
Chapter 3

Quantum mechanics in Hamiltonian

form

We formulated the laws of classical mechanics on a higher level of abstraction, as
summarized in Sec.2.4 because classical mechanics appeared to be not upgradeable
when written in Newton’s formulation. We are now ready to upgrade the more abstract
Hamiltonian laws of classical mechanics to obtain quantum mechanics. A modification
is needed which is a small enough to preserve all the successes of classical mechanics
while it must also introduce h in order to correctly predict quantum mechanical effects.

For example, could it be that Eq.2.38 needs to be modified to obtain quantum me-
chanics? Could the correct equation be, say, d

dt
f = {f,H}+h or d

dt
f = {f+h2/f,H},

where h is Planck’s constant? Those two equations can’t be right, of course, already
because the units generally don’t match. Could it be then that to obtain quantum
mechanics we will have to change the definitions for the Poisson bracket? Could it be
that the definition Eq.2.12 needs to be changed? This, of course, is unlikely too because
the definitions for the Poisson bracket were fixed by consistency conditions (recall, e.g.,
Exercise 2.7). The structure of our Poisson algebra is quite tightly constrained.

No, the necessary upgrade of the Hamiltonian formalism is actually much more
subtle! Let us remember that when we defined the Poisson algebra structure in the
previous section we did not make any assumptions about the mathematical nature of
the functions x(t) and p(t) (let us omit writing out the indices). In particular, we did
not make the assumption that these functions are number-valued. We can start with
a Hamiltonian, i.e., a polynomial in the x and p and then by using the rules of the
Poisson bracket we can derive the differential equations of motion. In the process, we
never need to assume that the functions x(t) and p(t) are number valued. Could it
be that the x(t) and p(t) need not be number valued and that this holds the key to
upgrading classical mechanics to obtain quantum mechanics? Actually yes!

Before we get to this, we have to consider though that we actually did assume the
x and p to be number valued at one specific point at the very end of the previous
chapter. There, we wrote down a convenient representation of the Poisson bracket in
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32 CHAPTER 3. QUANTUM MECHANICS IN HAMILTONIAN FORM

Eq.2.37, and there we needed the x and p to be number-valued - because to use this
convenient representation we needed to be able to differentiate with respect to the x
and p. We can conclude from this that if allowing the x(t) and p(t) to be something else
than number valued is the key to upgrading to quantum mechanics, then the Poisson
bracket will not be representable any more through Eq.2.37.

In fact, as we will see, this is how it will play out. Everything we did in the
previous chapter, except for the representation Eq.2.37 will still exactly hold true in
quantum mechanics. In particular, the differential equations of motion derived from
the Hamiltonian will look exactly the same in quantum and classical mechanics. That’s
because they are derived from the same Hamiltonian polynomial in the x and p by using
the same rules for the Poisson bracket. But then, if not in the equations of motion,
how does the upgrade involve h at all?

3.1 Reconsidering the nature of observables

At this point, let us reconsider the very basics: How do the symbols we write on paper
relate to real systems? We measure a system with concrete measurement devices
in the lab, for example, devices for the measurement of positions and devices for the
measurement of momenta. As usual, we invent for each kind of measurement a symbol,
say x

(r)
i and p

(r)
i . At this stage we need to be careful not to over-interpret these

symbols. At this stage, these symbols have nothing to do (yet) with numbers, vectors,
matrices, operators or bananas. Instead, these symbols are merely names for kinds of
measurement. We need to find out more about the nature of these x

(r)
i and p

(r)
i .

Now according to our everyday experience, the operation of a position measurement
device does not interfere with the operation of a momentum measurement device: it
seems that we can always measure both, positions and momenta. For example, GPS
units are able to tell both position and velocity at the same time to considerable
accuracy. It is tempting to assume, therefore, that there is no limit, in principle, to
how accurately positions and velocities can be determined. And that would mean that
we can let each of the symbols x

(r)
i (t) and p

(r)
i (t) stand for its measurement devices’s

output number at time t.
It is at this very point, namely when we make the assumption that positions and

momenta can be accurately measured simultaneously, that we make the assumption
that the symbols x

(r)
i (t) and p

(r)
i (t) can be represented mathematically as number-

valued functions of time. And number-valued functions have the property of being
commutative:

x
(r)
i p

(s)
j − p

(s)
j x

(r)
i = 0 (3.1)

Since measurement values cannot be just any number but always come out real, we
also have the law:

(

x
(r)
i

)

∗

= x
(r)
i and

(

p
(s)
j

)

∗

= p
(s)
j (3.2)
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Similarly, we have H∗ = H. Technically, the *-operation is an example of was is called
an involution.

Exercise 3.1 Find and list the defining property of an involution. Remark: I recom-

mend that you do not just copy and paste from some place like Wikipedia. Best write

out the answer and make sure you understand the answer. Such material is considered

examinable.

The statements above, namely that position and momentum measurements are
compatible and come out as real numbers are indeed a nontrivial part of the laws of
classical mechanics. For completeness we should have included them in the summary
of classical mechanics in Sec.2.4.

A reality property of the form of Eq.3.2 will still be true in quantum mechanics.
But the commutativity property expressed in Eq.3.1 and its underlying assumption
that the operation of position and momentum measurement devices do not interfere
with another needs to be abandoned and upgraded. It turns out that position and
momentum measurements are like taking a shower and working out at the gym. It
matters in which sequence one does them:

gym·shower - shower·gym = sweat (3.3)

3.2 The canonical commutation relations

For the remainder of this course, we will need a way to make it transparent in every
equation whether a variable is number valued or not. To this end, we will decorate
variables that may not be number valued with a hat, for example, Ĥ, p̂, x̂, or more
specifically x̂

(r)
i and p̂

(r)
i for each position and momentum measurement device. Now

how can the interference of the measurement devices mathematically be expressed as
properties of the symbols x̂

(r)
i and p̂

(r)
i ?

According to classical mechanics one would be able to operate all measurement de-
vices all the time and they would not interfere with another. We could therefore choose
the x̂

(r)
i (t) and p̂

(r)
i (t) to stand for the number-valued outcomes of those measurements

as functions of time. Crucially, the fact that we can’t actually know positions and
momenta simultaneously means that we can no longer choose the x̂

(r)
i (t) and p̂

(r)
i (t) to

stand simply for number-valued outcomes of those measurements as functions of time.
Mathematically, it was the commutativity law of Eq.3.1 which expressed that in

classical mechanics the symbols x̂
(r)
i (t) and p̂

(r)
i (t) can be represented as number valued

functions. Could it be that Eq.3.1 has to be modified to include h so that the x̂
(r)
i (t)

and p̂
(r)
i (t) become non-commutative and therefore can no longer be number-valued

functions?
Are position and momentum measurements noncommuting similar to how doing

sports and having a shower don’t commute?
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It was Dirac who first realized that all of the Poisson algebra structure that we
defined above can be kept (and therefore the ability to derive the equations of motion),

while changing just one little thing: allowing the symbols x̂
(r)
i (t) and p̂

(r)
i (t) to be

noncommutative in a very particular way.
Before we can follow Dirac’s argument, let us first reconsider the product rule for

the Poisson bracket:

{f, gh} = {f, g}h+ g{f, h} (3.4)

Using the antisymmetry rule, {f, g} = − {g, f}, the product rule can be rewritten in
this form:

{gh, f} = {g, f}h+ g{h, f} (3.5)

Using Eqs.3.4,3.5, we can now follow Dirac’s argument for why the Poisson algebra
structure imposes strict conditions on the form that any noncommutativity can take.
Dirac considered the Poisson bracket

{û1û2, v̂1v̂2} (3.6)

where û1, û2, v̂1, v̂2 are arbitrary polynomials in the variables x̂
(r)
i and p̂

(s)
j . Expression

Eq.3.6 can be decomposed into simpler Poisson brackets in two ways, namely using
first Eq.3.4 and then Eq.3.5, or vice versa. And, of course, any noncommutativity of
the x̂

(r)
i and p̂

(s)
j has to be such that both ways yield the same outcome:

{û1û2, v̂1v̂2} = û1{û2, v̂1v̂2}+ {û1, v̂1v̂2}û2 (3.7)

= û1(v̂1{û2, v̂2}+ {û2, v̂1}v̂2) + (v̂1{û1, v̂2}+ {û1, v̂1}v̂2)û2

must agree with:

{û1û2, v̂1v̂2} = v̂1{û1û2, v̂2}+ {û1û2, v̂1}v̂2 (3.8)

= v̂1(û1{û2, v̂2}+ {û1, v̂2}û2) + (û1{û2, v̂1}+ {û1, v̂1}û2)v̂2

We can, therefore, conclude that, independently of whether or not we have commuta-
tivity, it must always be true that:

{û1, v̂1}(v̂2û2 − û2v̂2) = (v̂1û1 − û1v̂1){û2, v̂2} (3.9)

And this equation has to be true for all possible choices of û1, û2, v̂1, v̂2. How can we
ensure this? As is easy to check, Eq.3.9 will be true1 if we require all expressions û, v̂
in the position and momentum variables obey:

v̂û− ûv̂ = k{û, v̂} (3.10)

1We will not show here that, vice versa, only the condition Eq.3.10 ensures that Eq.3.9 holds true.

If you are interested, there is plenty of literature on the topic of “quantization”.
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with k being some constant that commutes with everything. This is because in this
case, the left and right hand sides of Eq.3.9 are automatically identical. But what
value does k take? Of course, the case k = 0 would be classical mechanics, because it
implies that all expressions in the positions and momenta commute.

However, it turns out that in order to eventually yield the correct experimental
predictions (we will later see how), we have to set k = −ih/2π, i.e., we have

ûv̂ − v̂û = i~{û, v̂} (3.11)

where we used the convenient definition:

~ =
h

2π
(3.12)

In particular, choosing for û and v̂ the variables x
(r)
i and p

(s)
j , and using Eqs.2.6-2.8,

we now obtain the quantum mechanical commutation relations for n particles:

x̂
(r)
i p̂

(s)
j − p̂

(s)
j x̂

(r)
i = i~ δi,jδr,s (3.13)

x̂
(r)
i x̂

(s)
j − x̂

(s)
j x̂

(r)
i = 0 (3.14)

p̂
(r)
i p̂

(s)
j − p̂

(s)
j p̂

(r)
i = 0 (3.15)

Let us keep in mind that we did not modify the rules of the Poisson bracket. We still
have:

{x̂i, p̂j} = δi,j (3.16)

{x̂i, x̂j} = 0 (3.17)

{p̂i, p̂j} = 0 (3.18)

{f, g} = − {g, f} antisymmetry (3.19)

{cf, g} = c {f, g}, for any number c linearity (3.20)

{f, g + h} = {f, g}+ {f, h} addition rule (3.21)

{f, gh} = {f, g}h+ g{f, h} product rule (3.22)

0 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} Jacobi id. (3.23)

Because the rules for the Poisson bracket did not change with the upgrade to quantum
mechanics, one arrives in quantum mechanics at the same equations of motion as
in classical mechanics. This is as long as one does not unnecessarily commute any
variables.

The equations Eqs.3.13-3.15 are called the “Canonical Commutation Relations”
(CCRs). The appearance of the imaginary unit i will be necessary to ensure that mea-
surements are predicted as real numbers, as we will see below. Eqs.3.14,3.15 express
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that position measurements among another and momentum measurements among an-
other do not interfere. Only positions and momenta of the same particle and in the
same direction, i.e., for i = j and r = s, are noncommutative.

In conclusion, we upgrade classical mechanics to quantum mechanics by first formu-
lating classical mechanics in Hamiltonian form to identify the Poisson algebra structure.
Then, we realize that while keeping all the rules for the Poisson bracket intact, there
is still the freedom to make the associative multiplication in the Poisson algebra non-
commutative, parametrized by some constant k. Nature chose the modulus of k to be
nonzero though very small, namely ~. The fact that the Poisson bracket stays the same
when quantizing explains why quantum mechanics has the same equation of motion
as does classical mechanics. The fact that ~ is so small explains why it took long to
discover quantum mechanics.

In spite of the tremendous similarity between classical and quantum mechanics from
this perspective, quantum mechanical calculations will in practise look rather different
from classical calculations. This is because they will require representations of the
x̂
(r)
i (t) and p̂

(r)
i (t) variables as explicit non-number valued mathematical entities that

obey the commutation relations. Even though there is only a slight noncommutativity
in the Poisson algebra of quantum mechanics its representations will necessarily look
quite different from the representation of the classical commutative Poisson algebra.
This will explain why the Schrödinger equation looks rather different from Newton’s
equations.

3.3 From the Hamiltonian to the equations of mo-

tion

In quantum mechanics, as in classical mechanics, the energy function Ĥ encodes all
information about the system. It is still called the Hamiltonian and it is in general
some polynomial (or well-behaved power series) in the positions and momenta x̂

(r)
i

and p̂
(r)
i of the system. In quantum mechanics, the sequence of steps that lead from

the Hamiltonian down to concrete number predictions for experiments can be drawn
schematically in this form:

Hamiltonian
⇓

Equations of motion
⇓

Differential equations
⇓

Non-number-valued functions
⇓

Number-valued functions


