}\right)\psi=0.$$

- Curvature affects the coupling of the oscillators
 - → Curvature affects the correlations of quantum noise
 - → Curvature affects the propagator

Does the propagator know all about the curvature?

Result

• For dimensions D>2, the metric can be expressed in terms of the Feynman propagator:

$$g_{ij}(y) = -\frac{1}{2} \left[\frac{\Gamma(D/2 - 1)}{4\pi^{D/2}} \right]^{\frac{2}{D-2}} \lim_{x \to y} \frac{\partial}{\partial x^i} \frac{\partial}{\partial y^j} \left(G(x, y)^{\frac{2}{2-D}} \right)$$

- Proof: covariance, geodesic coordinates, asymptotic behavior
- Also in paper: worked-out examples
- → In principle: Can replace the metric with the propagator!

Intuitively, why does this work?

• Recall that in 3+1 dimensions:

$$curvature = causal structure + scalar function$$

- Propagator knows the causal structure
- But: propagator also indicates effective spacetime distances!

And knowing infinitesimal distances is to know the metric.

Interpretation

• Einstein built general relativity on rods and clocks

- But no rods and clocks at sub-atomic scales!
- Instead: as distance proxy, use strength of noise correlators:

Accelerators measure curvature

- Accelerators test Feynman rules, including the propagators
- Measuring the propagator locally is to measure the metric

With a mobile accelerator one could measure the metric anywhere

What can we use this tool for?

• We have a bridge between GR and QFT: From the propagator we can calculate the metric.

Assume some arbitrary model for the Planck scale.

How does bridge hold up when approaching the Planck scale?

• We can calculate the corresponding impact on the metric!

Example: sharp natural UV cutoff

$$g_{ij}^{\Lambda}(y) \equiv -\frac{1}{2} \left[\frac{\Gamma(D/2 - 1)}{4\pi^{D/2}} \right]^{\frac{2}{D-2}} \lim_{x \to y} \frac{\partial}{\partial x^i} \frac{\partial}{\partial y^j} G_{\Lambda}(x, y)^{\frac{2}{2-D}}$$

- Notice: the UV limits $x \to y$ and $\Lambda \to \infty$ compete!
- Do they commute?
- It's more subtle: only "on average" they do

Example D=3 flat space:

$$g_{\alpha\beta}(x,y) = \delta_{\alpha\beta}f_1(\Lambda r_{xy}) + \frac{(x_{\alpha} - y_{\alpha})(x_{\beta} - y_{\beta})}{r_{xy}^2}f_2(\Lambda r_{xy})$$

Oscillations. We recover usual metric "on average"

Oscillations visible in the CMB?

CMB's structure originated close to Planck scale

Hubble scale in inflation only about 5 orders from Planck scale.

Natural UV cutoffs in inflation

Multiple groups have non-covariant predictions for CMB.

• Effect could be first or second order in (Planck length/Hubble length) i.e. could be say O(10^-5) or O(10^-10)

Big challenge was:

Predictions with local Lorentz covariant bandlimit cutoff!

Recent paper with former students:

Aidan Chatwin-Davies, (CalTech) and Robert Martin (U. Cape Town)

• ACD,RTM, AK, Phys. Rev. Lett. **119**, 031301 (2017)

Results for sharp covariant cutoff

• Power law inflation: relative change in (tensor) spectrum

- Effect is linear in (Planck length/Hubble length)
- Plus characteristic oscillations.

Results for sharp covariant cutoff

However, this was assuming decoherence at horizon crossing!

• If decoherence at re-heating, then spectrum is very robust.

Summary

• Quantum noise knows <u>all</u> about curvature

Metric expressible through Feynman propagator

Covariant natural UV cutoff →

Oscillations in inflationary predictions for CMB