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that position measurements among another and momentum measurements among an-
other do not interfere. Only positions and momenta of the same particle and in the
same direction, i.e., for i = j and r = s, are noncommutative.

In conclusion, we upgrade classical mechanics to quantum mechanics by first formu-
lating classical mechanics in Hamiltonian form to identify the Poisson algebra structure.
Then, we realize that while keeping all the rules for the Poisson bracket intact, there
is still the freedom to make the associative multiplication in the Poisson algebra non-
commutative, parametrized by some constant k. Nature chose the modulus of k to be
nonzero though very small, namely ~. The fact that the Poisson bracket stays the same
when quantizing explains why quantum mechanics has the same equation of motion
as does classical mechanics. The fact that ~ is so small explains why it took long to
discover quantum mechanics.

In spite of the tremendous similarity between classical and quantum mechanics from
this perspective, quantum mechanical calculations will in practise look rather different
from classical calculations. This is because they will require representations of the
x̂
(r)
i (t) and p̂

(r)
i (t) variables as explicit non-number valued mathematical entities that

obey the commutation relations. Even though there is only a slight noncommutativity
in the Poisson algebra of quantum mechanics its representations will necessarily look
quite different from the representation of the classical commutative Poisson algebra.
This will explain why the Schrödinger equation looks rather different from Newton’s
equations.

3.3 From the Hamiltonian to the equations of mo-

tion

In quantum mechanics, as in classical mechanics, the energy function Ĥ encodes all
information about the system. It is still called the Hamiltonian and it is in general
some polynomial (or well-behaved power series) in the positions and momenta x̂

(r)
i

and p̂
(r)
i of the system. In quantum mechanics, the sequence of steps that lead from

the Hamiltonian down to concrete number predictions for experiments can be drawn
schematically in this form:

Hamiltonian
⇓

Equations of motion
⇓

Differential equations
⇓

Non-number-valued functions
⇓

Number-valued functions
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⇓
Number predictions

So far, we can perform the first step, namely the derivation of the equations of motion
from the Hamiltonian: Assume that we are interested in the time evolution of some f̂
which is a polynomial in the x̂ and p̂’s (say with constant coefficients). Then we can
derive the equation of motion for f̂ through:

d

dt
f̂ = {f̂ , Ĥ} (3.24)

where {, } is the usual Poisson bracket, as defined in Eqs.2.6-2.12. In particular, f̂ can
be chosen to be any one of the position and momentum variables of the system, so that
we obtain for their equations of motion, exactly as in Eqs.2.21,2.22:

d

dt
x̂
(r)
i = {x̂

(r)
i , Ĥ} (3.25)

d

dt
p̂
(r)
i = {p̂

(r)
i , Ĥ} (3.26)

By evaluating the Poisson bracket on the right hand side of Eqs.3.25,3.26 these equa-
tions of motion then become differential equations for the entities x̂

(r)
i (t) and p̂

(r)
i (t).

Clearly, the resulting equations of motion will be analogous to those of classical me-
chanics. The entities x̂

(r)
i (t) and p̂

(r)
i (t) must also still obey Eq.3.2, which in quantum

mechanics is usually written as:

(

x̂
(r)
i

)†

= x̂
(r)
i and

(

p̂
(s)
j

)†

= p̂
(s)
j (3.27)

We will call any polynomial or well-behaved power series f̂ in the x̂ and p̂ an “observ-
able”, if it obeys f̂ † = f̂ . As we will see later, the condition f̂ † = f̂ will indeed imply
that measurement outcomes are predicted as real numbers. In addition to the position
variables x̂

(r)
i (t) and momentum variables p̂

(s)
j (t) also, e.g., the energy Ĥ(t) and the

angular momentum variables L̂i(t) are observables.

While classical mechanics requires the Poisson algebra to be commutative, quantum
mechanics requires that the equations of motion be solved by entities x̂

(r)
i (t) and p̂

(r)
i (t)

which are noncommutative:

x̂
(r)
i p̂

(s)
j − p̂

(s)
j x̂

(r)
i = i~ δi,jδr,s (3.28)

x̂
(r)
i x̂

(s)
j − x̂

(s)
j x̂

(r)
i = 0 (3.29)

p̂
(r)
i p̂

(s)
j − p̂

(s)
j p̂

(r)
i = 0 (3.30)
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Technically, we will, therefore, need to solve differential equations of motion with non-
commutative entities. In practice, the task is then to start from the top level of
abstraction, the Hamiltonian of a system, then working one’s way down by calculat-
ing the equations of motion, and then solving them to obtain something from which
eventually predictions can be made of numbers that can be measured in experiments
on the system. In the next section, we will investigate what kind of noncommutative
mathematical objects, such as, for example, matrices, may represent the position and
momentum variables.

Exercise 3.2 For classical mechanics, formula Eq.2.37 provided a convenient repre-
sentation of the Poisson bracket. However, Eq.2.37 is not a valid representation of the
Poisson bracket in the case of quantum mechanics. In quantum mechanics, we have a
(not so convenient) representation of the Poisson bracket through Eq.3.11:

{û, v̂} =
1

i~
(ûv̂ − v̂û) (3.31)

Use this representation, and the canonical commutation relations to evaluate the Pois-
son bracket {x̂2, p̂}.

Let us introduce an often-used notation, called “the commutator”:

[A,B] := A B − B A (3.32)

For simplicity, assume that Ĥ and f̂ are polynomials in the positions and momenta
which depend on time only through their dependence on the x̂ and p̂. Then the
Hamilton equation Eq.3.24 holds and takes the form:

i~
d

dt
f̂(t) = [f̂(t), Ĥ] (3.33)

(3.34)

and, in particular:

i~
d

dt
x̂
(r)
i (t) = [x̂

(r)
i (t), Ĥ]

i~
d

dt
p̂
(r)
i (t) = [p̂

(r)
i (t), Ĥ] (3.35)

These equations are called the Heisenberg equations of motion.

Remark: The particular method by which in the past few sections we upgraded
classical mechanics to quantum mechanics is called canonical quantization. I covered it
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in some detail because of its importance: Essentially the same method was used to find
quantum electrodynamics starting from Faraday and Maxwell’s electromagnetism. All
the quantum field theories of elementary particles can be derived this way. Even string
theory and most other modern attempts at finding the unifying theory of quantum
gravity try to employ canonical quantization. I should mention too that the problem
of canonical quantization for constrained classical systems was also pioneered by Dirac
but is still not fully understood. A simple example of a constrained system would
be a particle that is constrained to move on a curved surface. The most important
constrained system is general relativity.

Exercise 3.3 Reconsider the system with the Hamiltonian Eq.2.4, which consists of
two particles that are attracted to another through a harmonic force (a force which is
proportional to their distance). In practice, for example the force that binds diatomic
molecules and the force that keeps nucleons (i.e., neutrons and protons) inside a nucleus
are approximately harmonic for small oscillations. In those cases, the effect of ~ cannot
be neglected. One obtains the correct quantum theoretic Hamiltonian from the classical
Hamiltonian of Eq.2.4 by simply placing hats on the x and p’s. Find explicitly all the
equations of motion which the x̂

(r)
i and p̂

(r)
j (where r ∈ {1, 2}) of this system must obey.

Exercise 3.4 To obtain the quantum Hamiltonian from the classical Hamiltonian and
vice versa by placing or removing hats on the x and p’s is generally not as straight-
forward as in the previous exercise! Namely, there can occur so-called “ordering am-
biguities”: Consider the two Hamiltonians Ĥ1 = p̂2/2m + a(x̂2p̂x̂ − x̂p̂x̂2) and Ĥ2 =
p̂2/2m + b(p̂x̂p̂2 − p̂2x̂p̂) where a and b are nonzero constants with appropriate units.
Check whether or not these two Hamiltonians are the same in classical mechanics.
Also find all choices of a, b for which the two Hamiltonians are the same in quantum
mechanics.

Exercise 3.5 Find a Hamiltonian which contains at least one thousand powers of x̂
and which also agrees with the Hamiltonian Ĥ1 of the previous exercise in classical
mechanics. Make sure that your Hamiltonian is formally hermitean, i.e., that it obeys
Ĥ† = Ĥ. Help: To ensure hermiticity, you can symmetrize. For example, x̂p̂2 is not
hermitean but (x̂p̂2 + p̂2x̂)/2 is hermitean.

Remark: In quantum theory, the choice of Hamiltonian always has an ordering am-
biguity because one could always add to the Hamiltonian any extra terms that are
proportional to (x̂p̂− p̂x̂) because those terms don’t affect what the Hamiltonian is in
classical mechanics. In principle, experiments are needed to decide which Hamiltonian
is the correct one. In practice, the simplest choice is usually the correct choice. The
simplest choice is obtained by symmetrizing the given classical Hamiltonian and then
not adding any extra terms that are proportional to x̂p̂− p̂x̂. This is called the Weyl
ordered Hamiltonian.


