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Abstract. There are competing schools of thought about the question of
whether spacetime is fundamentally continuous or discrete. Here, we consider
the possibility that spacetime could be simultaneously continuous and discrete,
in the same mathematical way that information can be simultaneously
continuous and discrete. The equivalence of continuous information and discrete
information, which is of key importance in signal processing, is established by
the Shannon sampling theory: for any band-limited signal, it suffices to record
discrete samples to be able to perfectly reconstruct it everywhere, if the samples
are taken at a rate of at least twice the band limit. It is known that physical fields
on generic curved spaces obey a sampling theorem if they possess an ultraviolet
cutoff. Most recently, methods of spectral geometry have been employed to
show that also the very shape of a curved space (i.e. of a Riemannian manifold)
can be discretely sampled and then reconstructed up to the cutoff scale. Here,
we develop these results further and also consider the generalization to curved
spacetimes, i.e. to Lorentzian manifolds.
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1. Introduction

A well-known gedanken experiment based on general relativity and the uncertainty principle
indicates that the notion of distance loses operational meaning at scales below the Planck length
of 10−35 m: assume that distances could be resolved with an uncertainty 1x that is smaller than
the Planck length. The resulting momentum uncertainties 1p imply, via the Einstein equation,
that there are curvature uncertainties. These then would be large enough to prevent distances
from being knowable with an uncertainty as small as 1x .

Due to the continuing lack of experiments that can reach the Planck scale, it is not yet
known how the structure of spacetime at the Planck scale is to be described in the much-
sought-after theory of quantum gravity. It is only clear that from some larger length scale,
lQFT, onwards, the fundamental quantum gravity theory must reduce to quantum field theory
(QFT) on curved continuous spacetimes. In fact, the success of inflationary cosmology indicates
that the length scale lQFT at which QFT on curved space emerges from quantum gravity is
likely to be at most about five orders of magnitude larger than the Planck length. This is
because successful predictions of inflationary cosmology hinge on the assumption that QFT
holds on curved spacetime for length scales as small as the Hubble radius during inflation,
which, evidence indicates, was likely to be only about five or six orders of magnitude larger
than the Planck length.

The closeness of the Planck scale and the scale of the Hubble radius during inflation
makes it conceivable that future precision tests of inflation, e.g. by measuring the B-polarization
spectrum of the cosmic microwave background, could eventually provide experimental data
against which to test theoretical models of spacetime at the Planck scale. To obtain predictions,
it is of great interest, therefore, to explore the range of theoretical possibilities for the short-
distance structure of spacetime.

2. Candidate spacetime structures

There are two basic theoretical possibilities. One is that spacetime is ultimately correctly
described as a continuous manifold, as in string theory, and the other would be that spacetime
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is fundamentally discrete (see e.g. [1]). But are there other possibilities for the structure of
spacetime?

The first possibility that we will now briefly consider (for completeness) is probably
not realistic. But the example is perhaps instructive nevertheless, since it shows how quickly
the above question leads one to the deepest levels of mathematics. Namely, let us consider
the possibility that spacetime possesses an intermediate short-distance structure, in between
continuous and discrete. Concretely, we ask whether perhaps spacetime could ultimately be
mathematically described as a set of points (or events) whose cardinality is in between countable
infinity and continuous infinity. This question leads us indeed to the very heart of mathematics,
namely the incompleteness results of logic: recall that Cantor had hypothesized that there
cannot exist any set of cardinality between countable and continuous infinity. Gödel and
Cohen [2, 3] then showed that Cantor’s continuum hypothesis (CH) is a concrete example that
demonstrates the fundamental incompleteness of mathematical theories: CH is neither provable
nor disprovable within standard (i.e. ZF) set theory. Of relevance for physical theories is the
implication that it is therefore impossible to construct a set of intermediate cardinality in any
explicit way. This is because otherwise CH could be disproved, which would contradict Cohen
and Gödel’s finding that CH is independent of the axioms of standard set theory. This makes us
disregard the possibility that spacetime may have a cardinality between discrete and continuous.
In this context, see, however, also [4].

How else, then, could one account for the phenomenon predicted by the gendanken
experiment above, namely the phenomenon that the very notion of distance should lose
operational meaning at around the Planck scale? One possibility is that spacetime is discrete, in
which case there are indeed operationally no physical distances smaller than the lattice spacing.
Another possibility is that spacetime could still be a continuum—and that the notion of distance
loses operational meaning beyond a cutoff length scale because all particles are fundamentally
non-pointlike, i.e. extended objects such as strings or membranes.

Much is known, of course, about both these possibilities, from large bodies of work on
discrete quantum gravity theories on the one hand and string theory on the other. For example,
it is known that in theories that assume spacetime to be discrete, it can be difficult to obtain
a continuous spacetime manifold of fixed dimension in the low energy limit. In theories that
describe spacetime as continuous, such as string theory, 0-dimensional dynamical objects, such
as 0-branes, can re-emerge. Here, we will consider a further possibility that has recently been
suggested [5], namely the possibility that spacetime could be simultaneously continuous and
discrete, in the same mathematical way that information can be simultaneously continuous and
discrete.

3. Sampling theory

The starting point here is Shannon’s sampling theorem [6], which is at the heart of information
theory. This sampling theorem provides the crucial equivalence of continuous and discrete
representations of information and is ubiquitously useful in communication engineering and
signal processing. Concretely, the theorem states that any function (the signal), f (t), whose
frequency spectrum is bounded by some finite value, �, (the bandlimit) can be reconstructed
perfectly for all t from the amplitude samples f (tn) (e.g. a raw music data file) taken at
equidistant sample points tn if their spacing δt := tn+1 − tn is at most (2�)−1,

f (t)=

∑
n

sinc(2(t − tn)�) f (tn). (1)
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Note that the accuracy of the reconstruction of the continuous signal f is limited only by the
accuracy with which the samples f (tn)were taken. There is a vast body of literature on sampling
theory, much of it addressing practical matters such as the effects of lost samples or time and
amplitude measurement inaccuracies, see e.g. [6]. The generalization to multiple dimensions,
via the Cartesian product, is straightforward and allows one to apply sampling theory, for
example, to images. The band limit of an image, e.g. an image made via a telescope, is of
course determined by the aperture. Similarly, sampling theory can be used straightforwardly
to reconstruct any band-limited physical field φ in three-dimensional flat space from samples
φ(xn) taken at a sufficiently dense set of points {xn}. This was first pointed out in [7], where it
was shown that this case is implied by a minimum length uncertainty principle that arose from
general studies of quantum gravity and from string theory.

Regarding the application of sampling theory in physics, the two key questions then are:
how can sampling theory be generalized to fields on curved spaces, and on curved spacetimes;
and can one also develop a sampling theory for curved spaces and curved spacetimes
themselves? The latter should be a sampling theory that allows one, from the knowledge of
suitable samples taken at discrete points of a curved manifold, to reconstruct the very ‘shape’ of
the manifold, except for structure (or ‘wrinkles’) that are smaller than the cutoff scale. Manifolds
that differ only by wrinkles that are smaller than the cutoff scale would not be physically
distinguishable and should presumably represent the same spacetime. Our aim now is to collect
the partial answers that have been reached so far and then to extend the theory.

Let us begin by considering the underlying principle that allows one in certain
circumstances to do the seemingly impossible, namely to perfectly reconstruct a continuous
function from samples of its amplitudes taken at a discrete set of points. To this end, consider
first the case of an N -dimensional function space, F , spanned by some generic basis functions
{bi(x)}i=1...N . Then, all functions f ∈ F obey f (x)=

∑N
i=1 λi bi(x) for some {λi}. For the

functions in any such finite-dimensional function space, F , there automatically holds a sampling
theorem: assume that for a function f ∈ F only its amplitudes an = f (xn) are known for
n = 1, . . . , N at N generically chosen points xn. Thus, we have

f (xn)= an =

N∑
i=1

λi bi(xn). (2)

Then, equation (2) generally allows one to determine the coefficients λi and therefore f (x)
for all x . This is because for generic basis functions, {bi}, and generic sample points {xn}, the
determinant of the N × N matrix, B, defined through Bn,i := bi(xn) for i, n = 1, . . . , N is non-
vanishing and the matrix is therefore invertible. We obtain λi =

∑N
j=1 B−1

i j a j and therefore

f (x)=

N∑
n=1

f (xn)G(xn, x) for all x . (3)

Here, the so-called reconstruction kernel, G, reads G(xn, x)=
∑N

i=1 B−1
ni bi(x). Sampling

theorems for infinite-dimensional function spaces, such as Shannon’s in equation (1), rely on the
same principle, although proving them using this method is more subtle. First, we truncate the
function space to finite dimensions, where a sampling theorem holds by this general principle,
and we then carefully take the limit in which the truncation is removed.

Of course, instead of using the general principle in this way, one could easily prove
equation (1) using Fourier theory, as textbooks on sampling theory usually do. However, Fourier
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theory will not be general enough for our purposes. For example, Fourier theory does not
naturally generalize to non-equidistantly taken samples and to curved spaces.

Let us collect important features of sampling theory. From the general principle it is clear
that samples need not be taken equidistantly because all that is required is that the determinant
of B is non-zero. Indeed, also for the case of the infinite-dimensional space of �-band-limited
functions, it is known that perfect reconstruction from non-equidistant samples is possible—
as long as the sample points’ average density, technically the Beurling density, is at least 2�.
The general principle also indicates that the reconstruction may become numerically instable,
however, e.g. when the determinant of B becomes very small. Indeed, in the case of the
infinite-dimensional space of band-limited functions, the reconstruction of f from samples
f (tn) becomes numerically less and less stable as the samples are taken more and more non-
equidistantly. The reconstruction can be shown to be most stable, i.e. least sensitive to numerical
errors in the sample values, when the samples are taken equidistantly. Of interest will also
be the fact that whenever sampling theory applies, there is a strict equivalence of integration
and summation: for example, for equidistantly sampled �-band-limited functions, one has∑

n φ(tn)ψ(tn)= 2�
∫

dt φ(t)ψ(t). This fact has been used, for example, to evaluate hard-to-
sum series (e.g. in analytic number theory): view the terms of the series in question as samples of
band-limited functions, rewrite the series as an integral and then apply powerful integration tools
such as integration by parts or contour integration (that would otherwise not have counterparts
in the theory of series). Analogous sampling-theoretic tools may be useful in quantum gravity,
for example, to turn series into analytically easier-to-handle integrals or to turn integrals into
numerically easier-to-handle series.

4. Overview: sampling theory in physical theories

The idea that physical fields could possess the sampling property, i.e. that they could be
reconstructed everywhere from merely discretely taken samples, was first proposed in [7].
There, it was also shown that the fields of any theory naturally acquire the sampling property
if, in the language of first quantization, the uncertainty relations are modified in the ultraviolet
(UV) so that there is formally a finite lower bound, 1xmin, on the uncertainty in position. Such
uncertainty relations have indeed arisen in various studies of quantum gravity and string theory
(see e.g. [8, 9]).

In the simplest case, a physical theory on flat space contains a bandwidth-type natural
UV cutoff, i.e. the fields do not contain wavelengths shorter than say the Planck length. The
theory’s fields, equations of motion and actions, which live on a continuous space, are then
determined everywhere from their samples on a sufficiently dense lattice. In fact, as in Shannon
sampling, the theory can be formulated on any lattice whose average spacing is tight enough
(i.e. at the cutoff length scale). Since no sampling lattice is preferred, external symmetries, such
as possible Killing vector fields, need not be broken by the discretization. This of course also
follows directly from the fact that the theory is, via sampling theory, equivalent to a theory
whose fields live on a continuum.

This finding is of interest also in the context of work on the possible effects of quantum
gravity on spacetime symmetries. For example, with the mathematical discovery of quantum
groups, it has long been suggested that Planck scale effects could slightly deform external
and/or internal Lie group symmetries in field theories into quantum group symmetries. In
fact, generalized uncertainty relations that arose from quantum group symmetric Heisenberg
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algebras led to the first examples of sampling-theoretic cutoffs [9]. Also, for example, in [10]
it was shown that Planck scale physics could affect the propagation of light by making the
vacuum a medium with helicity-dependent dispersion. This would lead to potentially observable
effects whose scale could be bounded, for example, by precision measurements of gamma-ray
bursts. If spacetime exhibits a band limitation at the Planck scale, then this too could lead to
observable effects, e.g. in the cosmic microwave background’s B-polarization, as we will discuss
below [11]. It has also been suggested [12] that the degrees of freedom that are being cut off by
the band limitation may re-emerge as the internal degrees of freedom of gauge theories. The idea
is that the gauge principle expresses the non-observability of spatial structure below the cutoff
scale. This idea is supported by the observation that, on general functional analytic grounds,
the family of optimal lattice discretizations in sampling theory is necessarily parametrized by
unitary groups [12]. Further, a key question is of course whether quantum gravity effects break
local Lorentz invariance. In [13], it was pointed out how an observer-independent preferred
length scale can be consistent with local Lorentz invariance. Also, the sampling-theoretic cutoff
can be covariant, e.g. if the spectrum of the d’Alembertian is cut off, since the d’Alembertian
is a scalar operator. In the spacetime covariant case, there is no shortest wavelength, of course.
However, as was shown in [15], modes of wavelengths that are much shorter than the Planck
length are dynamically effectively frozen since their temporal bandwidth is exceedingly small.
The Lorentz contraction of a mode’s spatial wavelength and the time dilatation of a mode’s
temporal bandwidth together make this phenomenon covariant. Clearly, more research on the
possible effects of quantum gravity on local external and internal symmetries is needed.

Note that in our discussion of sampling theory so far, we have discussed mostly the case of
flat space, disregarding time, and that we have not been concerned with spacetime covariance
yet. As the next step, let us now consider the introduction of curvature, i.e. covariant sampling
theory on curved spaces (not spacetimes). This includes the case of Wick-rotated spacetimes
and, for example, also spacelike hypersurfaces in cosmology.

In this case, the UV cutoff, i.e. the ‘band limitation’ for fields, takes the form of a natural
UV cutoff for the spectrum of the canonical scalar differential operator on the manifold, the
Laplacian: the space of physical fields is assumed to be spanned by only those eigenfunctions
of the Laplacian whose eigenvalues are below the UV cutoff value, which may be taken to be at
the Planck scale, for example.

It has been shown that fields on generic curved backgrounds, i.e. on Riemannian manifolds,
which are band limited in this sense, indeed can be precisely reconstructed everywhere,
merely from the knowledge of the field’s amplitude samples on an arbitrary lattice—if the
average spacing of the lattice is at the UV cutoff scale. The proof strategy is based on
the principle underlying sampling theory that we discussed above. Concretely, on generic
compact Riemannian manifolds, this covariant space of band-limited functions possesses a finite
dimension, N . By the general principle, this dimension, which depends on the volume of the
manifold, is also the number of sample points required for the reconstruction of fields. The
limit N → ∞ was then studied and, under mild assumptions, it was shown that, as the volume
of the compact Riemannian manifold is made to grow, the number of sample points required
to perfectly reconstruct a field asymptotically increases proportionally [14]. This means that a
finite density of samples indeed suffices also in the large volume limit.

The sampling-theoretic natural UV cutoff for fields on curved space has been applied to
the relatively simple case of the spacelike hypersurfaces in inflationary cosmology. Possible
signatures in the scalar and tensor spectra of the cosmic microwave background have been
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calculated and discussed (see e.g. [11]). In this work, the UV cutoff (i.e. the bandwidth) was
implemented on the individual spacelike hypersurfaces through the generalized uncertainty
principle. Work on inflation with fields that obey a fully spacetime-covariant sampling-theoretic
natural UV cutoff is in progress.

For sampling theory to become a useful mathematical tool, not only for QFT on curved
space but also for quantum gravity, sampling theory needs to be generalized so that it applies
not only to fields on fixed backgrounds but also to space and spacetime itself. To this end, it
has been shown in [5] that, under certain conditions and under the assumption of the sampling-
theoretic natural UV cutoff on the spectrum of the Laplacian, also the shape of a curved space,
i.e. of a Riemannian manifold, can be reconstructed—up to structures that would be smaller than
the UV cutoff scale. Under the assumption of the sampling-theoretic natural UV cutoff, curved
spaces are physically indistinguishable if they differ only on scales smaller than the cutoff scale.

We will review this finding below and we will here then derive the explicit reconstruction
formulae for curved spaces and the fields on them. We will also take first steps towards the
generalization of sampling theory to the sampling and reconstruction of curved spacetimes, i.e.
Lorentzian manifolds.

5. Sampling theory of fields

Let us now consider in detail the generalization of sampling theory to physical fields in curved
Euclidean-signature spacetimes, such as the fields that are being summed over in the path
integral of Euclidean QFT [14, 15].

To this end, consider a spacetime described by a compact smooth Riemannian manifold.
For simplicity, we assume that it has no boundary. For the covariant inner product of fields
on the manifold, we use the usual bra–ket notation inspired by first quantization: (φ|ψ)=∫

dd x
√

|g| φ(x)ψ(x), so that one has, for example, φ(x)= (x |φ). We use the sign convention
in which the spectrum of the Laplacian is positive and we choose c = h̄ = G = 1. The Laplacian
is self-adjoint, with 1vλi = λivλi . Since the Laplacian’s inverse is compact, the eigenvalue
problem is solved by normalizable eigenfunctions with discrete eigenvalues that do not possess
an accumulation point. As already mentioned, the generalization of the assumption of band
limitation is the assumption that there exists a natural hard UV cutoff, 3, of the spectrum of
the Laplacian, with 3, for example, at the Planck scale. In QFT, the space of fields, F , which
is being integrated over in the path integral, is then spanned by the eigenfunctions vλi of the
Laplacian whose eigenvalues, λi , are below the cutoff, λi <3. Let P denote the projector onto
F and let us denote the Laplacian restricted to F by 1c =1|F . The fields |φ) ∈ F that occur
in the path integral obey φ(x)= (x |φ)= (x |P|φ). This means that the point-localized fields
|x) are now indistinguishable from the fields P|x) in which wavelengths shorter than the cutoff
scale are removed. Intuitively, this expresses a minimum length uncertainty principle.

How then does sampling theory arise? Since the Laplacian’s spectrum does not possess
accumulation points, the dimension, N , of the space of fields is finite, dim(F)= N . By the
general principle underlying sampling theory it is clear that, therefore, any field φ(x) ∈ F can
be perfectly reconstructed everywhere if known only on N generic points of the manifold.
The fields, actions and equations of motion therefore possess a representation on the smooth
spacetime manifold as well as equivalently also on any lattice of N generic points. Now, if the
volume, V , of the manifold is increased, then also the number, N , of eigenvalues below the
cutoff increases. This is clear because as the manifold is extended to infinite size, the spectrum
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of the Laplacian has to become continuous. The key question therefore is how fast does the
dimension N increase as a function of the volume? If it increases linearly, we maintain a
sampling theorem because then a finite ratio of N/V , i.e. a finite density of sampling points
suffices to reconstruct the band-limited fields on the manifold. Indeed, under mild conditions,
Weyl’s asymptotic formula implies that as the infrared (IR) cutoff is removed by letting the
volume of the manifold diverge, V → ∞, one has that N → ∞ proportionally, i.e. such that the
density of samples necessary for reconstruction, N/V , indeed stays finite [14].

6. Sampling theory of spacetimes

Assuming the natural hard UV cutoff above, is it possible to reconstruct also the very shape
(curvature and global topology) of a Euclidean-signature spacetime from suitable samples taken
at a discrete set of points?

In order to address this question, let us recall that, while it is not necessary, it is often
convenient for the purpose of terminology and intuition to think of a Riemannian manifold as
being embedded. This is because one may then visualize its curvature as a ‘shape’. Let us adopt
this intuitive terminology for Riemannian and, in a looser sense, also for Lorentzian manifolds,
while keeping in mind that the purpose of the terminology is only to aid intuition. We will not
actually mathematically embed the manifolds.

In this terminology, what we call a spacetime’s ‘shape’ is usually best described in terms of
the affine connection and/or the metric tensor. It is possible, however, to describe a manifold’s
shape also by different means. Let us recall a comment by Einstein [16], who pointed out that
the non-trivial shape of a manifold manifests itself not only in the non-triviality of the parallel
transport of tensors. Crediting Helmholtz, Einstein emphasized that the shape of a manifold
can also be thought of in terms of the non-triviality of the mutual distances among points: in
d-dimensional flat space, consider M points. In the Cartesian coordinates, the points possess
Md coordinates x (n)i with n = 1, . . . ,M and i = 1, . . . , d. By Pythagoras, the M(M − 1)/2
mutual distances sn,n′ obey the equations s2

n,n′ =
∑d

i=1(x
(n)
i − x (n

′)

i )2. If M > 2d + 1, the Md
coordinates can be eliminated in these M(M − 1)/2 equations, to leave M(M − 1)/2 − Md
non-trivial equations that must hold among the mutual distances sn,n′ if the manifold is indeed
flat. If the manifold is curved, this manifests itself in the way in which these equations are
violated.

For example, let us consider a curved manifold, say of two dimensions, of some finite
size. Choose some N more or less evenly spread out points on the manifold and record a
table of their mutual geodesic distances (assuming, for simplicity, their uniqueness). Then,
generically, knowledge of this table of distances alone should suffice to reconstruct a skeleton
of the manifold. While that skeleton captures the shape of the manifold on large scales, it of
course leaves the shape undetermined in between the discrete points.

As we will discuss later, this approach should apply not only to Riemannian but also to
Lorentzian manifolds. Given a table of invariant distances between N events, a type of skeleton
of the ‘shape’ of the Lorentzian manifold would be determined. As we will discuss later, this
approach could open up new methods for the spectral geometry of Lorentzian manifolds. Recall
that Lorentzian spectral geometry is notoriously hard because of the hyperbolic nature of the
d’Alembertian as opposed to the elliptic Laplacian.

For now, let us continue with the case of Riemannian manifolds. It is clear that, in
a quantum theory, the measurement of geodesic distances may not be practical, unique or
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well defined. Let us therefore consider replacing the notion of geodesic distance with a
different notion of distance that is adapted to quantum field theories. Namely, let us measure
the ‘distance’ between points through the amplitude of the correlator, i.e. of the two-point
function. Intuitively, the correlator of two points is a measure of distance because, quantum
field theoretically, it is a measure of vacuum entanglement, which drops with distance. The
same conclusion is reached, of course, when the correlator is interpreted in terms of the heat
equation.

We will now investigate how to reconstruct the shape of a Euclidean-signature spacetime
of finite volume by sampling at a sufficient number, N , of generic points the propagator, or
correlator, G(x (n), x (n

′))= (x (n)|P(1+ m2)−1 P|x (n
′)) of a scalar field for each pair of the N

chosen points. Generally, the larger the distance between x (n) and x (n
′), the smaller is the

correlator. Indeed, with caveats that we will discuss below, the knowledge of the N (N − 1)/2
matrix elements G(x (n), x (n

′)) suffices to reconstruct the shape of the spacetime up to the
UV cutoff scale. To see this, we note first that the matrix (G(x (n), x (n

′)))nn′ represents the
correlator, (1c + m2)−1, in a basis, namely the basis {P|x (n))}, which means that we can
determine its eigenvalues, as we will explicitly work out in the following section. Since the
correlator is diagonal in the same basis as the Laplacian 1c, we also obtain the spectrum
of 1c. (Also in interacting theories the Laplacian’s spectrum can be calculated because the
functional dependence of the correlator on 1c is still determined by the action.) Crucially now,
the eigenvalues of 1c largely determine the shape of the spacetime, from large length scales
down to the cutoff scale.

To see this, let us recall key results of the discipline of spectral geometry. Spectral
geometry investigates the relationship between the shape of a manifold (or its domain) and
the spectrum of its Laplacian or Dirac operator. Note that spectral geometry thereby naturally
combines functional analysis and differential geometry, i.e. the mathematical languages of
quantum theory and general relativity. It is a simple fact, of course, that isometric manifolds
are isospectral, i.e. that their Laplacians possess identical spectra. The discipline of (‘inverse’)
spectral geometry is concerned with the non-trivial converse, namely with the study of the
extent to which the spectra of manifolds determine their metrics. It is believed that the spectra
largely determine the shape of a manifold, except for special circumstances. Indeed, special
counterexamples are known. Applied to the case of vibrating membranes, for example, this
means that ‘one cannot always hear the shape of a drum’ (see e.g. [17]). Even pairs of isospectral
but non-isometric manifolds that are compact and simply connected have been constructed [18].
It is known, however, that the eigenvalues do indeed change continuously as a function of the
shape of the manifold. Also, the eigenvalues are nondegenerate for generic manifolds, and a
manifold can have degenerate eigenvalues only if it possesses a continuous group of isome-
tries [19]. Below, we will discuss the question of the uniqueness of inverse spectral geometry
further.

For our purposes, since we assume an UV cutoff, we are led to consider classes of
manifolds whose Laplacians share the same eigenvalues (and their multiplicities) only up
to the cutoff 3 and which we may therefore call 3-isospectral. Indeed, the samples of the
matrix elements of the correlator, (G(x (n), x (n

′)))nn′ , determine only the N eigenvalues of
the Laplacian 1c. The eigenvalues that the full Laplacian, 1, possesses beyond the cutoff
remain undetermined. This shows us what the UV cutoff means for the shape of spacetime
itself. The cutoff does not directly imply a cutoff for the curvature, for example. Instead,
the fact that the eigenvalues of the Laplacian beyond the cutoff remain undetermined by any
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measurement possible means that all 3-isospectral manifolds are physically indistinguishable
and are therefore to be placed into one equivalence class.

In order to adopt an unambiguous terminology, let us use the term ‘spacetime with
UV cutoff’, specified by N eigenvalues, λ1 6 · · ·6 λN <3, to describe the corresponding
equivalence class of 3-isospectral manifolds.

In this context, let us note an interesting detail. First, consider functions on a fixed
background manifold. For these functions, wavelength and amplitude are separate properties.
For example, there are functions that describe waves that have short wavelength but large
amplitude. The situation is different for wrinkles of curvature in the underlying space itself.
For wrinkles in a Riemannian manifold, wavelength and amplitude are not separate properties.
If the ‘amplitude’ of a short-wavelength wrinkle is made to grow, that wrinkle acquires a long
wavelength.

Now in spectral geometry, the higher the eigenvalues of the Laplacian, the higher the
‘squared momentum’ that they represent and, intuitively, therefore the smaller the wrinkles that
they determine in the manifold. We expect that the eigenvalues up to 3 can only determine the
shape of a spacetime with UV cutoff from large scales down to lengths as small as the cutoff
scale. The undetermined eigenvalues beyond the cutoff would describe wrinkles on length scales
smaller than the cutoff scale. At distances smaller than the cutoff scale, the shape of a spacetime
with UV cutoff is not determined.

This can be viewed in terms of representation theory. In general relativity, the choice
of the coordinate system is merely a choice of representation for an underlying Riemannian
manifold. With the UV cutoff, even the choice of Riemannian manifold is merely a choice of
representation for an underlying ‘spacetime with UV cutoff’ that is defined through the first N
eigenvalues of the Laplacian.

The complete picture is more subtle, however. A theory may contain additional fields with
interactions that allow one to physically distinguish among certain 3-isospectral manifolds.
At the very least, we will have to divide each equivalence class of 3-isospectral manifolds into
sub-equivalence classes of manifolds that are continuously deformable into each other within
their class of3-isospectral manifolds. This is because at least for those subclasses, and possibly
also for sub-subclasses within them, we can define what we may call ‘geometric quantum
numbers’ that distinguish them and that could be measurable in the full theory.

For example, parity and the dimension of the manifold can be viewed as a geometric
quantum number. The dimension is measurable, e.g. through interactions involving tensors
(whose dimensions indicate the manifold’s dimension). Indeed, 3-isospectral manifolds of
different dimensions cannot be continuously deformed into another [19]. Note that the scaling of
the Laplacian’s spectrum for asymptotically large eigenvalues is in one-to-one correspondence
to the manifold’s dimension [20]. It should be interesting to study the set of possible geometric
quantum numbers, and their relationship to cohomology, by methods similar to those used to
construct isospectral non-isometric manifolds (see e.g. [18]).

A ‘spacetime with UV cutoff’ is, therefore, an equivalence class of manifolds that are
3-isospectral and possess the same geometric quantum numbers. An intriguing possibility is
that it may not be necessary to keep track of geometric quantum numbers as variables that
are separate from the spectrum after all, namely when working with the Laplacians on general
tensors, including the Laplacian dδ + δd on all differential forms, and the Dirac operator. Their
spectra may well include all information about the geometric quantum numbers. We will further
develop this issue in section 8.
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7. Explicit sampling of fields and manifolds

Let us now develop the sampling theory for both spacetime and field, for the case of the
Laplacian on 0-forms. The generalization to Laplacians on all tensors and the Dirac operator
should be possible with the same strategy. The procedure was first outlined in [5]. Here, we
explicitly carry out this programme.

In our framework, a (compact, Euclidean-signature) spacetime with UV cutoff is specified
by the eigenvalues λ1, . . . , λN of 1c (and possibly by geometric quantum numbers and/or by
the spectra of further differential operators). A field, |φ), on the spacetime is a vector in the
N -dimensional Hilbert space on which 1c acts, conveniently specified through its coefficients
φi in an ON eigenbasis {|vλi )} of 1c, as |φ)=

∑N
i=1 φi |vλi ). Now consider a continuous

representation of the spacetime as a manifold that possesses the specified geometric quantum
numbers, such as the dimension, and whose Laplacian on 0-forms,1, possesses the spectrum of
1c up to 3. After we choose coordinates, the abstract eigenvectors of 1c are then represented
as eigenfunctions vλi (x) of 1. For example, the field φ is represented by the function φ(x)=∑N

i=1 φivλi (x).
Because of the presence of the UV cutoff, both the continuous field and the underlying

spacetime possess completely equivalent discrete representations as well. We obtain such a
lattice representation by choosing any N generic points x (1), . . . , x (N ) at which we sample and
record the matrix of correlators G(x (i), x ( j)) and the field’s amplitudes φ(x (i)). Crucially then, a
sampling theorem holds: from these data sampled at discrete points one can fully reconstruct the
λ1, . . . , λN and φ1, . . . , φN , which, as we saw, specify the abstract spacetime and field, which
in turn possess continuous representations as Riemannian manifolds and continuous functions
on them.

Concretely, assume that the matrix C̃ of correlators for the cutoff Laplacian 1c = P1P
for all pairs of the discrete sample points x (i) is explicitly known,

C̃i j :=

(
x (i)

∣∣∣∣P
1

1+ m2
P

∣∣∣∣ x ( j)

)
. (4)

Recall that the projector P onto the subspace of physical fields, i.e. onto the space of band-
limited fields, is given by P =

∑N
i=1 |vλi )(vλi |. Thus

C̃i j =

N∑
a,b=1

(x (i)|vλa)

(
vλa

∣∣∣∣ 1

1+ m2

∣∣∣∣ vλb

)
(vλb |x

( j)) (5)

= EiaCab E†
bj . (6)

In the last line, we defined an as yet unknown matrix E with the matrix elements Eia :=
(x (i)|vλa) and an as yet unknown diagonal matrix C with the matrix elements Cab := λaδab.
We adopted the Einstein summation convention. What we are after first is the reconstruction of
the spectrum of 1c, i.e. of the eigenvalues of C . First, we find

C = E−1C̃ E†−1
. (7)

Also, for the given discrete set of points {x (i)}, let us assume explicitly given the inner products
between the vectors |x (i)) that represent these points. Because of the UV cutoff, the matrix of
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these inner products, B̃, has the matrix elements

B̃i j := (x (i)|P|x ( j)) (8)

=

N∑
r=1

(x (i)|vλr )(vλr |x
( j)) (9)

= Eir E†
r j . (10)

We therefore have E−1 B̃ = E†, and thus

E†−1
= B̃−1 E . (11)

With equation (7), this finally yields

C = E−1C̃ B̃−1 E . (12)

Recall that we assume that the matrices B̃ and C̃ are explicitly known, from the lattice
formulation of the theory. In equation (12), due to the adjoint action of E , the characteristic
polynomials of C and C̃ B̃−1 agree. This means that by diagonalizing the known matrix C̃ B̃−1,
we obtain, on the one hand, the matrix E , with Enj = (x (n)|vλ j ), of the diagonalizing change of
basis. On the other hand, we obtain the spectrum of the diagonalization, C . The spectrum of C
then, of course, easily yields the spectrum of 1c, because both are diagonal in the same basis.

Let us note that, interestingly, if there are two or more scalar fields in the theory, the
spectrum of 1c can be reconstructed from lattice data by a second method that does not require
knowledge of the matrix B of position overlaps: if there are two scalar fields of different
masses m and M , for example, we can assume known for a set of N discrete points {x (i)}N

i=1

the correlator matrix C̃ and also the correlator matrix D̃ with matrix elements

D̃i j :=

(
x (i)

∣∣∣∣P
1

1+ M2
P

∣∣∣∣ x ( j)

)
. (13)

We have

C̃ = EC E†, D̃ = E DE†. (14)

Here, C and D are the matrices of the diagonalizations of 1/(1c + m2) and 1/(1c + M2),
respectively, as before. We have C = E−1C̃ E†−1 and D = E−1 D̃E†−1, and therefore D̃−1 E D =

E†−1. Thus

C = E−1C̃ D̃−1 E D. (15)

Since D−1
= C−1 + M2

− m2, this yields C = E−1C̃ D̃−1 E(C−1 + M2
− m2)−1 and therefore,

finally,

(1 + (M2
− m2)C)= E−1C̃ D̃−1 E . (16)

Equation (16) shows that by diagonalizing the known matrix C̃ D̃−1, we can obtain the
diagonalizing matrix E , the spectrum of C and therefore the sought-after spectrum of 1c. Note
that we recover the first reconstruction method for the spectrum of 1c, which used only one
scalar field, by letting M → ∞. This is because in this limit D̃ → B̃.

Now in order to reconstruct also the continuous field 8, we need to calculate the
coefficients φ j = (vλ j |φ). To this end, we insert a resolution of the identity in (x (n)|φ)=∑N

j=1(x
(n)

|vλ j ) (vλ j |φ), i.e. φ(x (n))=
∑

j Enj φ j . Since the φ(x (i)) are known samples, we
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obtain φi =
∑

j(Ei j)
−1 φ(x ( j)). Thus, from the samples of field amplitudes and correlators,

we have obtained the spacetime in terms of the eigenvalues of its Laplacian 1c and the field
as a vector in the N -dimensional vector space on which 1c acts. At this point, we are free to
represent the abstract spacetime by the same or any other member of its equivalence class of
3-isospectral manifolds, choose coordinates and express the field as an explicit function. The
choice of real-valued orthonormalized eigenfunctions, while normally ambiguous up to a factor
of −1, is here fixed by continuity. The formalism establishes, therefore, an equivalence between
discrete and continuous representations of spacetimes and fields.

8. Extending spectral geometry

Our use of spectral geometry so far has been limited to the use of the Laplacian on 0-forms. Let
us now investigate under what circumstances, for the purpose of inverse spectral geometry and
sampling theory, the spectrum of the Laplacian on 0-forms should be augmented by the spectra
of other differential operators, such as the Dirac operator or Laplacians on tensors. This will
yield a possible strategy for developing inverse spectral geometry further. The key idea is to
consider the spectral geometry of infinitesimal changes to both the spectrum and the shape of a
manifold. The advantage of considering infinitesimally small changes to the shape of a manifold
lies in the fact that these small shape changes can be parameterized in terms of functions on the
manifold. This means that the shape changes can be described within the function space of the
manifold and therefore within the framework of the sampling theory of functions, rather than
the more difficult (because nonlinear) sampling theory of manifolds.

To this end, consider an arbitrary compact Riemannian manifold, (M, g), and the spectrum,
{λi}

∞

i=0, of its Laplacian on 0-forms. If we infinitesimally perturb the manifold, this entails an
infinitesimal change to its spectrum. In the simplest case, we may describe a small deformation
of the manifold by specifying a scalar field, ϕ, on the manifold, in the same way that the
deformation of the membrane of a drum, when played, can be specified by a scalar amplitude
field, φ. The scalar field φ that describes the deformation of the manifold can then be expanded
canonically in terms of the eigenfunctions of the Laplacian on 0-forms. This means that the
small deformation of the manifold is specified by a sequence of small scalar numbers {ϕi}

∞

i=1,
namely the coefficients of ϕ in the Laplacian’s eigenbasis. The corresponding small change in
the spectrum of the Laplacian on 0-forms is described by a sequence of small numbers {1λi}

∞

i=0.
Clearly, the sequence {ϕi}

∞

i=1 determines the sequence {1λi}
∞

i=0, because the metric determines
the spectrum. But does {1λi}

∞

i=0 determine the sequence {ϕi}
∞

i=1?
To address this question, it will be useful to implement the UV cutoff. This is because, in

this case, the two sequences {1λi}
∞

i=0 and {ϕi}
∞

i=1 are truncated to only the first N elements.
The question is then translated into the question of whether the map, τ , which maps {ϕi}

N
i=1 to

{1λi}
N
i=0 is invertible (at the origin). Indeed, generically, we may expect τ to be invertible, as

we have a map from RN into RN and the determinant of the Jacobian has no obvious reason to
vanish.

An important fact, however, is that only the simplest deformations of a Riemannian
manifold can be described through a scalar function. For example, in cosmology, small
deformations of spacelike hypersurfaces of spacetime, away from flatness, are described in
terms of scalar, vector as well as tensor fluctuations of the metric, i.e. in terms of scalar, vector
and tensor fields. We can expand these fields in terms of eigenfunctions of the Laplacians on
forms and on tensors.
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The fact that the description of a small deformation of a generic Riemannian manifold
requires the specification of not only a scalar function but also, for example, of vector and
tensor functions is important, as becomes clear once we consider the case with a UV cutoff.
This is because, with the UV cutoff, a small deformation of a Riemannian manifold can require
the specification of not just the sequence Ss of coefficients {ϕi}

N
i=1 of a scalar field, but also for

example the sequences Sv and St of coefficients (in Laplacian eigenbases) of vector and tensor
fields. The combined dimension of Ss, Sv and St is clearly much larger than N . This means that
the map τ that maps the small shape deformation into the corresponding small perturbation of
the spectrum, {1λi}

N
i=0, cannot be invertible. Indeed, we now obtain in this way a handle on

how many additional spectra of further differential operators such as the Laplacian on forms
and general tensors and the Dirac operator are needed to enable generic invertibility of the map
τ that maps the metric into the spectra of differential operators. Work in this direction is in
progress [21].

Let us finally also briefly address the question of how this framework of sampling theory
can be extended to Lorentzian manifolds and the fields on them. Indeed, spectral geometry
has been mostly confined to Riemannian manifolds so far because of the fundamental fact that
the d’Alembert operator is hyperbolic in nature, unlike the Laplacian, which is elliptic. As a
consequence, it is non-trivial to suitably discretize the spectrum of the d’Alembertian. But the
discretization of the spectrum is of course necessary to start a programme of spectral geometry
in which a discrete spectrum carries the information about the shape of a manifold. In this
context, let us recall, however, Helmholtz’s argument and our implementation of it above: a table
of the mutual distances between N points reflects the flatness or curvature of the underlying
space. Intuitively, the table of distances allows one to build a skeleton of the manifold that
approximates its shape. Above, we used this idea for the case of Riemannian manifolds by
using the amplitudes of correlators as proxies for the distances between points. In the case of
Lorentzian manifolds, one may sample instead the correlator or propagator between pairs of N
events. Even though the correlator or propagator now provides a proxy for invariant positive
and negative proper squared distances, these too should allow one to build a kind of skeleton
of the manifold that approximates what might be called its shape, i.e. its spacetime curvature.
Interestingly, by this method we arrive, as above in the Riemannian case, at an N × N matrix
for the d’Alembertian. This means that we arrive at a natural cutoff and discretization of the
d’Alembertian’s spectrum. It should be interesting to investigate to what extent this discretized
d’Alembertian can serve as a basis for both the inverse spectral geometry and the sampling
theory for Lorentzian manifolds and the fields in them.

9. Summary and outlook

We have shown that spacetime could be simultaneously continuous and discrete, in the same
way that information can. To this end, we considered the cutting off of the spectrum of the
Laplacian (or d’Alembertian) at an eigenvalue close to the Planck scale. We found that, in
this case, physical theories possess equivalent continuous and discrete representations, and that
external symmetries can be fully preserved. While we made some progress towards adapting
sampling theory and spectral geometry to Lorentzian manifolds, clearly much more work in
this direction is required. Further, it should be very interesting to go beyond the study of the
kinematics and to investigate the dynamics. The first steps were taken in [5] by considering the
number, N , of sample points needed for reconstruction of fields on a compact Riemannian
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manifold with cutoff, and the reconstruction of the manifold itself. N is the number of
eigenvalues of the Laplacian, in the simplest case of the Laplacian on scalar functions, which are
below the cutoff. Interestingly, this number, N , has an expansion in terms of the curvature: N =∫

d4x
√

|g| (c0 + c1 R + O(R2)). Up to corrections that are of higher order in the Planck scale,
this is of the form of the Euclidean Einstein action, i.e. S = (16πc1)

−1 N = (16πc1)
−1T r(1).

Here, before renormalization, c0 is related to the (unrenormalized) cosmological constant3 via
3= c0/16πc1. When there is no curvature, c0 expresses the density of degrees of freedom in
the theory: c0 = N/V with V =

∫
d4x

√
|g|. Curvature then is acquiring a new interpretation.

In addition to expressing the non-triviality of parallel transport, curvature is here seen to be
the local modulation of the density of degrees of freedom in the theory. It should therefore
be possible to re-express also the variational principle as an extremization with respect to the
density of degrees of freedom, or their overall number in a finite volume. In effect, we are
diagonalizing the Einstein action by expressing it in the Laplacian’s eigenbasis. A key challenge
will be to express and investigate also a band-limited formulation of interacting theories of the
standard model in this basis. This will introduce the Dirac operator and generalized Laplacians
on tensors, which nicely fits with our observation in section 8 that the spectra of such operators
are in any case needed to complete the information theoretic description of spacetimes.
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