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the equations of motion we found that the commutation relation and the hermitic-
ity conditions continue to hold at all times t. This is nontrivial but it is not a co-
incidence. As we will soon see, the quantum mechanical time evolution of all sys-
tems7 preserves the commutation relations and hermiticity. The preservation of the
commutation relations is of course the preservation of the Poisson bracket. And we
have in classical and quantum mechanics that the Poisson brackets between the po-
sitions and momenta are preserved by the dynamics through the Hamilton equation:
d/dt {x̂, p̂} = {{x̂, p̂}, Ĥ} = {1, Ĥ} = 0. We can also turn the logic around. Assume
we know nothing about Hamiltonians and about the dynamics of quantum systems.
Except, we may want to assume that, whatever the time evolution is, it must preserve
the Poisson algebra structure, i.e., we require that the Poisson brackets be conserved in
time. The structure of the Poisson algebra then demands (we don’t show this explicitly
here) that the time evolution must be generated through an equation of the type of
the Hamilton equation, by some generator which we may call H, and which we may
then as well call the Hamiltonian.

3.4.5 Example: Solving the equations of motion for a har-

monic oscillator with matrix-valued functions

The vibrational degree of freedom of a diatomic molecule such as HF, CO or HCl can
be described as a harmonic oscillator (as long as the oscillations are small). Now let
x stand for the deviation from the equilibrium distance between the two nuclei. This
distance oscillates harmonically and is described by this effective Hamiltonian of the
form of a harmonic oscillator:

Ĥ =
p̂2

2m
+

mω2

2
x̂2 (3.50)

The term “Effective Hamiltonian” expresses the fact that this Hamiltonian is not really
the exact Hamiltonian but that it is a good approximation to the Hamiltonian in the
regime of low energies (i.e., of small oscillations) that we are considering here. By the
way, how do we know that the true Hamiltonian is not simply a harmonic oscillator?
Easy: we know from experiments that diatomic molecules will, for example, split apart
at sufficiently high temperatures, i.e., that they do not have infinite binding energy.
A harmonic oscillator potential, however, just keeps going up faster with distance and
therefore if you tried to pull apart the two particles in the diatomic molecule, they
would just get pulled together more and more strongly. Diatomic molecules could
never be split if they were truly harmonically bound.

So then if we know that the true potential is not harmonic, how do we know
that a harmonic potential is a good approximation at low energies? That’s because

7With the possible exception of systems that involve black hole horizons or other gravitational

horizons or singularities.
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any potential V (x) is normally well described by a smooth function V (x) with a
minimum at, say x0, around which we can Taylor expand the potential: V (x) =
V (x0) + V ′(x0)(x − x0) +

1
2
V ”(x0)(x − x0)

2 + .... Here, V ′(x0) = 0 because x0 is as-
sumed to be the minimum and therefore in the regime of small oscillations, where x is
close to x0, any potential starts out quadratic, i.e., as a harmonic oscillator.

Now let us remember that the matrix-valued functions x̂(t) and p̂(t) that we want
to solve the harmonic oscillator problem Eq.3.50 have to obey three conditions, as
always in quantum theory. First, the matrix-valued functions x̂(t) and p̂(t) must obey
the equations of motion of the harmonic oscillator given in Eq.3.50. Second, they
must be hermitean, x̂(t) = x̂†(t) and p̂(t) = p̂†(t). Third, they must obey the canonical
commutation relation [x̂(t), p̂(t)] = i~1 (where 1 is now to be represented by the identity
matrix).

Now the first problem would seem easy to solve: we know that the equations of
motion are solved any linear combination of sin(ωt) and cos(ωt). But these are just
number-valued functions and cannot by themselves obey the commutation relations!
On the other hand, we do have matrices a and a† that are beautifully noncommutative.
But they are constant in time and therefore cannot alone describe the dynamics given
by the equations of motion. This suggests that we try to construct the solution by
combining the a and a† matrices with the sine and cosine solutions. Let’s try this
ansatz8

x̂(t) = ξ(t)a+ ξ∗(t)a†, (3.51)

and let us choose ξ(t) to be a linear combination of the sine and cosine solutions to
the equations of motion:

ξ(t) := r sin(ωt) + s cos(ωt) (3.52)

Here, for now, r and s can be any complex numbers. By the way, whenever one makes
an ansatz of this kind (and one often does, especially in quantum field theory), then ξ(t)
is called a mode function. The task now is to find out if we can find coefficients r and
s such that the matrix-valued function x̂(t) and the corresponding p̂(t) = m ˙̂x(t) obey
the equations of motion, are hermitean and obey the canonical commutation relation.

Exercise 3.15 Show that for any arbitrary choice of complex numbers r, s, the matrix-

valued functions x̂(t) and p̂(t) defined through Eqs.3.51,3.52 obey the equations of mo-

tion at all time.

Exercise 3.16 Show that, again for any arbitrary choice of complex numbers r, s, the
matrix-valued functions x̂(t) and p̂(t) defined through Eqs.3.51,3.52 obey the hermiticity

conditions at all time.

8An ansatz is an educated guess.
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Exercise 3.17 Find the equation that the complex numbers r, s have to obey so that

the matrix-valued functions x̂(t) and p̂(t) defined through Eqs.3.51,3.52 obey the canon-

ical commutation relations at all time. This equation for r, s is called the Wronskian

condition and it has many solutions. Give an example of a pair of complex numbers

r, s that obey the Wronskian condition and write down x̂(t) explicitly with these values

for r, s filled in.

Since there are many pairs r, s that obey the Wronskian condition, our ansatz given
by Eqs.3.51,3.52 allows us to generate many solutions! We knew that there are always
many linear representations of x̂(t) and p̂(t) in quantum theory (and that they are all
physically equivalent because they are all related by changes of bases). Here, with our
ansatz we have found already infinitely many of these representations of x̂(t) and p̂(t)
for the harmonic oscillator. Actually, among the representations that we just found,
some representations are particularly convenient and most of the time one uses one of
those. These choices of r, s turn out to be convenient because the matrix-representation
of the Hamiltonian Ĥ(t) is much simpler for clever choices of r, s than for other choices.

Exercise 3.18 Use Eqs.3.51,3.52 to express the Hamiltonian in terms of functions

and the operators a, a†. There should be terms proportional to a2, to (a†)2, aa† and a†a.

Exercise 3.19 It turns out that it is possible to choose the coefficients r and s so that

the terms in the Hamiltonian which are proportional to a2 and (a†)2 drop out. Find

the condition which the equation that r and s have to obey for this to happen. Choose

a pair of complex numbers r, s such that the Hamiltonian simplifies this way, and of

course such that the Wronskian condition is obeyed. Write down Ĥ(t) as an explicit

matrix for this choice of r, s. It should be a diagonal matrix.

Remark: Notice that this convenient choice of r, s depends on the parameters m and
ω of the harmonic oscillator. This means that each harmonic oscillator has its own
optimal choices of parameters r, s. Making such wise choices of the parameters r, s
is particularly useful in quantum field theory where each wavevector (and therefore
frequency ω) of a quantum field has its own harmonic oscillator degree of freedom,
and should therefore best have its own convenient choice of r, s that diagonalizes its
Hamiltonian.

3.4.6 From matrix-valued functions to number predictions

Let us assume now that we have solved a quantum mechanical problem in the sense
that we have found explicit matrix-valued functions x̂

(r)
i (t) and p̂

(j)
j (t) which obey

the canonical commutation relations, the hermiticity conditions, and the equations of
motion. For example, the quantum mechanical problem of the free particle in one
dimension is solved by the matrix-valued functions given in Eqs.3.48,3.49.


