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Fields in spacetime could be simultaneously discrete and continuous, in the same way that information

can. It has been shown that the amplitudes �ðxnÞ that a field takes at a generic discrete set of points xn can
be sufficient to reconstruct the field �ðxÞ for all x, namely, if there exists a certain type of natural

ultraviolet (UV) cutoff in nature, and if the average spacing of the sample points is at the UV-cutoff scale.

Here, we generalize this information-theoretic framework to spacetimes themselves. We show that

samples taken at a generic discrete set of points of a Euclidean-signature spacetime can allow one to

reconstruct the shape of that spacetime everywhere, down to the cutoff scale. The resulting methods could

be useful in various approaches to quantum gravity.
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At the heart of any candidate theory of quantum gravity
is an attempt to describe the structure of spacetime at the
Planck scale. The problem is hard because general relativ-
ity and quantum theory provide seemingly contradictory
indications. While general relativity describes spacetime as
a manifold, quantum field theories appear to be well de-
fined only if spacetime is discrete.

In this context, it has been proposed that spacetime
could be simultaneously discrete and continuous, in the
same way that information can [1]. The underlying mathe-
matical structure, Shannon sampling theory [2], is at the
heart of information theory and is of ubiquitous use in com-
munication engineering and signal processing. Sampling
theory explains that any signal �ðtÞ with a band limit �
can be reconstructed perfectly for all t from the knowledge
of the samples �ðtnÞ at sample points tn whose average
density (technically, the Beurling density) is at least 2�.
The reconstruction of�ðtÞ is numerically most stable when
the samples are taken equidistantly, with spacing tnþ1 �
tn ¼ ð2�Þ�1, in which case the reconstruction for-
mula reads �ðtÞ ¼ P

nsinc½2ðt� tnÞ���ðtnÞ. For later
reference, we note that then also,

P
n�ðtnÞc ðtnÞ ¼

2�
R
dt�ðtÞc ðtÞ, which is useful to solve hard-to-sum

series (e.g., in analytic number theory): view the terms of
the series in question as samples of bandlimited functions,
rewrite the series as an integral, then apply integration tools
such as integration by parts or contour integration.

The idea that physical fields could possess the sampling
property was first proposed in [1], where it was shown that
fields possess the sampling property if the uncertainty
relations are modified in the ultraviolet so that there is
formally a finite lower bound �xmin on the uncertainty in
position. Such uncertainty relations have indeed arisen in
various studies of quantum gravity and string theory; see,
e.g., [3]. This UV cutoff has then been applied, in particu-
lar, to the spacelike hypersurfaces in inflationary cosmol-
ogy. Possible signatures in the scalar and tensor spectra of
the cosmic microwave background have been calculated;
see, e.g., [4].

Sampling theory of fields.—Let us briefly review the
generalization of sampling theory to physical fields in
curved Euclidean-signature spacetimes, such as the fields
that are being summed over in the path integral of
Euclidean quantum field theory (QFT), [5,6].
To this end, consider a spacetime described by a com-

pact smooth Riemannian manifold. For simplicity, let us
assume it has no boundary. For the covariant inner prod-
uct of fields on the manifold we use the usual bra-ket

notation inspired by first quantization: ð�jc Þ ¼R
ddx

ffiffiffiffiffiffijgjp
�ðxÞc ðxÞ, so that one has, for example: �ðxÞ ¼

ðxj�Þ. We use the sign convention in which the spectrum of
the Laplacian is positive and we choose c ¼ @ ¼ G ¼ 1.
The Laplacian is self-adjoint, with�v�i

¼ �iv�i
solved by

normalizable eigenfunctions with discrete eigenvalues.
The generalization of the assumption of band limitation
is the assumption that there exists a natural hard UV cutoff
� of the spectrum of the Laplacian, with�, for example, at
the Planck scale. In QFT, the space of fieldsF that is being
integrated over in the path integral, is then spanned by the
eigenfunctions v�i

of the Laplacian whose eigenvalues �i

are below the cutoff �i <�. Let P denote the projector
onto F and let us denote the Laplacian restricted to F by
�c ¼ �jF . The fields j�Þ 2 F that occur in the path

integral obey �ðxÞ ¼ ðxj�Þ ¼ ðxjPj�Þ. Notice that this
means that the point-localized fields jxÞ are now indistin-
guishable from the fields PjxÞ in which wavelengths
shorter than the cutoff scale are removed. Intuitively, this
expresses a minimum length uncertainty principle.
Since the Laplacian’s spectrum does not possess accu-

mulation points, the dimension N of the space of fields is
finite, dimðF Þ ¼ N. It was shown that therefore any field
�ðxÞ 2 F can be reconstructed everywhere if known only
on N generic points of the manifold. The fields, actions,
and equations of motion therefore possess a representation
on the smooth spacetime manifold as well as equivalently
also on any lattice of N generic points. Under mild con-
ditions, Weyl’s asymptotic formula was shown to imply
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that as the infrared (IR) cutoff is removed by letting the
volume of the manifold diverge, V ! 1, one has N ! 1
such that the density of samples necessary for reconstruc-
tion, N=V, indeed stays finite [6].

Sampling theory of spacetime.—The aim in this Letter is
to generalize sampling theory to spacetime itself.

Assuming the natural hard UV cutoff above, can the
shape (curvature and global topology) of a Euclidean-
signature spacetime be reconstructed everywhere from
suitable samples taken at a discrete set of points?

For most purposes, a spacetime’s shape is best described
in terms of the affine connection. Here, however, a differ-
ent description appears more useful. Let us recall a com-
ment by Einstein [7], who pointed out that the nontrivial
shape of a manifold manifests itself not only in the non-
triviality of the parallel transport of tensors. Crediting
Helmholtz, Einstein emphasized that the shape of a mani-
fold can also be thought of in terms of the nontriviality of
the mutual distances among points: In d-dimensional flat
space, consider M points. In Cartesian coordinates, the

points possess Md coordinates xðnÞi with n ¼ 1; . . . ;M
and i ¼ 1; . . . ; d. By Pythagoras, the MðM� 1Þ=2 mutual

distances sn;n0 obey the equations s2n;n0 ¼
P

d
i¼1ðxðnÞi �

xðn
0Þ

i Þ2. If M> 2dþ 1, the Md coordinates can be elimi-

nated in these MðM� 1Þ=2 equations, to leave MðM�
1Þ=2�Md nontrivial equations that must hold among the
mutual distances sn;n0 if the manifold is indeed flat. If the

manifold is curved this manifests itself in the way in which
these equations are violated.

Let us try, therefore, to reconstruct the shape of a space-
time of finite volume by sampling at a sufficient number N
of generic points a quantity that is closely related to their
mutual distances. To this end, we sample the propagator, or

correlator,GðxðnÞ; xðn0ÞÞ, of a scalar field for each pair of the
N chosen points. Generally, the larger the distance between

xðnÞ and xðn0Þ, the smaller is the correlator. For a free scalar

we have, e.g., GðxðnÞ; xðn0ÞÞ ¼ ðxðnÞjPð�þm2Þ�1Pjxðn0ÞÞ.
Indeed, the knowledge of the NðN � 1Þ=2matrix elements

GðxðnÞ; xðn0ÞÞ suffices to reconstruct the shape of the space-
time up to the UV-cutoff scale. To see this, we note first that

the matrix ½GðxðnÞ; xðn0ÞÞ�nn0 represents the correlator ð�c þ
m2Þ�1 in a basis, namely, the basis fPjxðnÞÞg, which means
that we can determine its eigenvalues. Since the correlator
is diagonal in the same basis as the Laplacian �c, we also
obtain the spectrum of �c.

Crucially now, the eigenvalues of �c provide us with the
shape of the spacetime from large length scales down to the
cutoff scale. To see this, let us recall key results of the
discipline of spectral geometry which studies the relation-
ship between the shape of a manifold (or domain) and the
spectrum of its Laplacian or Dirac operator. (Note that
spectral geometry thereby naturally combines functional
analysis and differential geometry, i.e., the mathematical
languages of quantum theory and general relativity.) In
particular, isospectral manifolds are generally also isomet-

ric, though there are exceptions. One cannot always ‘‘hear
the shape of a drum’’; see, e.g., [8]. Even pairs of isospec-
tral but nonisometric manifolds that are compact and sim-
ply connected have been constructed [9]. It is known,
however, that the eigenvalues change continuously as a
function of the shape of the manifold. Also, the eigenvalues
are nondegenerate for generic manifolds, and a manifold
can have degenerate eigenvalues only if it possesses a
continuous group of isometries [10].
For our purposes, we are led to consider classes of

manifolds whose Laplacians share the same eigenvalues
(and their multiplicities) only up to the cutoff�, and which
we may therefore call � isospectral. This is because the
samples of the matrix elements of the correlator

½GðxðnÞ; xðn0ÞÞ�nn0 determine only the N eigenvalues of the
Laplacian �c. The eigenvalues that the full Laplacian �
possesses beyond the cutoff remain undetermined. This
tells us what the UV cutoff means for the shape of space-
time itself. The cutoff does not directly mean a cutoff for
the curvature, for example. Instead, the fact that the eigen-
values of the Laplacian beyond the cutoff remain undeter-
mined by any measurement possible means that all
�-isospectral manifolds are physically indistinguishable
and thus equivalent. When referring to a ‘‘spacetime with
UV cutoff,’’ specified by N eigenvalues, �1 � . . . � �N <
�, we will therefore henceforth mean an equivalence class
of �-isospectral manifolds.
Intuitively, the higher the eigenvalues of the Laplacian

the higher the ‘‘squared momentum’’ that they represent,
and therefore the smaller the wrinkles which they deter-
mine in the manifold. The eigenvalues up to � essentially
determine the shape of a spacetime with UV cutoff from
large scales down to lengths as small as the cutoff scale.
The undetermined eigenvalues beyond the cutoff would
describe wrinkles on length scales smaller than the cutoff
scale. At distances smaller than the cutoff scale the shape
of a spacetime with UV cutoff is not determined.
This can be viewed as a matter of representation theory.

In general relativity, the choice of coordinate system is
merely a choice of representation for an underlying
Riemannian manifold. With the UV cutoff, even the choice
of Riemannian manifold is merely a choice of representa-
tion for an underlying ‘‘spacetime with UV cutoff’’ that is
defined through the first N eigenvalues of the Laplacian.
To be precise, however, the picture is slightly more

subtle. A theory may contain additional fields with inter-
actions that allow one to physically distinguish among
certain �-isospectral manifolds. At the very least, we have
to divide each equivalence class of�-isospectral manifolds
into subequivalence classes of manifolds that are continu-
ously deformable into each other within their class of
�-isospectral manifolds. This is because at least for those
subclasses, and possibly also for subsubclasses within
them, we can definewhat we may call ‘‘geometric quantum
numbers’’ that distinguish them and that could be measur-
able in the full theory. Consider, for example, a manifold in
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the shape of a potato’s surface, with N points singled out.
The same N points on the manifold with the shape of the
mirror-imaged potato clearly possess the same correlators.
Thus, the two potato surfaces, similar to enantiomers in
chemistry, are� sospectral. However, if the action contains
a parity-breaking interaction, such as the weak interaction,
then the two manifolds become distinguishable. Apart
from parity, also the dimension of the manifold can be
viewed as a geometric quantum number, measurable, e.g.,
through interactions involving tensors (whose dimensions
indicate the manifold’s dimension). Indeed, �-isospectral
manifolds of different dimensions cannot be continuously
deformed into another [10]. Note that the scaling of the
Laplacian’s spectrum for asymptotically large eigenvalues
is in one-to-one correspondence to the manifold’s dimen-
sion [11]. It should be interesting to study the set of
possible geometric quantum numbers, and their relation
to cohomology, by methods similar to those used to con-
struct isospectral nonisometric manifolds; see, e.g., [9].

A ‘‘spacetime with UV cutoff’’ is, therefore, an equiva-
lence class of manifolds that are � isospectral and possess
the same geometric quantum numbers. An intriguing pos-
sibility is that it may not be necessary to keep track of
geometric quantum numbers as variables that are separate
from the spectrum after all, namely, when working with the
full Laplacian, d�þ �d, on all differential forms, and the
Dirac operator. Their spectra may well include all infor-
mation about the geometric quantum numbers. For ex-
ample, the multiplicity of the eigenvalue 0 of � on p
forms yields the manifold’s pth Betti number [11], and
the largest value of p yields its dimension.

Let us summarize the sampling and reconstruction for
both spacetime and field. Abstractly, a spacetime is speci-
fied by the eigenvalues �1; . . . ; �N of �c. A field j�Þ on the
spacetime is a vector in the N-dimensional Hilbert space
on which �c acts, conveniently specified through its co-
efficients �i in an ON eigenbasis fjv�i

Þg of �c, as j�Þ ¼P
N
i¼1 �ijv�i

Þ. Now consider a continuous representation of

the spacetime as a manifold that possesses the right geo-
metric quantum numbers, such as the dimension, and
whose Laplacian � possesses the spectrum of �c up to
�. Choosing coordinates, the eigenvectors of �c are rep-
resented as eigenfunctions v�i

ðxÞ of �. The field is repre-

sented by the function �ðxÞ ¼ P
N
i¼1 �iv�i

ðxÞ. We obtain a

lattice representation by choosing N generic points

xð1Þ; . . . ; xðNÞ at which we sample and record the matrix

of correlatorsGðxðiÞ; xðjÞÞ and the field’s amplitudes�ðxðiÞÞ.
From these data we can fully reconstruct the �1; . . . ; �N

and �1; . . . ; �N that abstractly define the spacetime and
field. First, the diagonalization of the matrix of correlators
yields the eigenvalues of �c. To obtain the coefficients
�j ¼ ðv�j

j�Þ we insert a resolution of the identity in

ðxðnÞj�Þ¼P
N
j¼1ðxðnÞjv�j

Þðv�j
j�Þ, i.e., �ðxðnÞÞ¼P

jEnj�j.

The change of basis matrix Enj ¼ ðxðnÞjv�j
Þ is known from

the diagonalization of the matrix of correlator samples.

Since the �ðxðiÞÞ are known samples, we obtain �i ¼P
jðEijÞ�1�ðxðjÞÞ. Thus, from the samples of field ampli-

tudes and correlators, we have obtained the spacetime in
terms of the eigenvalues of its Laplacian �c and
the field as a vector in the N-dimensional vector space on
which �c acts. At this point we are free to represent
the abstract spacetime by the same or any other mem-
ber of its equivalence class of �-isospectral manifolds,
choose coordinates, and express the field as an explicit
function. Note that the choice of real-valued orthonormal-
ized eigenfunctions, while normally ambiguous up to a
factor of �1, is here fixed by continuity. The formalism
establishes, therefore, an equivalence between discrete and
continuous representations of spacetimes and fields.
Note that the reconstruction of the spacetime and the

field is possible even when the sample points xn are chosen
close together, possibly leaving large regions without
samples. As mentioned, also in Shannon sampling the
reconstruction from irregularly-spaced samples is possible
but requires increased numerical precision. This can be
understood by considering Shannon’s channel capacity
formula, C ¼ B logð1þ S=NÞ and the phenomenon of
superoscillations [2]. While holding the overall informa-
tion density C fixed, the sample density, or Nyquist rate B,
can be locally lowered, at the cost of needing an exponen-
tially higher signal to noise ratio S=N, which represents the
reconstruction instability. In our case here, we notice that if
the xn are chosen close, the basis vectors PjxnÞ acquire
significant overlap and thus form small angles in the
Hilbert spaceF . Thus, the condition number of the change
of basis matrix E to the ON eigenbasis of �c deteriorates,
indicating the need for increased numerical precision.
A simple example of a partition function.—Consider a

matter action of the form Smatter ¼
R
dnx

ffiffiffiffiffiffijgjp ½12�ðxÞð�þ
m2Þ�ðxÞ þ JðxÞ�ðxÞ�. Representation independently, the
action reads Smatter ¼ 1

2 ð�j�þm2j�Þ þ ðJj�Þ ¼ Tr½12 �ð�þm2Þj�Þð�j þ jJÞð�j�. Representing the action in an
ON eigenbasis of the Laplacian, we have Smatter ¼P

N
i¼1

1
2�ið�i þm2Þ�i þ Ji�i.

The action already contains the degrees of freedom �i,
which describe the shape of the spacetime. However, an
action is still needed for the degree of freedom N, which
describes the overall size of the system. The simplest
choice is Ssize ¼ �N ¼ �Trð1Þ, where � remains to be
determined. We obtain Stotal ¼ Tr½�1þ 1

2 ð�þm2Þj�Þ�
ð�j þ jJÞð�j�. To understand Ssize, let us represent the
spacetime as a manifold. Then, N, being a scalar, is ex-
pressible as an integral over the curvature scalars. Indeed,
in four dimensions, [12]:

N ¼ 1

16�2

Z
d4x

ffiffiffiffiffiffi
jgj

q �
�2

2
þ�

6
Rþ 1

180

�
R���	R���	

� R��R
�� þ 6�R� 5

2
R2

�
þOð��1Þ

�
: (1)

The first term yields a cosmological constant. It implies
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that the average density of sample points needed for the
reconstruction of the field and spacetime obeys N=V ¼
�2=32�2, except for corrections due to the curvature
terms. Curvature can therefore be viewed as a spatial
modulation of the average sample density, or density of
degrees of freedom. The second term in Ssize becomes the
Einstein action after we set � ¼ 6�=�.

We could now represent the spacetimes and fields in the
formal partition function Z½J� ¼ R

e�StotalD½��D½g� as
concrete manifolds and concrete functions on those mani-
folds. This would yield an unwieldy expression whose
evaluation would be plagued, as usual, by the need to
mod out physically equivalent configurations. Alterna-
tively, the sampling-theoretic view suggests working with
the well-defined partition function

Z½J� ¼ X1
N¼1

Z
D½��

�
Z

D½��e�Trðð6�=�Þþð1=2Þð�þm2Þj�Þð�jþjJÞð�jÞ; (2)

which reads in the eigenbasis of the Laplacian

Z½J� ¼ X1
N¼1

1

N!

Z �

0
d�1 . . .

Z �

0
d�N

�
Z 1

�1
d�1 . . .

Z 1

�1
d�N exp

�
� 6�N

�

�XN
i¼1

�
1

2
ð�i þm2Þ�2

i � Ji�i

��
:

Discussion.—Note that we here tentatively assumed that
it is necessary to sum over all discrete spectra (up to �),
irrespective of what type of Riemannian manifold, if
any, they correspond to. Also, in the full theory, there could
be additional terms that induce the cutoff dynamically,
for example [5], (counter-) terms that form a power series
in the Laplacian, ð�jPrcr�

rj�Þ ¼ TrðPrcr�
rj�Þð�jÞ,

whose radius of convergence is �. This removes fields
that contain components beyond the cutoff by letting their
Boltzmann factor vanish. In general, the terms responsible
for the cutoff may of course not be quadratic in the fields.
Further, it may be necessary to handle manifolds with
infinite volume and a continuous spectrum. In this case,
one may rescale �c as N ! 1, to keep its spectrum dis-
crete and therefore indicative of the manifold’s shape.

Since any candidate quantum gravity theory must re-
cover QFT for sufficiently large length scales, we dis-
cussed how the sampling-theoretic natural UV cutoff
would impact the QFT path integral. The new framework
for the sampling and reconstruction of spacetimes and
fields could be useful, however, also beyond QFT in vari-
ous studies of quantum gravity, in particular, in studies in
which spacetime is modeled as discrete; see, e.g., [13].
There, the new sampling methods could be used to give
discrete structures a continuous representation. This could
establish and stabilize the effective dimension of a lattice

and it could make it unnecessary to take a continuum limit.
It could also serve as a mere mathematical tool in these
theories, for example, to rewrite hard-to-sum series as
integrals, or to rewrite hard-to-solve finite difference equa-
tions as differential equations that are easier to handle.
Work is in progress on linking manifold and graph
Laplacians, and also on reconstructing the shape of
Lorentzian manifolds from the mutual distances of events
as measured through two-point functions. Also, formula-
tions of general relativity in terms of the eigenvalues of the
Dirac operator have been discussed, e.g., in [14]. It should
be interesting to transfer results of those works into the
information-theoretic framework here.
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