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Introduction

Quantum theory, together with general relativity, represents humanity’s so-far deepest
understanding of the laws of nature. And quantum phenomena are not rare or difficult
to observe. In fact, we experience quantum phenomena constantly! For example, the
very stability of the desk at which you are sitting now has its origin in a quantum
phenomenon. This is because atoms are mostly empty space and the only reason
why atoms don’t collapse is due to the uncertainty relations. Namely, the uncertainty
relations imply that it costs plenty of momentum (and therefore energy) to compress
atoms. Also, for example, the spectrum of sunlight is shaped by quantum effects - if
Planck’s constant were smaller, the sun would be bluer.

Over the past century, the understanding of quantum phenomena has led to a
number of applications which have profoundly impacted society, applications ranging
from nuclear power, lasers, transistors and photovoltaic cells, to the use of MRI in
medicine. Ever new sophisticated applications of quantum phenomena are being de-
veloped, among them, for example, quantum computers which have the potential to
revolutionize information processing.

Also on the level of pure discovery, significant progress is currently being made, for
example, in the field of cosmology, where both quantum effects and general relativistic
effects are important: high-precision astronomical data obtained by satellite telescopes
over the past 15 years show that the statistical distribution of matter in the universe
agrees with great precision with the distribution which quantum theory predicts to
have arisen from quantum fluctuations shortly after the big bang. All structure in
the universe, and ultimately therefore also we, appear to have originated in quantum
fluctuations.

The aim of this course is to explain the mathematical structure underlying all quan-
tum theories and to apply it to the relatively simple case of nonrelativistic quantum
mechanics. Nonrelativistic quantum mechanics is the quantum theory that replaces
Newton’s mechanics. The more advanced quantum theory of fields, which is necessary
for example to describe the ubiquitous particle creation and annihilation processes, is
beyond the scope of this course, though of course I can’t help but describe some of it.

For example, the first chapter of these notes, up to section 1.5, describes the history
of quantum theory as far as we will cover it in this course. The introduction goes
on, however, with a historical overview that outlines the further developments, from

3



4

relativistic quantum mechanics to quantum field theory and on to the modern day quest
for a theory of quantum gravity with applications in quantum cosmology. Quantum
theory is still very much a work in progress and original ideas are needed as much as
ever!

Note: This course prepares for a number of graduate courses, for example, the grad-
uate course Quantum Field Theory for Cosmology (AMATH872/PHYS785) that I
normally teach every other year.



Chapter 1

A brief history of quantum theory

1.1 The classical period

At the end of the 19th century, it seemed that the basic laws of nature had been found.
The world appeared to be a mechanical clockwork running according to Newton’s laws
of mechanics. Light appeared to be fully explained by the Faraday-Maxwell theory of
electromagnetism which held that light was a wave phenomenon. Also, for example,
heat had been understood as a form of energy. Together, the then known theories
constituted “Classical Physics”. Classical physics was so successful that it appeared
that theoretical physics was almost complete, the only task left being to add more digits
of precision. At that time, young Max Planck, for example, was an undergraduate
student at the University of Munich. One of his instructors there was Philipp von
Jolly. In the spirit of the time then, von Jolly advised Planck against a career in
physics. Planck stuck with it though and became one of those whose work overthrew
classical physics.

1.2 Planck and the “Ultraviolet Catastrophe”

The limits to the validity of classical physics first became apparent in measurements
of the spectrum of heat radiation. It had been known that very hot objects, such as
a smith’s hot iron, are emitting light. They do because matter consists of charged
particles whose motion makes them act like little antennas that emit and absorb elec-
tromagnetic waves.

This of course also means that even relatively cold objects emit and absorb electro-
magnetic radiation. Their heat radiation is not visible to us because it too weak and
mostly of too long wavelength for our eyes to see, but the heat radiatioin even of cold
objects is easily measurable with instruments.

Black objects are those that absorb electromagnetic radiation (of whichever fre-
quency range under consideration) most easily and by time reversal symmetry they
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are therefore also the objects that emit electromagnetic heat radiation of that fre-
quency range most readily. For that reason, for example, tea in a tea pot that is black
cools down faster than tea in a white or reflecting tea pot.

Now in the late 1800s, when researchers had completed the theorioes of classical
physics, they were finally ready to try to calculate the spectrum of the radiation emitted
by black bodies. To everybody’s surprise, the calculations, which were first performed
by Rayleigh and Jeans, predicted far more emission of waves of short wavelengths (such
as ultraviolet and shorter wavelengths) than what experimental measurements seemed
to indicate.

Actually, this was not a small discrepancy: the laws of classical physics were found
to predict that any object would actually emit an infinite amount of heat radiation in
an arbitrarily short time. Roughly speaking, this was because, according to classical
physics and its equipartition theorem, as a system (such as a cup of tea) is left alone
and starts to thermally equilibrate, every physical degree of freedom, such as the kinetic
energy of an atom or molecule - or such as the energy of an electromagnetic wave of a
given wavelength - should acquire an average energy of kT/2. Here, k is the Boltzmann
constant and T the temperature in Kelvin. This prediction, however, was problematic
because there are infinitely many wavelengths and each was supposed to acquire kT/2.
Even if we put the hot cup of tea in a metal box of finite size that there is a limit
to how large the wavelengths of electromagnetic field can be, there is no limit to how
short the wavelengths can be. Hence, the prediction of classical physics that even the
just the heat of a simple hot cup of tea should excite electromagnetic waves, i.e., that
it should emit an infinite amount of heat radiation of arbitrarily short wavelengths.

At first, this was not seen as a reason to doubt the laws of classical physics. It
seemed obvious that this nonsensical prediction could only be due to an error in the
calculation. Eventually, however, as time passed and nobody appeared to be able to
find a flaw in the calculation, the problem became considered serious enough to be
called the “ultraviolet catastrophe”. Planck decided to study this problem.

1.3 Discovery of h

From about 1890 to 1900, Planck dedicated himself to thoroughly analyzing all assump-
tions and steps in the calculations of Rayleigh and Jeans. To his great disappointment
and confusion he too did not find an error. In the year 1900, Planck then learned of
a new precision measurement of the heat radiation spectrum. Those measurements
were precise enough to allow curve fitting. By that time, Planck had so much experi-
ence with the calculations of heat radiation that on the same day that he first saw the
curve of the heat radiation spectrum he correctly guessed the formula for the frequency
spectrum of heat radiation, i.e., the formula that is today called Planck’s formula. Af-
ter two further months of trying he was able to derive his formula from a simple but
rather strange hypothesis. Planck’s hypothesis was that matter cannot radiate energy
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continually, but only in discrete portions of energy which he called “quanta”.
Concretely, Planck postulated that light of frequency f could only be emitted in

discrete packets of energy, with each packet, or quantum, carrying the energy Eq = hf .
Planck found that the value of this constant, h, must be about 6.6 10−34Kg m2/s for
the prediction of the heat radiation spectrum to come out right. The reason why this
cures the ultraviolet catastrophe is that it means that electromagnetic waves of very
short wavelengths are energetically expensive: Unlike in classical physics where a wave
can have a very small amplitude and therefore small energy, now we have that to excite
a wave of frequency f , at least the amount of energy hf must be invested to create at
least one quantum (i.e., photon) of that wavelength. The equipartition law of classical
physics is broken thereby:

We said that the charges that make up the cup of tea have random motions and
therefore act like currents in an antenna, creating electromagnetic waves. Now, if
these charges, acting like antennas, want to emit a photon of frequency f , they must
muster the energy hf . But the charges only possess a typical energy, due to their
thermal motion, of the order of kT . The charges that make up the cup of tea are,
therefore, statistically unlikely to muster enough energy to create photons whose energy
hf exceeds kT . This is why the spectrum of a lit candle of a few hundred degrees peaks
in the red and then falls of quickly for higher frequencies. It’s also why the spectrum
of sunlight, at 6000 degrees, peaks in the green and then falls of quickly towards the
ultraviolet.

Planck’s quantum hypothesis was in clear contradiction to classical physics: light
was supposed to consist of continuous waves. After all, light was known to be able
to produce interference patterns1. The quantum hypothesis was perceived so radical,
therefore, that most researchers, including Planck himself, still expected to find an
explanation of the quantum hypothesis within classical physics.

1.4 Mounting evidence for the fundamental impor-

tance of h

The significance of Planck’s constant was at first controversial and even Planck was
hesitant to view his quantum hypothesis as anything more than a mathematical trick
that would presumably find some explanation within a continuum theory eventually.
Einstein, however, was prepared to take Planck’s finding at face value and in 1906, Ein-
stein used it to quantitatively explain the photoelectric effect: Light can kick electrons

1It is easy to see these interference patterns: in a dark room, have a candle burning on a desk,
then sit a few meters away from it. Close one of your eyes and hold a hair in front of your other eye,
about 1cm in front of the eye, vertically. Align the hair with the flame of the candle. Do you see an
interference pattern, i.e., the flame plus copies of it to its left and right? From the apparent distance
between the copies of the flame and the distance of the hair to the flame you can work out the ratio
of the thickness of the hair to the wavelength of the light.
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out of a metal’s surface. Classical physics predicted that this ability depends on the
brightness of the light. Einstein’s quantum physics correctly explained that it instead
depends on the color of the light: Einstein’s radical idea was that light of frequency f
comes in quanta, i.e., in packets of energy hf . Then, he reasoned, the light’s energy
packets must be of high enough energy and therefore of high enough frequency to be
able to free electrons from the metal. Einstein’s explanation of the photoelectric effect
is the only result for which he was awarded a Nobel prize.

At about the same time, work by Rutherford and others had shown that atoms
consist of charged particles which had to be assumed to be orbiting another. This had
led to another deep crisis for classical physics: If matter consisted of charged particles
that orbit another, how could matter ever be stable? When a duck swims in circles in
a pond, it continually makes waves and the production of those waves costs the duck
some energy. Similarly, an electron that orbits a nucleus should continually create
electromagnetic waves. Just like the duck, also the electron should lose energy as it
radiates off electromagnetic waves. A quick calculation showed that any orbiting elec-
tron should rather quickly lose its energy and therefore fall into the nucleus. According
to classical physics, therefore, matter would not be stable and we could not exist.

Finally, in 1913, Bohr was able to start explaining the stability of atoms. However,
to this end he too had to make a radical hypothesis involving Planck’s constant h: Bohr
hypothesized that, in addition to Newton’s laws, the orbiting particles should obey a
strange new equation. The new equation says that a certain quantity calculated from
the particle’s motion (the so called “action” from the action principle), can occur
only in integer multiples of h. In this way, only certain orbits would be allowed. In
particular, there would be a smallest orbit of some finite size, and this would be the
explanation of the stability of atoms. Bohr’s hypothesis also helped to explain another
observation which had been made, namely that atoms absorb and emit light preferably
at certain discrete frequencies.

1.5 The discovery of quantum theory

Planck’s quantum hypothesis, Einstein’s light quanta hypothesis and Bohr’s new equa-
tion for the hydrogen atom all contained Planck’s h in an essential way, and none of this
could be explained within the laws of classical physics. Physicists, therefore, came to
suspect that the laws of classical physics might have to be changed according to some
overarching new principle, in which h would play a crucial role. They were looking for
a new kind of physics, a quantum physics. The theoretical task at hand was enormous:
One would need to find a successor to Newton’s mechanics, which would be called quan-
tum mechanics. And, one would need to find a successor to Faraday and Maxwell’s
electromagnetism, which would be called quantum electrodynamics. The new quan-
tum theory would have to reproduce all the successes of classical physics while at the
same time explaining in a unified way all the quantum phenomena, from Planck’s heat
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radiation formula, to the stability and the absorbtion and emission spectra of atoms.
This task took more than twenty years of intense experimental and theoretical

research by numerous researchers. Finally, in 1925, it was Werner Heisenberg who
first found “quantum mechanics”, the successor to Newton’s mechanics. (At the time,
Heisenberg was a 23 year old postdoctoral fellow with a Rockefeller grant at Bohr’s
institute in Copenhagen). Soon after, Erwin Schrödinger found a simpler formulation of
quantum mechanics which turned out to be equivalent. Shortly after, Dirac was able to
fully clarify the mathematical structure of quantum mechanics, thereby finally revealing
the deep principles that underlie quantum theory. Dirac’s textbook “Principles of
Quantum Mechanics” is a key classic.

The new theory of ”Quantum Mechanics”, being the successor to Newton’s me-
chanics, correctly described how objects move under the influence of electromagnetic
forces. For example, it described how electrons and protons move under the influence
of their mutual electromagnetic attraction. Thereby, quantum mechanics explained the
stability of atoms and the details of their energy spectra. In fact, quantum mechanics
was soon applied to explain the periodic table and the chemical bonds.

What was still needed, however, was the quantum theory of those electromagnetic
forces, i.e., the quantum theoretic successor to Faraday and Maxwell’s electromag-
netism. Planck’s heat radiation formula was still not explained from first principles!
Fortunately, the discovery of quantum mechanics had already revealed most of the
deep principles that underlie quantum theory. Following those principles, Maxwell’s
theory of electromagnetism was “quantized” to arrive at quantum electrodynamics so
that Planck’s formula for the heat radiation spectrum could be derived.

It then became clear that quantum mechanics, i.e., the quantization of classical
mechanics, was merely the starting point. Somehow, quantum mechanics would have
to be upgraded to become consistent with the brand new theory of relativity which
Einstein had discovered! And then it would have to be covariantly combined with
the quantization of electrodynamics in order to be able to describe both matter and
radiation and their interactions.

1.6 Relativistic quantum mechanics

Already by around 1900, Lorentz, Einstein and others had realized that Newton’s me-
chanics, with its assumptions of an absolute space and time, was in fact incompatible
with Faraday and Maxwell’s theory of electromagnetism, for reasons unrelated to quan-
tum theory, thereby contributing to the crisis of classical physics. In a daring move,
Einstein accepted Faraday and Maxwell’s relatively new theory of electromagnetism as
superior and questioned the validity of Newton’s notion of absolute space and time:

Maxwell was able to calculate the speed of electromagnetic waves from first prin-
ciples, and found it to match with the measured speed of light. His calculations also
showed, however, that a traveller with some large constant velocity would find the
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same speed of light. (Today we would say that this is because the Maxwell equations
are covariant).

At the time, this was rather surprising as it clearly contradicted Newton’s classi-
cal mechanics which says that velocities are simply additive. For example, according
to Newton, a passenger who walks forward at v1 = 5km/h in a train travelling at
v2 = 100km/h has a speed of v3 = v1+v2 = 105km/h relative to the ground. In fact, she
does not. Her speed to the ground is v3 = (v1+v2)/(1+v1v2/c

2) = 104.9999994...km/h.
Today, the nonadditivity of velocities is an easy-to-measure everyday phenomenon
which is built into GPS systems, for example. At the time, the nonadditivity of veloc-
ities was first confirmed experimentally by Michelson and Moreley, who compared the
speed of two light rays travelling parallel and orthogonal to the motion of the earth
around the sun. The new theory that explained it all was of course Einstein’s special
relativity. By 1916, Einstein developed the theory further into general relativity, which
superseded Newton’s laws of gravity. General relativity very elegantly explains gravity
as curvature of space-time.

Historically, the discovery of relativity therefore happened more or less simulta-
neously with the discovery of quantum theory. Yet, the two theories were developed
virtually independently of another. In actual experiments, special relativity effects
seemed of little importance to quantum mechanical effects and vice versa. For exam-
ple, it was easy to estimate that an electron which orbits the nucleus of a hydrogen
atom would travel at most at speeds smaller than one percent of the speed of light.
Also, since gravity is extremely weak compared to the electromagnetic forces that rule
the atom it was clear that general relativity would be even less important than spe-
cial relativity for those early quantum mechanical studies. Conversely, the uncertainty
principle appeared irrelevant at the astrophysical scales where general relativity was
applied.

Nevertheless, soon after quantum mechanics had been found in 1925 it became
apparent that at least the tiny special relativistic effect of the speed of an electron
orbiting a nucleus was indeed measurable. This meant that there was experimental
guidance for the development of an improved version of quantum mechanics that would
be compatible with special relativity. Indeed, Klein, Gordon, Dirac and others soon
developed “relativistic quantum mechanics2”. Dirac’s analysis, in particular, led him to
correctly predict surprising magnetic properties of electrons, and it led him to correctly
predict the existence and properties of antiparticles such as the positron!

However, the fact that particles are able to create and annihilate another in col-
lisions, which had clearly been observed, was beyond the power of even relativistic
quantum mechanics. It was clear that a significant enlargement of the framework of
quantum theory was needed.

2This relativistic quantum mechanics is an improvement of quantum mechanics which is consistent
merely with special relativity. The search for a quantum theory that is consistent also with general
relativity is still on today.
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1.7 Quantum field theory

The way forward was called “second quantization”. The starting observation was
that, in quantum mechanics, the wave functions behave completely deterministically,
namely according to the Schrödinger equation. Given the initial wave function, one can
calculate its evolution with absolute certainty. It was felt that to be able to predict the
evolution of something, here the wavefunction, with absolute certainty was unusual for
a quantum theory. The idea of second quantization was, therefore, to apply quantum
theory to quantum theory itself. To this end, the quantum mechanical wave functions
were to be treated as classical fields, much like the classical electromagnetic fields.
Then, the aim was to find the quantum version of those fields. Since quantum theory
was to be applied to the wave functions themselves, the amplitudes of wave functions
would no longer be numbers but they would be operators instead. (An operator is a
linear map on an infinite dimensional vector space). As a consequence, in quantum field
theory, the amplitudes of the wave functions would be subject to uncertainty relations.
One should not be able to be sure of the values of the wave function, nor should one
be able to be sure of the norm of the wave function. In quantum mechanics, the
normalization of the wave function to norm 1 means that there is exactly one particle,
somewhere. In second quantization with its uncertainty principles, one could generally
no longer be sure how many particles there are. Roughly speaking, it is in this way
that the quantum fluctuations of the wave functions themselves would then account
for the creation and annihilation of particles3.

The problem of finding a quantum theory for fields had of course already been en-
countered when one had first tried to find the quantum theoretic successor to Faraday
and Maxwell’s electrodynamics (which was consistent with special relativity from the
start). As it turned out, guided by the general principles underlying quantum mechan-
ics the quantum theory of the electromagnetic fields alone was not too hard to find.
Following these lines, one was eventually able to write down a unifying quantum theory
both of charged particles and their antiparticles, and also of their interaction through
electromagnetic quanta, i.e., photons. While this theory succeeded well in describing
all the interactions, including particle annihilation and creation processes, it did yield
much more than one had bargained for. The reason was that, since now the particle
number was no longer conserved, the time-energy uncertainty principle made it possi-
ble for short time intervals that energy (and therefore all kinds of particles) could be
virtually “borrowed” from the vacuum.

As a consequence, the new quantum field theory, called quantum electrodynam-
ics, necessarily predicted that, for example, that an electron would sometimes spon-
taneously borrow energy from the vacuum to emit a photon which it then usually
quickly reabsorbs. During its brief existence, this so-called “virtual” photon even has
a chance to split into a virtual electron-positron pair which shortly after annihilates to

3Yes, third and higher quantization has been considered, but with no particular successes so far.
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become the virtual photon again. In fact, the virtual electron (or the positron) during
its short existence, might actually emit and quickly reabsorb a virtual photon. That
photon, might briefly split into an electron positron pair, etc etc ad infinitum. Even
more intriguing is that even without a real electron to start with, the vacuum alone is
predicted to have virtual particles continually appearing and disappearing! All of this
happens under the veil of the time-energy uncertainty principle.

It turned out that the quantum field theory’s predictions was in good agreement
with experimental results for the very simplest interactions. It was hoped that when
taking into account also the predicted virtual processes hidden under the veil of the
time-energy uncertainty principle, the accuracy of the predictions would increase even
further.

Not so! These calculations typically yielded divergent integrals and so, at first, one
only obtained seemingly meaningless predictions of infinite numbers. It took the com-
bined efforts of numerous scientists, such as Feynman, Tomanaga, Weisskopf, Dyson
and others, over about twenty years, to solve this problem.

It turned out that those calculations that had yielded infinities did make sense after
all, if one suitably recalibrated the parameters of the theory, such as the fundamental
masses and charges. This process of recalibration, called renormalization, also occurs
in condensed matter physics, where it is easier to understand intuitively: Consider an
electron that is traveling through a crystal. It has the usual mass and charge. But if
you want to influence the electron’s motion you will find that the traveling electron
behaves as if it had a several times larger mass and a smaller charge. That’s because
the electron slightly deforms the crystal by slightly displacing the positive and negative
charges that it passes by. It is these deformations of the crystal, which travel with the
electron, which make the electron behave as if it were heavier and they also shield its
charge. Also, the closer we get to the electron with our measurement device, the less
is its charge shielded, i.e., the more we see of the bare charge of the electron.

The key lesson here is that the masses and charges that one observes in a crystal are
generally not the “bare” masses and charges that the particles fundamentally possesses.
The observed masses and charges even depend on how closely one looks at the electron.

Now when fundamental particles travel through the vacuum, then they deform the
distribution of those virtual particles that pop in and out of existence under the veil
of the time-energy uncertainty principle. Again, this makes particles behave as if they
had a different mass and a different charge. The masses and charges that are observed
are not the “bare” masses and charges that the particles fundamentally possess. The
observed masses and charges actually depend again on how closely one looks at the
particles, i.e., at what energy one observes them, say with an accelerator. In quantum
field theory, it turns out that the bare masses and charges may formally even tend to
zero or be divergent. This is okay, as long as the predicted measured values come out
right.
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1.8 Renormalization

Technically, if you like to know the gist of renormalization already, renormalization
consists of the following steps: First, artificially render all predictions finite, say by
cutting off the divergent integrals. It turned out that this can be achieved by postu-
lating the existence of a smallest possible distance ε between any two particles and by
calculating virtual processes accordingly. Next, adjust the parameters of the theory
(charges, masses etc) such that a handful of predictions come out in agreement with
experiment (namely as many as there are free parameters such as masses and charges in
the theory). Now let ε→ 0, while at the same time letting the bare parameters of the
theory run so that the same handful of predictions comes out right. (The parameters of
the theory will thereby usually tend to 0 or ∞.) Crucially, all other (infinitely many!)
possible predictions of the theory will now also come out finite in the limit ε → 0 -
and they can be compared to experiment. Indeed, predictions so-obtained through
renormalization, for example for the energy levels of the hydrogen atom, match the
experimental results to more than a dozen digits behind the comma!

Of course, renormalization has always been seen as mathematically and conceptu-
ally unsatisfactory. Nevertheless, it did open the door to the successful application of
quantum field theory for the description of all the many species of particles that have
been discovered since, from neutrinos and muons to quarks.

It is important also to mention two developments related to quantum field theory:
First, on the applied side, it turned out that quantum field theoretic methods can also
be used for the description of wave phenomena in solids. These are crucial, for example,
for the understanding of superconductivity. Second, on the theoretical side, Feynman
in his work on quantum electrodynamics, found an equivalent but very insightful and
mathematically powerful new formulation for the principles of quantum theory, called
the path integral formulation. I will briefly outline the path integral formulation of
quantum mechanics later in this course.

1.9 Beyond quantum field theory?

Today, quantum field theory has served as the basis of elementary particle physics (and
therefore as the basis for the description of all that we are made of) for about fifty years.
Even though numerous new particles and even new forces have been discovered over the
years, quantum field theory itself never needed to undergo any fundamental changes.
Similarly successful has been Einstein’s general relativity, which has now served as
the basis of all gravitational physics for over 80 years. Even the most sophisticated
experiments seem to merely confirm the validity of quantum field theory and general
relativity with more and more precision.

Could it be, therefore, that these two theories constitute the final laws of nature and
that this is all there is? Should one discourage students from a career in the subject?
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Certainly not! In fact, the situation resembles in many ways the situation at the time
Planck was a student. We have two highly successful theories - but they are inconsis-
tent! As long as we consider gravity to be a fixed background for quantum theory some
calculations can be performed. Hawking’s prediction of black hole radiation is of this
kind. However, once we fully take into account the dynamics of general relativity, we
face a problem: The predictions of infinities in quantum field theory appear to persist.
In the renormalization procedure, the limit ε → 0 does no longer seem to work (not
for lack of trying!).

This problem is very deep. Many believe that this indicates that there actually
exists a finite shortest length, ε, in nature, much like there is a finite fastest speed.
Indeed, if we put together what we know from general relativity and what we know
from quantum theory, we can conclude that we cannot even in principle devise an
experimental operation that would allow us to resolve distances as small as about
10−35m, which is the so-called Planck scale:

Consider the task of resolving some very small structure. To this end, we need to
shine on it some probing particles of very short wavelength. Due to quantum theory,
the shorter the wavelength, the higher is the energy uncertainty of the probing particle.
According to general relativity, energy gravitates and curves space. Thus, the probing
particles will randomly curve space to the extent of their energy uncertainty. Assume
now that a distance of 10−35m or smaller is to be resolved. A short calculation shows
that to this end the probing particles would have to be of such short wavelength, i.e., of
such high energy uncertainty that they would significantly curve and thereby randomly
disturb the region that they are meant to probe. It therefore appears that the very
notion of distance loses operational meaning at distances of about 10−35m.

In order to describe the structure of space-time and matter at such small scales we
will need a unifying theory of quantum gravity. Much effort is being put into this. In
this field of research, it is widely expected that within the unified quantum gravity the-
ory there will be a need for renormalization, but not for infinite renormalization. This
yet-to-be found theory of quantum gravity may also solve several other major prob-
lems of quantum theory. In particular, it could yield an explanation for the particular
masses and charges of the elementary particles, and perhaps even an explanation for
the statistical nature of quantum theoretical predictions.

A very concrete major problem awaiting resolution in the theory of quantum grav-
ity is the derivation of the cosmological constant, which represents the energy of the
vacuum. Quantum field theory predicts the vacuum to possess significant amounts of
energy due to vacuum fluctuations: Each field can be mathematically decomposed into
a collection of quantum theoretical harmonic oscillators, each of which contributes a
finite ground state energy of ~ω/2. General relativity predicts that the vacuum energy
should gravitate, just like any other form of energy.

Evidence from recent astronomical observations of the expansion rate of the universe
indicates that the cosmological constant has a small but nonzero value. How much
vacuum energy does quantum field theory predict? Straightforwardly, quantum field
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theory predicts the vacuum energy density to be infinite. If we augment quantum
field theory by the assumption that the Planck length is the shortest length in nature,
then quantum field theory predicts a very large vacuum energy. In fact, it is by a
factor of about 10120 larger than what is experimentally observed. This is the today’s
“ultraviolet catastrophe”. It appears that whoever tries to reconcile quantum theory
with general relativity must be prepared to question the very foundations of all we
know of the laws of nature. Original ideas are needed that may be no less radical than
those of Planck or Einstein. Current attempts are, for example, string theory and loop
quantum gravity.

1.10 Experiment and theory

In the past, progress in the search for the theory of quantum gravity has been severely
hampered by the fact that one cannot actually build a microscope with sufficiently
strong resolving power to probe Planck scale physics. Even the best microscopes today,
namely particle accelerators, can resolve distances only down to at most 10−20m, which
is still many orders of magnitude away from the Planck scale of 10−35m. Of course,
guidance from experiments is not strictly necessary, as Einstein demonstrated when he
first developed general relativity. Nevertheless, any candidate theory must be tested
experimentally before it can be given any credence.

In this context, an important recent realization was that there are possibilities
for experimental access to the Planck scale other than through accelerators! One
possibility could be the study of the very highly energetic cosmic rays that occasionally
hit and locally briefly light up the earth’s atmosphere. Another recently much discussed
possibility arises from the simple fact that the universe itself was once very small and
has dramatically expanded since. The idea is, roughly speaking, that if the early
expansion was rapid enough then the universe might have acted as a microscope by
stretching out everything to a much larger size. Astronomical evidence obtained over
the past few years indicate that this did happen.

The statistical distribution of matter in the universe is currently being measured
with great precision, both by direct observation of the distribution of galaxies, and
through the measurement of the cosmic microwave background. Experimental evidence
is mounting for the theory that the matter distribution in the universe agrees with what
one would expect if it originated as tiny primordial quantum fluctuations - which were
inflated to cosmic size by a very rapid initial expansion of the universe! It appears
that the universe itself has acted as a giant microscope that enlarged initially small
quantum phenomena into an image on our night sky! It is just possible that even
the as yet unknown quantum phenomena of Planck length size have left an imprint
in this image. Some of my own research is in this area. See, for example, this paper:
https://doi.org/10.1103/PhysRevLett.119.031301. New satellite based telescopes are
currently further exploring these phenomena.
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Chapter 2

Classical mechanics in Hamiltonian
form

2.1 Newton’s laws for classical mechanics cannot

be upgraded

When physicists first tried to find the laws of quantum mechanics they knew from
experiments that Planck’s constant h would have to play an important role in those
laws. Imagine yourself in the situation of these physicists. How would you go about
guessing the laws of quantum mechanics? Clearly, quantum mechanics would have
to strongly resemble classical mechanics. After all, quantum mechanics should be
an improvement over classical mechanics. Thus, it would have to reproduce all the
successful predictions of classical mechanics, from the motion of the planets to the forces
in a car’s transmission. So how if we try to carefully improve one or several Newton’s
three axioms of classical mechanics by suitably introducing Planck’s constant?

For example, could it be that F = ma should really be F = ma + h instead?
After all, h is such a small number that one could imagine that this correction term
might have been overlooked for a long time. However, this attempt surely can’t be
right on the trivial grounds that h does not have the right units: F and ma have the
units Kgm/s2 while the units of h are Kgm2/s. But then, could the correct second
law perhaps be F = ma(1 + h/xp)? The units would match. Also this attempt can’t
be right because whenever x or p are small, the term h/xp would be enormous, and
we could therefore not have overlooked this term for all the hundreds of years since
Newton. Similarly, also F = ma(1 + xp/h) can’t be right because for the values of x
and p that we encounter in daily life the term xp/h would usually be big enough to
have been seen.

In fact, no attempt to improve on Newton’s laws in such a manner works. This is
why historically this search for the laws of quantum mechanics actually took a quarter
century! When the first formulations of quantum mechanics were eventually found by

17
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Heisenberg and Schrödinger, they did not at all look similar to classical mechanics.
It was Dirac who first clarified the mathematical structure of quantum mechanics

and thereby its relation to classical mechanics. Dirac remembered that a more abstract
formulation of classical mechanics than Newton’s had long been developed, namely
Hamiltonian’s formulation of classical mechanics. Hamilton’s formulation of classical
mechanics made use of a mathematical tool called Poisson brackets. Dirac showed
that the laws of classical mechanics, once formulated in their Hamiltonian form, can
be repaired by suitably introducing h into its equations, thereby yielding quantum
mechanics correctly. In this way, Dirac was able to show how quantum mechanics
naturally supersedes classical mechanics while reproducing the successes of classical
mechanics. We will follow Dirac in this course1.

2.2 Levels of abstraction

In order to follow Dirac’s thinking, let us consider the levels of abstraction in math-
ematical physics: Ideally, one starts from abstract laws of nature and at the end one
obtains concrete number predictions for measurement outcomes. In the middle, there
is usually a hierarchy of mathematical problems that one has to solve.

In particular, in Newton’s formulation of classical mechanics one starts by writing
down the equations of motion for the system at hand. The equations of motion will
generally contain terms of the type mẍ and will therefore of the type of differential
equations. We begin our calculation by solving those differential equations, to obtain
functions. These functions we then solve for variables. From those variables we even-
tually obtain some concrete numbers that we can compare with a measurement value.
The hierarchy of abstraction is, therefore:

Differential equations
⇓

Functions
⇓

Variables
⇓

Numbers

This begs the question if there is a level of abstraction above that of differential equa-
tions? Namely, can the differential equations of motion be obtained as the solution of

1In his paper introducing the Schrödinger equation, Schrödinger already tried to motivate his
equation by an analogy with some aspect of Hamilton’s work (the so called Hamilton Jacobi theory).
This argument did not hold up. But, another part of Schrödinger’s intuition was right on: His intuition
was that the discreteness in quantum mechanics (e.g., of the energy levels of atoms and molecules)
has its mathematical origin in the usual discreteness of the resonance frequencies of wave phenomena.
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some higher level mathematical problem? The answer is yes, as Dirac remembered:
Already in the first half of the 19th century, Lagrange, Hamilton and others had found
this higher level formulation of classical mechanics. Their methods had proven useful
for solving the dynamics of complicated systems, and some of those methods are still
being used, for example, for the calculation of satellite trajectories. Dirac thought that
if Newton’s formulation of classical mechanics was not upgradable, it might be worth
investigating if the higher level formulation of Hamilton might be upgradable to ob-
tain quantum mechanics. Dirac succeeded and was thereby able to clearly display the
similarities and differences between classical mechanics and the quantum mechanics of
Heisenberg and Schrödinger. To see this is our first goal in this course.

Remark: For completeness, I should mention that there are two equivalent ways to
present classical mechanics on this higher level of abstraction: One is due to Hamilton
and one is due to Lagrange. Lagrange’s formulation of classical mechanics is also
upgradable, i.e., that there is a simple way to introduce h to obtain quantum mechanics
from it, as Feynman first realized in the 1940s. In this way, Feynman discovered a whole
new formulation of quantum mechanics, which is called the path integral formulation.
I will explain Feynman’s formulation of quantum mechanics later in the course.

2.3 Classical mechanics in Hamiltonian formulation

2.3.1 The energy function H contains all information

What was Hamilton’s higher level of abstraction? How can classical mechanics be for-
mulated so that Newton’s differential equations of motion are themselves the solution
of a higher level mathematical problem? Hamilton’s crucial observation was the fol-
lowing: the expression for the total energy of a system already contains the complete
information about that system! In particular, if we know a system’s energy function,
then we can derive from it the differential equations of motion of that system. In
Hamilton’s formulation of classical mechanics the highest level description of a system
is therefore through its energy function. The expression for the total energy of a system
is also called the Hamiltonian. The hierarchy of abstraction is now:

Hamiltonians
⇓

Differential equations
⇓

Functions
⇓

Variables
⇓

Numbers
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As a very simple example, let us consider a system of two point2 masses, m1 and
m2, which are connected by a spring with spring constant k. We write their re-
spective position vectors as ~x(r) = (x

(r)
1 , x

(r)
2 , x

(r)
3 ) and their momentum vectors as

~p(r) = (p
(r)
1 , p

(r)
2 , p

(r)
3 ), where r is 1 or 2 respectively (we will omit the superscript (r)

when we talk about one mass only). The positions and momenta are of course func-

tions of time. Let us, therefore, keep in mind that for example x
(1)
3 is just a short hand

notation for the function x
(1)
3 (t). Since this is a simple system, it is easy to write down

its equations of motion:

d

dt
x
(r)
i =

p
(r)
i

mr

(2.1)

d

dt
p
(1)
i = −k(x

(1)
i − x

(2)
i ) (2.2)

d

dt
p
(2)
i = −k(x

(2)
i − x

(1)
i ) (2.3)

Here, r ∈ {1, 2} labels the objects and i ∈ {1, 2, 3} labels their coordinates. Hamil-
ton’s great insight was that these equations of motion (as well as those of arbitrarily
complicated systems) can all be derived from just one piece of information, namely
the expression for the system’s total energy H alone! This is to say that Hamilton
discovered that the expression for the total energy is what we now call the generator
of the time evolution. The Hamiltonian H, i.e., the total energy of the system, is the
kinetic energy plus the potential energy. In our example:

H =

(
~p(1)
)2

2m1

+

(
~p(2)
)2

2m2

+
k

2

(
~x(1) − ~x(2)

)2
(2.4)

Here,
(
~p(1)
)2

=
∑3

i=1

(
p
(1)
i

)2
etc. Now imagine that the system in question is instead

a complicated contraption with plenty of wheels, gears, discs, levers, weights, strings,
masses, bells and whistles. Using Newton’s laws it is possible to determine the equa-
tions of motion for that system but it will be complicated and will typically involve
drawing lots of diagrams with forces. Hamilton’s method promises a lot of simplifi-
cation here. We just write down the sum of all kinetic and potential energies, which
is generally not so difficult, and then Hamilton’s methods should yield the equations
of motion straightforwardly. In practice we won’t be interested in complicated con-
traptions. We’ll be interested in systems such as molecules, quantum computers or
quantum fields, which all can be quite complicated too.

2In this course, we will always restrict attention to point masses: all known noncomposite particles,
namely the three types of electrons and neutrinos, six types of quarks, the W and Z particles (which
transmit the weak force responsible for radioactivity), the gluons (which transmit the strong force
responsible for the nuclear force) and the photon are all point-like as far as we know.
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But what is the technique with which one can derive the equations of motion from
a Hamiltonian, for example, Eqs.2.1-2.3 from Eq.2.4? Exactly how does the generator,
H, of the time evolution generate the time evolution equations Eqs.2.1-2.3?

2.3.2 The Poisson bracket

The general procedure by which the equations of motion can be derived from a Hamil-
tonian H requires the use of a powerful mathematical operation, called “Poisson
bracket”3:

The Poisson bracket is a particular kind of multiplication: Assume that f and g
are polynomials in terms of the positions and momenta of the system, say f = −2p1
and g = 3x21 + 7p43 − 2x32p

3
1 + 6. Then, the Poisson bracket of f and g is written as

{f, g} and the evaluation of the bracket will yield another polynomial in terms of the
position and momenta of the system. In this case:

{−2p1 , 3x21 + 7p43 − 2x32p
3
1 + 6} = 12x1 (2.5)

But how does one evaluate such a Poisson bracket to obtain this answer? The rules for
evaluating Poisson brackets are tailor-made for mechanics. There are two sets of rules:

A) By definition, for each particle, the Poisson brackets of the positions and momenta
are:

{xi, pj} = δi,j (2.6)

{xi, xj} = 0 (2.7)

{pi, pj} = 0 (2.8)

for all i, j ∈ {1, 2, 3}. Here, δi,j is the Kronecker delta, which is 1 if i = j and is 0 if
i 6= j. But these are only the Poisson brackets between linear terms. How to evaluate
then the Poisson bracket between two polynomials? The second set of rules allow us
to reduce this general case to the case of the Poisson brackets between linear terms:

B) By definition, the Poisson bracket of two arbitrary expressions in the positions and
momenta, f(x, p) and g(x, p), obey the following rules:

{f, g} = − {g, f} antisymmetry (2.9)

{cf, g} = c {f, g}, for any number c linearity (2.10)

{f, g + h} = {f, g}+ {f, h} addition rule (2.11)

3Remark: In elementary particle physics there is a yet higher level of abstraction, which allows one
to derive Hamiltonians. The new level is that of so-called “symmetry groups”. The Poisson bracket
operation plays an essential role also in the definition of symmetry groups. (Candidate quantum
gravity theories such as string theory aim to derive these symmetry groups from a yet higher level of
abstraction which is hoped to be the top level.)
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{f, gh} = {f, g}h+ g{f, h} product rule (2.12)

0 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} Jacobi id. (2.13)

Let us postpone the explanation for why these definitions had to be chosen in exactly
this way4. For now, note that an immediate consequence of these rules is that the
Poisson bracket of a number always vanishes:

{c, f} = 0 if c is a number (2.14)

The point of the second set of rules is that we can use them to successively break
down the evaluation of a Poisson bracket like that of Eq.2.5 into sums and products of
expressions that can be evaluated by using the first set of rules, Eqs.2.6,2.7,2.8. Using
the product rule we immediately obtain, for example:

{x3, p23} = {x3, p3}p3 + p3{x3, p3} = 1p3 + p31 = 2p3 (2.15)

Here now is the first set of exercises. These exercises, and all exercises up until Sec.2.3.5
are to be solved using only the above axioms for the Poisson bracket. In Sec.2.3.5, we
will introduce a representation of the Poisson bracket in terms of derivatives5. You can
use this representation only for the exercises from Sec.2.3.5 onward.

Exercise 2.1 Prove Eq.2.14.

Exercise 2.2 Show that {f, f} = 0 for any f .

Exercise 2.3 Assume that n is a positive integer. Evaluate {x1, pn1}.

Exercise 2.4 Verify Eq.2.5.

Exercise 2.5 Show that the Poisson bracket is not associative by giving a counter
example.

So far, we defined the Poisson brackets of polynomials in the positions and momenta
of one point mass only. Let us now consider the general case of a system of n point
masses, m(r) with position vectors ~x(r) = (x

(r)
1 , x

(r)
2 , x

(r)
3 ) and momentum vectors ~p(r) =

(p
(r)
1 , p

(r)
2 , p

(r)
3 ), where r ∈ {1, 2, ..., n}. How can we evaluate the Poisson brackets of

4If the product rule already reminds you of the product rule for derivatives (i.e., the Leibniz rule)
this is not an accident. As we will see, the Poisson bracket can in fact be viewed as a sophisticated
generalization of the notion of derivative.

5The abstract, axiomatically-defined Poisson bracket that we defined above may sometimes be a
bit tedious to evaluate but it is very powerful because of its abstractness. As Dirac first showed, this
abstract, axiomatically-defined Poisson bracket is the exact same in classical and quantum mechanics.
As we will see in Sec.2.3.5, there is a representation of this abstract Poisson bracket in terms of
derivatives, which is more convenient to work with but this representation only works in classical
mechanics.
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expressions that involve all those positions and momentum variables? To this end, we
need to define what the Poisson brackets in between positions and momenta of different
particles should be. They are defined to be simply zero. Therefore, to summarize, we
define the basic Poisson brackets of n masses as

{x(r)i , p
(s)
j } = δi,j δr,s (2.16)

{x(r)i , x
(s)
j } = 0 (2.17)

{p(r)i , p
(s)
j } = 0 (2.18)

where r, s ∈ {1, 2, ..., n} and i, j ∈ {1, 2, 3}. The evaluation rules of Eqs.2.9-2.13 are
defined to stay just the same.

Exercise 2.6 Mathematically, the set of polynomials in positions and momenta is an
example of what is called a Poisson algebra. A general Poisson algebra is a vector
space with two extra multiplications: One multiplication which makes the vector space
into an associative algebra, and one (non-associative) multiplication {, }, called the Lie
bracket, which makes the vector space into what is called a Lie algebra. If the two
multiplications are in a certain sense compatible then the set is said to be a Poisson
algebra. Look up and state the axioms of a) a Lie algebra, b) an associative algebra and
c) a Poisson algebra. Give your source(s). The source is to be a textbook, and not a
site such as Wikipedia. Wikipedia is anonymous and therefore often inaccurate. Write
out the answer and make sure you understand the answer. Such material is considered
examinable.

2.3.3 The Hamilton equations

Let us recall why we introduced the Poisson bracket: A technique that uses the Poisson
bracket is supposed to allow us to derive all the differential equations of motion of a
system from the just one piece of information, namely from the expression of the total
energy of the system, i.e., from its Hamiltonian.

To see how this works, let us consider an arbitrary polynomial f in terms of the
positions and momentum variables x

(r)
i , p

(s)
j of the system in question, for example,

something like f = 7x
(3)
2

(
x
(1)
3

)3
− 2 cos(4t2)(p

(1)
1 )7 + 3/2. This f depends on time for

two reasons: There is an explicit dependence on time through the cosine term, and
there is an implicit dependence on time because the positions and momenta generally
depend on time. According to Hamilton’s formalism, the equation of motion for f is
then given by:

df

dt
= {f,H}+

∂f

∂t
(2.19)

Here, the notation ∂f/∂t denotes differentiation of f with respect to only its explicit
time dependence. In the example above it is the derivative of the time dependence in
the term cos(4t2).
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Eq.2.19 is a famous equation which is called the Hamilton equation. Why is it
famous? If you know how to evaluate Poisson brackets then the Hamilton equation
Eq.2.19 encodes for you all of classical mechanics! Namely, given H, equation Eq.2.19
yields the differential equation of motion for any entity f by the simple procedure of
evaluating the Poisson bracket on its right hand side.

If f is dependent on time only through x and p (say if we choose for f a polynomial
in x and p’s with constant coefficients) then ∂f/∂t = 0 and Hamilton’s equation
simplifies to:

d

dt
f = {f,H} (2.20)

In the remainder of this book, unless otherwise specified, we will always choose our
functions f, g, h to have no explicit dependence on time, i.e., they will depend on time
only implicitly, namely through the time dependence of the x and p’s. In particular,
the most important choices for f are of this kind: f = x

(r)
i or f = p

(r)
i . For these

choices of f we immediately obtain the fundamental equations of motion:

d

dt
x
(r)
i = {x(r)i , H} (2.21)

d

dt
p
(r)
i = {p(r)i , H} (2.22)

Here is a concrete example: A single free particle of mass m possesses only kinetic
energy. Its Hamiltonian is:

H =
3∑
j=1

p2j
2m

(2.23)

By using this H in Eqs.2.21,2.22, we obtain the following equations of motion for the
positions and momenta:

d

dt
xi =

{
xi ,

3∑
j=1

p2j
2m

}
=

pi
m

(2.24)

and

d

dt
pi =

{
pi ,

3∑
j=1

p2j
2m

}
= 0 (2.25)

They agree with what was expected: pi = mẋi and ẍi = 0, where the dot indicates the
time derivative. For another example, consider again the system of two point masses
m1,m2 which are connected by a spring with spring constant k. Its Hamiltonian H
was given in Eq.2.4. By using this H in Eqs.2.21,2.22 we should now be able to derive
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the system’s equations of motion (as given in Eqs.2.1-2.3). Indeed:

d

dt
x
(r)
i = {x(r)i , H} (2.26)

=
p
(r)
i

mr

(2.27)

d

dt
p
(1)
i = {p(1)i , H} (2.28)

= −k(x
(1)
i − x

(2)
i ) (2.29)

d

dt
p
(2)
i = {p(2)i , H} (2.30)

= −k(x
(2)
i − x

(1)
i ) (2.31)

Let us omit the proof that Hamilton’s formulation of classical mechanics always yields
the same equations of motion as Newton’s.

Exercise 2.7 Consider f = gh, where g and h are some polynomial expressions in the
position and momentum variables. There are two ways to calculate df/dt: Either we
use the Leibnitz rule, i.e., ḟ = ġh+ gḣ, and apply Eq.2.20 to both ġ and ḣ, or we apply
Eq.2.20 directly to gh and use the product rule (Eq.2.12) for Poisson brackets. Prove
that both methods yield the same result.

This exercise shows that a property of the derivative on the left hand side of Eq.2.20
determines a rule for how the Poisson bracket had to be defined. In fact, such require-
ments of consistency are the main reason why the Poisson bracket is defined the way
it is.

Exercise 2.8 Use Eq.2.13 to prove that:

d

dt
{f, g} = {ḟ , g}+ {f, ġ} (2.32)

2.3.4 Symmetries and Conservation laws

Our reason for reviewing the Hamiltonian formulation of mechanics is that it will be
useful for the study of quantum mechanics. Before we get to that, however, let us ask
why the Hamiltonian formulation of mechanics was useful for classical mechanics. It
was, after all, developed more than half a century before quantum mechanics.

Sure, it was fine to be able to derive all the differential equations of motion from
the one unifying equation. Namely, if for simplicity, we are now assuming that f(x, p)
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is chosen not to have any explicit dependence on time, the universal Hamilton equation
which expresses the differential equation of all variables f , is:

ḟ = {f,H} (2.33)

Ultimately, however, one obtains this way just the same equations of motion as New-
ton’s methods would yield. Was there any practical advantage to using Hamilton’s
formulation of mechanics? Indeed, there is an important practical advantage: The
main advantage of Hamilton’s formulation of mechanics is that it gives us powerful
methods for studying conserved quantities, such as the energy or angular momentum.
In general, for complicated systems (such as planetary systems, for example), there can
be much more complicated conserved quantities than these. To know conserved quan-
tities usually significantly helps in solving the dynamics of complicated systems. This
feature of Hamilton’s formulation of mechanics will carry over to quantum mechanics,
so studying it here will later help us also in quantum mechanics.

Consider a polynomial f in x and p’s with constant coefficients. Then, ∂f/∂t = 0
and Eq.2.33 applies. We can easily read off from Eq.2.33 that any such f is conserved
in time if and only if its Poisson bracket with the Hamiltonian vanishes:

{f,H} = 0 ⇒ ḟ = 0 (2.34)

Consider, for example, a free particle. Its Hamiltonian is given in Eq.2.23. We expect
of course that its momenta pi are conserved. Indeed:

ṗi =

{
pi,

3∑
j=1

p2j/2m

}
= 0 (2.35)

For another example, consider a system whose Hamiltonian is any polynomial in x’s
and p’s with constant coefficients. The proof that this system’s energy is conserved is
now fairly trivial to see (using Axiom Eq.2.9):

Ḣ = {H,H} = 0 (2.36)

I mentioned that in order to be able to find solutions to the equations of motion of
complicated real-life systems it is often crucial to find as many conserved quantities
as possible. Here is an example. Consider a 3-dimensional isotropic (i.e., rotation
invariant) harmonic oscillator. Because of its symmetry under rotations, it angular
momentum is conserved. But this oscillator has actually a much larger symmetry and
therefore more conserved quantities. This is because a harmonic oscillator, being of the
form x2 + p2 also possesses rotation symmetry in phase space. I will here only remark
that this means that the 3-dimensional isotropic harmonic oscillator possesses SO(3)
rotational symmetry as well as a larger SU(3) symmetry.

Powerful methods for discovering symmetries and constructing the implied con-
served quantities for arbitrary systems have been developed on the basis of Eq.2.33
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and the Poisson bracket. A key technique is that of so-called canonical transforma-
tions, i.e., of changes variables for which the Poisson brackets remain the same. You
can find these methods in classical mechanics texts under the keywords “canonical
transformations” and “Hamilton Jacobi theory”.

In fact, Poisson bracket methods reveal a very deep one-to-one correspondence
between conserved quantities and so-called symmetries. For example, the statement
that an experiment on a system gives the same result no matter when we perform
the experiment, is the statement of a “symmetry” which is called time-translation
invariance symmetry. In practice, it means that the Hamiltonian of the system does
not explicitly depend on time: ∂H/∂t = 0. As we just saw, this implies energy
conservation: dH/dt = 0.

Similarly, the statement that an experiment on a system gives the same result
wherever we perform the experiment is the statement of space-translation symmetry.
It implies and is implied by momentum conservation. Further, the statement that an
experiment on a system gives the same result whatever the angular orientation of the
experiment is the statement of rotation symmetry. It implies and is implied by angular
momentum conservation.

These are examples of the Noether theorem, of Emmi Noether. Her theorem plays
a crucial role both in practical applications, and in fundamental physics6. We will later
come back to Noether’s theorem.

Exercise 2.9 Show that if H is a polynomial in the positions and momenta with ar-
bitrary (and possibly time-dependent) coefficients, it is true that dH/dt = ∂H/∂t.

Exercise 2.10 Consider the system with the Hamiltonian of Eq.2.4. Show that the
total momentum is conserved, i.e., that p

(1)
i + p

(2)
i is conserved for all i.

2.3.5 A representation of the Poisson bracket

In principle, we can evaluate any Poisson bracket {f, g} by using the rules Eqs.2.6-
2.12 if, as we assume, f and g are polynomials or well-behaved power series in the
position and momentum variables. This is because the product rule allows us to break
Poisson brackets that contain polynomials into factors of Poisson brackets that contain
polynomials of lower degree. Repeating the process, we are eventually left with having
to evaluate only Poisson brackets of linear terms, which can easily be evaluated using
the first set of rules.

6Mathematically, symmetries are described as groups (for example, the composition of two rotations
yields a rotation and to every rotation there is an inverse rotation). In elementary particle physics,
symmetry groups are one abstraction level higher than Hamiltonians: It has turned out that the
complicated Hamiltonians which describe the fundamental forces, i.e., the electromagnetic, weak and
strong force, are essentially derivable as being the simplest Hamiltonians associated with with three
elementary symmetry groups.
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This is all good and fine but when f or g contain high or even infinite powers of the
position and momentum variables, then the evaluation of the Poisson bracket {f, g}
can become rather tedious and cumbersome.

For practical purposes it is of interest, therefore, to have a shortcut for the evalua-
tion of Poisson brackets. Indeed, for complicated f and g, the Poisson bracket {f, g}
can be evaluated usually faster by the following formula:

{f, g} =
n∑
r=1

3∑
i=1

(
∂f

∂x
(r)
i

∂g

∂p
(r)
i

− ∂f

∂p
(r)
i

∂g

∂x
(r)
i

)
(2.37)

Exercise 2.11 Use Eq.2.37 to evaluate {x8p6, x3p4}.

Exercise 2.12 Show that Eq.2.37 is indeed a representation of the Poisson bracket,
i.e., that it always yields the correct answer. To this end, check that it obeys Eqs.2.9-
2.13 and Eqs.2.16-2.18 (except: no need to check the Jacobi identity as that would be
straightforward but too tedious).

Exercise 2.13 Find the representation of the Hamilton equations Eq.2.19 and Eqs.2.21,
2.22 obtained by using Eq.2.37.

Remark: Some textbooks start with these representations of the Hamilton equations,
along with the representation Eq.2.37 of the Poisson bracket - without reference to
the Hamilton equations’ more abstract origin in Eq.2.19 and Eqs.2.21, 2.22. This is
unfortunate because those representations using Eq.2.37 do not carry over to quantum
mechanics, while the more abstract equations Eq.2.19 and Eqs.2.21, 2.22 will carry
over to quantum mechanics unchanged, as we will see!

2.4 Summary: The laws of classical mechanics

We already discussed that quantum mechanics must have strong similarities with clas-
sical mechanics, since it must reproduce all the successes of classical mechanics. This
suggested that the laws of quantum mechanics might be a slight modification of New-
ton’s laws which would somehow contain Planck’s constant h. Since this did not work,
we reformulated the laws of classical mechanics on a higher level of abstraction, namely
in Hamilton’s form. Before we now try to guess the laws of quantum mechanics, let us
restate Hamilton’s formulation of classical mechanics very carefully:

The starting point is the energy function H of the system in question. It is called the
Hamiltonian, and it is an expression in terms of the position and momentum variables
of the system. Then, assume we are interested in the time evolution of some quantity
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f which is also a polynomial in the x and p’s (say with constant coefficients). Then we
can derive the equation of motion for f through:

d

dt
f = {f,H} (2.38)

In particular, f can be chosen to be any one of the position and momentum variables
of the system, and we obtain their equations of motion as Eqs.2.21,2.22. In order to
obtain explicit differential equations from Eqs.2.38,2.21,2.22 we evaluate the Poisson
bracket on its right hand side. To this end, we use the definitions Eqs.2.6-2.13. The
so-obtained differential equations are then solved to obtain the positions x

(r)
i (t) and

momenta p
(r)
i (t) as functions of time.

We note that the Poisson bracket which is defined by the axioms Eqs.2.6-2.12 possesses
an often convenient explicit representation through Eq.2.37. We need to keep in mind,
however, that Eq.2.37 merely provides a convenient shortcut for evaluating the Poisson
bracket. This shortcut only works in classical mechanics. In quantum mechanics, there
will also be a representation of the Poisson bracket but it will look very different from
Eq.2.37.

2.5 Classical field theory

This section is a mere comment. In classical mechanics, the dynamical variables are
the positions of particles, together with their velocities or momenta. For each particle
there are three degrees of freedom of position and momenta.

In a field theory, such as Maxwell’s theory, positions (and momenta) are not dynam-
ical variables. After all, unlike a particle that moves around, a field can be everywhere
at the same time. In the case of a field theory, what is dynamical is its amplitude.

Consider say a scalar field φ. At every point x in space it has an amplitude φ(x, t)
that changes in time with a ‘velocity’ of φ̇(x, t) which we may call the canonically
conjugate momentum field: π(x, t) := φ̇(x, t). Unlike the three degrees of freedom that
particle possesses, a field therefore possesses uncountably many degrees of freedom,
one at each position x. Now one can define the Poisson brackets of the first kind for
them in analogy to the Poisson brackets for particles:

{φ(x, t), π(x′, t)} = δ3(x− x′) (2.39)

{φ(x, t), φ(x′, t)} = 0 (2.40)

{π(x, t), π(x′, t)} = 0 (2.41)

Here, δ3(x − x′) is the three dimensional Dirac delta distribution. The second set
of axioms for the Poisson bracket is unchanged, i.e., it is still given by Eqs.2.9-2.13.
There is also a representation of the Poisson bracket for fields in terms of derivatives
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but we won’t cover it here (can you guess it?). The energy of the classical field, i.e.,
its Hamiltonian, is:

H(φ, π) =

∫
d3x

1

2

(
π(x, t)2 +

3∑
i=1

(∂iφ(x, t))2 +m2φ(x, t)2

)
(2.42)

The Hamilton equation Eq.2.38 is unchanged.

Exercise 2.14 (Bonus question) Derive the equations of motion for φ(x, t) and
π(x, t), i.e., choose f = φ(x, t) or f = π(x, t) in Eq.2.38. Combine these two differen-
tial equations by eliminating π(x, t) to obtain one differential equation for φ(x, t) which
contains up to the second time derivatives.

The combined equation is the so-called Klein Gordon equation. The Dirac equation
and the Maxwell equations can be treated similarly, although with some small extra
complications because the amplitudes of these fields are not scalar but are vectorial
and spinorial respectively.



Chapter 3

Quantum mechanics in Hamiltonian
form

We formulated the laws of classical mechanics on a higher level of abstraction, as
summarized in Sec.2.4 because classical mechanics appeared to be not upgradeable
when written in Newton’s formulation. We are now ready to upgrade the more abstract
Hamiltonian laws of classical mechanics to obtain quantum mechanics. A modification
is needed which is a small enough to preserve all the successes of classical mechanics
while it must also introduce h in order to correctly predict quantum mechanical effects.

For example, could it be that Eq.2.38 needs to be modified to obtain quantum me-
chanics? Could the correct equation be, say, d

dt
f = {f,H}+h or d

dt
f = {f+h2/f,H},

where h is Planck’s constant? Those two equations can’t be right, of course, already
because the units generally don’t match. Could it be then that to obtain quantum
mechanics we will have to change the definitions for the Poisson bracket? Could it be
that the definition Eq.2.12 needs to be changed? This, of course, is unlikely too because
the definitions for the Poisson bracket were fixed by consistency conditions (recall, e.g.,
Exercise 2.7). The structure of our Poisson algebra is quite tightly constrained.

No, the necessary upgrade of the Hamiltonian formalism is actually much more
subtle! Let us remember that when we defined the Poisson algebra structure in the
previous section we did not make any assumptions about the mathematical nature of
the functions x(t) and p(t) (let us omit writing out the indices). In particular, we did
not make the assumption that these functions are number-valued. We can start with
a Hamiltonian, i.e., a polynomial in the x and p and then by using the rules of the
Poisson bracket we can derive the differential equations of motion. In the process, we
never need to assume that the functions x(t) and p(t) are number valued. Could it
be that the x(t) and p(t) need not be number valued and that this holds the key to
upgrading classical mechanics to obtain quantum mechanics? Actually yes!

Before we get to this, we have to consider though that we actually did assume the
x and p to be number valued at one specific point at the very end of the previous
chapter. There, we wrote down a convenient representation of the Poisson bracket in

31
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Eq.2.37, and there we needed the x and p to be number-valued - because to use this
convenient representation we needed to be able to differentiate with respect to the x
and p. We can conclude from this that if allowing the x(t) and p(t) to be something else
than number valued is the key to upgrading to quantum mechanics, then the Poisson
bracket will not be representable any more through Eq.2.37.

In fact, as we will see, this is how it will play out. Everything we did in the
previous chapter, except for the representation Eq.2.37 will still exactly hold true in
quantum mechanics. In particular, the differential equations of motion derived from
the Hamiltonian will look exactly the same in quantum and classical mechanics. That’s
because they are derived from the same Hamiltonian polynomial in the x and p by using
the same rules for the Poisson bracket. But then, if not in the equations of motion,
how does the upgrade involve h at all?

3.1 Reconsidering the nature of observables

At this point, let us reconsider the very basics: How do the symbols we write on paper
relate to real systems? We measure a system with concrete measurement devices
in the lab, for example, devices for the measurement of positions and devices for the
measurement of momenta. As usual, we invent for each kind of measurement a symbol,
say x

(r)
i and p

(r)
i . At this stage we need to be careful not to over-interpret these

symbols. At this stage, these symbols have nothing to do (yet) with numbers, vectors,
matrices, operators or bananas. Instead, these symbols are merely names for kinds of
measurement. We need to find out more about the nature of these x

(r)
i and p

(r)
i .

Now according to our everyday experience, the operation of a position measurement
device does not interfere with the operation of a momentum measurement device: it
seems that we can always measure both, positions and momenta. For example, GPS
units are able to tell both position and velocity at the same time to considerable
accuracy. It is tempting to assume, therefore, that there is no limit, in principle, to
how accurately positions and velocities can be determined. And that would mean that
we can let each of the symbols x

(r)
i (t) and p

(r)
i (t) stand for its measurement devices’s

output number at time t.
It is at this very point, namely when we make the assumption that positions and

momenta can be accurately measured simultaneously, that we make the assumption
that the symbols x

(r)
i (t) and p

(r)
i (t) can be represented mathematically as number-

valued functions of time. And number-valued functions have the property of being
commutative:

x
(r)
i p

(s)
j − p

(s)
j x

(r)
i = 0 (3.1)

Since measurement values cannot be just any number but always come out real, we
also have the law: (

x
(r)
i

)∗
= x

(r)
i and

(
p
(s)
j

)∗
= p

(s)
j (3.2)
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Similarly, we have H∗ = H. Technically, the *-operation is an example of was is called
an involution.

Exercise 3.1 Find and list the defining property of an involution and give your source.
The source is to be a textbook, and not a site such as Wikipedia. That’s because
Wikipedia is anonymous and therefore often inaccurate. Write out the answer and
make sure you understand the answer. Such material is considered examinable.

The statements above, namely that position and momentum measurements are
compatible and come out as real numbers are indeed a nontrivial part of the laws of
classical mechanics. For completeness we should have included them in the summary
of classical mechanics in Sec.2.4.

A reality property of the form of Eq.3.2 will still be true in quantum mechanics.
But the commutativity property expressed in Eq.3.1 and its underlying assumption
that the operation of position and momentum measurement devices do not interfere
with another needs to be abandoned and upgraded. It turns out that position and
momentum measurements are like taking a shower and working out at the gym. It
matters in which sequence one does them:

gym·shower - shower·gym = sweat (3.3)

3.2 The canonical commutation relations

For the remainder of this course, we will need a way to make it transparent in every
equation whether a variable is number valued or not. To this end, we will decorate
variables that may not be number valued with a hat, for example, Ĥ, p̂, x̂, or more
specifically x̂

(r)
i and p̂

(r)
i for each position and momentum measurement device. Now

how can the interference of the measurement devices mathematically be expressed as
properties of the symbols x̂

(r)
i and p̂

(r)
i ?

According to classical mechanics one would be able to operate all measurement de-
vices all the time and they would not interfere with another. We could therefore choose
the x̂

(r)
i (t) and p̂

(r)
i (t) to stand for the number-valued outcomes of those measurements

as functions of time. Crucially, the fact that we can’t actually know positions and
momenta simultaneously means that we can no longer choose the x̂

(r)
i (t) and p̂

(r)
i (t) to

stand simply for number-valued outcomes of those measurements as functions of time.
Mathematically, it was the commutativity law of Eq.3.1 which expressed that in

classical mechanics the symbols x̂
(r)
i (t) and p̂

(r)
i (t) can be represented as number valued

functions. Could it be that Eq.3.1 has to be modified to include h so that the x̂
(r)
i (t)

and p̂
(r)
i (t) become non-commutative and therefore can no longer be number-valued

functions?
Are position and momentum measurements noncommuting similar to how doing

sports and having a shower don’t commute?
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It was Dirac who first realized that all of the Poisson algebra structure that we
defined above can be kept (and therefore the ability to derive the equations of motion),

while changing just one little thing: allowing the symbols x̂
(r)
i (t) and p̂

(r)
i (t) to be

noncommutative in a very particular way.
Before we can follow Dirac’s argument, let us first reconsider the product rule for

the Poisson bracket:

{f, gh} = {f, g}h+ g{f, h} (3.4)

Using the antisymmetry rule, {f, g} = − {g, f}, the product rule can be rewritten in
this form:

{gh, f} = {g, f}h+ g{h, f} (3.5)

Using Eqs.3.4,3.5, we can now follow Dirac’s argument for why the Poisson algebra
structure imposes strict conditions on the form that any noncommutativity can take.
Dirac considered the Poisson bracket

{û1û2, v̂1v̂2} (3.6)

where û1, û2, v̂1, v̂2 are arbitrary polynomials in the variables x̂
(r)
i and p̂

(s)
j . Expression

Eq.3.6 can be decomposed into simpler Poisson brackets in two ways, namely using
first Eq.3.4 and then Eq.3.5, or vice versa. And, of course, any noncommutativity of
the x̂

(r)
i and p̂

(s)
j has to be such that both ways yield the same outcome:

{û1û2, v̂1v̂2} = û1{û2, v̂1v̂2}+ {û1, v̂1v̂2}û2 (3.7)

= û1(v̂1{û2, v̂2}+ {û2, v̂1}v̂2) + (v̂1{û1, v̂2}+ {û1, v̂1}v̂2)û2

must agree with:

{û1û2, v̂1v̂2} = v̂1{û1û2, v̂2}+ {û1û2, v̂1}v̂2 (3.8)

= v̂1(û1{û2, v̂2}+ {û1, v̂2}û2) + (û1{û2, v̂1}+ {û1, v̂1}û2)v̂2

We can, therefore, conclude that, independently of whether or not we have commuta-
tivity, it must always be true that:

{û1, v̂1}(v̂2û2 − û2v̂2) = (v̂1û1 − û1v̂1){û2, v̂2} (3.9)

And this equation has to be true for all possible choices of û1, û2, v̂1, v̂2. How can we
ensure this? As is easy to check, Eq.3.9 will be true1 if we require all expressions û, v̂
in the position and momentum variables obey:

v̂û− ûv̂ = k{û, v̂} (3.10)

1We will not show here that, vice versa, only the condition Eq.3.10 ensures that Eq.3.9 holds true.
If you are interested, there is plenty of literature on the topic of “quantization”.
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with k being some constant that commutes with everything. This is because in this
case, the left and right hand sides of Eq.3.9 are automatically identical. But what
value does k take? Of course, the case k = 0 would be classical mechanics, because it
implies that all expressions in the positions and momenta commute.

However, it turns out that in order to eventually yield the correct experimental
predictions (we will later see how), we have to set k = −ih/2π, i.e., we have

ûv̂ − v̂û = i~{û, v̂} (3.11)

where we used the convenient definition:

~ =
h

2π
(3.12)

In particular, choosing for û and v̂ the variables x
(r)
i and p

(s)
j , and using Eqs.2.6-2.8,

we now obtain the quantum mechanical commutation relations for n particles:

x̂
(r)
i p̂

(s)
j − p̂

(s)
j x̂

(r)
i = i~ δi,jδr,s (3.13)

x̂
(r)
i x̂

(s)
j − x̂

(s)
j x̂

(r)
i = 0 (3.14)

p̂
(r)
i p̂

(s)
j − p̂

(s)
j p̂

(r)
i = 0 (3.15)

Let us keep in mind that we did not modify the rules of the Poisson bracket. We still
have:

{x̂i, p̂j} = δi,j (3.16)

{x̂i, x̂j} = 0 (3.17)

{p̂i, p̂j} = 0 (3.18)

{f, g} = − {g, f} antisymmetry (3.19)

{cf, g} = c {f, g}, for any number c linearity (3.20)

{f, g + h} = {f, g}+ {f, h} addition rule (3.21)

{f, gh} = {f, g}h+ g{f, h} product rule (3.22)

0 = {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} Jacobi id. (3.23)

Because the rules for the Poisson bracket did not change with the upgrade to quantum
mechanics, one arrives in quantum mechanics at the same equations of motion as
in classical mechanics. This is as long as one does not unnecessarily commute any
variables.

The equations Eqs.3.13-3.15 are called the “Canonical Commutation Relations”
(CCRs). The appearance of the imaginary unit i will be necessary to ensure that mea-
surements are predicted as real numbers, as we will see below. Eqs.3.14,3.15 express
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that position measurements among another and momentum measurements among an-
other do not interfere. Only positions and momenta of the same particle and in the
same direction, i.e., for i = j and r = s, are noncommutative.

In conclusion, we upgrade classical mechanics to quantum mechanics by first formu-
lating classical mechanics in Hamiltonian form to identify the Poisson algebra structure.
Then, we realize that while keeping all the rules for the Poisson bracket intact, there
is still the freedom to make the associative multiplication in the Poisson algebra non-
commutative, parametrized by some constant k. Nature chose the modulus of k to be
nonzero though very small, namely ~. The fact that the Poisson bracket stays the same
when quantizing explains why quantum mechanics has the same equation of motion
as does classical mechanics. The fact that ~ is so small explains why it took long to
discover quantum mechanics.

In spite of the tremendous similarity between classical and quantum mechanics from
this perspective, quantum mechanical calculations will in practise look rather different
from classical calculations. This is because they will require representations of the
x̂
(r)
i (t) and p̂

(r)
i (t) variables as explicit non-number valued mathematical entities that

obey the commutation relations. Even though there is only a slight noncommutativity
in the Poisson algebra of quantum mechanics its representations will necessarily look
quite different from the representation of the classical commutative Poisson algebra.
This will explain why the Schrödinger equation looks rather different from Newton’s
equations.

3.3 From the Hamiltonian to the equations of mo-

tion

In quantum mechanics, as in classical mechanics, the energy function Ĥ encodes all
information about the system. It is still called the Hamiltonian and it is in general
some polynomial (or well-behaved power series) in the positions and momenta x̂

(r)
i

and p̂
(r)
i of the system. In quantum mechanics, the sequence of steps that lead from

the Hamiltonian down to concrete number predictions for experiments can be drawn
schematically in this form:

Hamiltonian
⇓

Equations of motion
⇓

Differential equations
⇓

Non-number-valued functions
⇓

Number-valued functions
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⇓
Number predictions

So far, we can perform the first step, namely the derivation of the equations of motion
from the Hamiltonian: Assume that we are interested in the time evolution of some f̂
which is a polynomial in the x̂ and p̂’s (say with constant coefficients). Then we can
derive the equation of motion for f̂ through:

d

dt
f̂ = {f̂ , Ĥ} (3.24)

where {, } is the usual Poisson bracket, as defined in Eqs.2.6-2.12. In particular, f̂ can
be chosen to be any one of the position and momentum variables of the system, so that
we obtain for their equations of motion, exactly as in Eqs.2.21,2.22:

d

dt
x̂
(r)
i = {x̂(r)i , Ĥ} (3.25)

d

dt
p̂
(r)
i = {p̂(r)i , Ĥ} (3.26)

By evaluating the Poisson bracket on the right hand side of Eqs.3.25,3.26 these equa-
tions of motion then become differential equations for the entities x̂

(r)
i (t) and p̂

(r)
i (t).

Clearly, the resulting equations of motion will be analogous to those of classical me-
chanics. The entities x̂

(r)
i (t) and p̂

(r)
i (t) must also still obey Eq.3.2, which in quantum

mechanics is usually written as:(
x̂
(r)
i

)†
= x̂

(r)
i and

(
p̂
(s)
j

)†
= p̂

(s)
j (3.27)

We will call any polynomial or well-behaved power series f̂ in the x̂ and p̂ an “observ-
able”, if it obeys f̂ † = f̂ . As we will see later, the condition f̂ † = f̂ will indeed imply
that measurement outcomes are predicted as real numbers. In addition to the position
variables x̂

(r)
i (t) and momentum variables p̂

(s)
j (t) also, e.g., the energy Ĥ(t) and the

angular momentum variables L̂i(t) are observables.

While classical mechanics requires the Poisson algebra to be commutative, quantum
mechanics requires that the equations of motion be solved by entities x̂

(r)
i (t) and p̂

(r)
i (t)

which are noncommutative:

x̂
(r)
i p̂

(s)
j − p̂

(s)
j x̂

(r)
i = i~ δi,jδr,s (3.28)

x̂
(r)
i x̂

(s)
j − x̂

(s)
j x̂

(r)
i = 0 (3.29)

p̂
(r)
i p̂

(s)
j − p̂

(s)
j p̂

(r)
i = 0 (3.30)
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Technically, we will, therefore, need to solve differential equations of motion with non-
commutative entities. In practice, the task is then to start from the top level of
abstraction, the Hamiltonian of a system, then working one’s way down by calculat-
ing the equations of motion, and then solving them to obtain something from which
eventually predictions can be made of numbers that can be measured in experiments
on the system. In the next section, we will investigate what kind of noncommutative
mathematical objects, such as, for example, matrices, may represent the position and
momentum variables.

Exercise 3.2 For classical mechanics, formula Eq.2.37 provided a convenient repre-
sentation of the Poisson bracket. However, Eq.2.37 is not a valid representation of the
Poisson bracket in the case of quantum mechanics. In quantum mechanics, we have a
(not so convenient) representation of the Poisson bracket through Eq.3.11:

{û, v̂} =
1

i~
(ûv̂ − v̂û) (3.31)

Use this representation, and the canonical commutation relations to evaluate the Pois-
son bracket {x̂2, p̂}.

Let us introduce an often-used notation, called “the commutator”:

[A,B] := A B − B A (3.32)

For simplicity, assume that Ĥ and f̂ are polynomials in the positions and momenta
which depend on time only through their dependence on the x̂ and p̂. Then the
Hamilton equation Eq.3.24 holds and takes the form:

i~
d

dt
f̂(t) = [f̂(t), Ĥ] (3.33)

(3.34)

and, in particular:

i~
d

dt
x̂
(r)
i (t) = [x̂

(r)
i (t), Ĥ]

i~
d

dt
p̂
(r)
i (t) = [p̂

(r)
i (t), Ĥ] (3.35)

These equations are called the Heisenberg equations of motion.

Remark: The particular method by which in the past few sections we upgraded
classical mechanics to quantum mechanics is called canonical quantization. I covered it
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in some detail because of its importance: Essentially the same method was used to find
quantum electrodynamics starting from Faraday and Maxwell’s electromagnetism. All
the quantum field theories of elementary particles can be derived this way. Even string
theory and most other modern attempts at finding the unifying theory of quantum
gravity try to employ canonical quantization. I should mention too that the problem
of canonical quantization for constrained classical systems was also pioneered by Dirac
but is still not fully understood. A simple example of a constrained system would
be a particle that is constrained to move on a curved surface. The most important
constrained system is general relativity.

Exercise 3.3 Reconsider the system with the Hamiltonian Eq.2.4, which consists of
two particles that are attracted to another through a harmonic force (a force which is
proportional to their distance). In practice, for example the force that binds diatomic
molecules and the force that keeps nucleons (i.e., neutrons and protons) inside a nucleus
are approximately harmonic for small oscillations. In those cases, the effect of ~ cannot
be neglected. One obtains the correct quantum theoretic Hamiltonian from the classical
Hamiltonian of Eq.2.4 by simply placing hats on the x and p’s. Find explicitly all the
equations of motion which the x̂

(r)
i and p̂

(r)
j (where r ∈ {1, 2}) of this system must obey.

Exercise 3.4 To obtain the quantum Hamiltonian from the classical Hamiltonian and
vice versa by placing or removing hats on the x and p’s is generally not as straight-
forward as in the previous exercise! Namely, there can occur so-called “ordering am-
biguities”: Consider the two Hamiltonians Ĥ1 = p̂2/2m + a(x̂2p̂x̂ − x̂p̂x̂2) and Ĥ2 =
p̂2/2m + b(p̂x̂p̂2 − p̂2x̂p̂) where a and b are constants with appropriate units. Check
whether or not these two Hamiltonians are the same in classical mechanics. Also find
all choices of a, b for which the two Hamiltonians are the same in quantum mechanics.

Exercise 3.5 Find a Hamiltonian which contains at least one thousand powers of x̂
and which also agrees with the Hamiltonian Ĥ1 of the previous exercise in classical
mechanics. Make sure that your Hamiltonian is formally hermitean, i.e., that it obeys
Ĥ† = Ĥ. Help: To ensure hermiticity, you can symmetrize. For example, x̂p̂2 is not
hermitean but (x̂p̂2 + p̂2x̂)/2 is hermitean.

Remark: In quantum theory, the choice of Hamiltonian always has an ordering am-
biguity because one could always add to the Hamiltonian any extra terms that are
proportional to (x̂p̂− p̂x̂) because those terms don’t affect what the Hamiltonian is in
classical mechanics. In principle, experiments are needed to decide which Hamiltonian
is the correct one. In practice, the simplest choice is usually the correct choice. The
simplest choice is obtained by symmetrizing the given classical Hamiltonian and then
not adding any extra terms that are proportional to x̂p̂− p̂x̂. This is called the Weyl
ordered Hamiltonian.



40 CHAPTER 3. QUANTUM MECHANICS IN HAMILTONIAN FORM

3.4 From the Hamiltonian to predictions of num-

bers

In the framework of classical mechanics we know how to descend from the most abstract
level, where the system is described simply by giving its Hamiltonian H, down to
the concrete level of predicting numbers for measurement outcomes. Now we will
have to develop methods for descending in quantum mechanics from the level of the
Hamiltonian down to the concrete predictions of numbers in experiments.

In the previous section, we already took the first step: we found that we can use
the Hamiltonian to derive the differential equations of motion of the system. Since the
Poisson brackets have not changed as we went from classical to quantum mechanics,
the equations of motion are the same as those of classical mechanics2.

The big change compared to classical mechanics, is that now the position and
momentum variables x̂

(r)
i (t) and p̂

(s)
j (t) are noncommutative according to Eqs.3.28-3.30,

and that they, therefore, can no longer be represented by number-valued functions
of time. This means that the equations of motion can no longer be interpreted as
differential equations for number-valued functions!

But we need to find a way to descend the ladder of abstractions all the way from
the Hamiltonian on the top of the ladder down to concrete predictions of numbers at
the bottom of the ladder. To that end, in order now to be able to solve the equations
of motion as explicit differential equations, the x̂

(r)
i (t) and p̂

(s)
j (t) must be viewed as

functions of time whose values are some kind of noncommutative mathematical objects.
What kind of mathematical objects could these be?

3.4.1 Linear maps

Actually, every mathematical object can be viewed as a map, if need be, as a trivial
map. For example the number 5 can be identified with the map that maps everything
to 5. So let us look at maps. Let’s try to represent the symbols x̂

(r)
i (t) and p̂

(s)
j (t) as

some kind of explicit map-valued functions of time. A simple kind of maps is the linear
maps. And they can be noncommutative! So this looks promising.

For example, any square matrix that acts on a finite-dimensional vector space of
column vectors represents a linear map. And square matrices are generally noncom-
mutative! In principle, we need the matrices to be square matrices so that they map
back into the same vector space, so that we can multiply any two matrices on the same
vector space. As we will see later, with some precautions, we can also consider infinite-
by-infinite matrices that act as linear maps on infinite-dimensional vector spaces.

2Except for the ordering ambiguity: when going from the classical to the quantum Hamiltonian we
could (if we had any experimental reason to do so) add to the quantum Hamiltonian any hermitean
terms that are proportional to ~, such as terms like ig(x̂)(x̂p̂ − p̂x̂)ĝ(x̂) where g is some polynomial
in x̂.
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There are actually many kinds of linear maps and they may not act on vector spaces
of column vectors at all!

Let us consider, for example, the infinite-dimensional vector space V := C7(R) of
seven times continuously differentiable functions on the real line. The set V forms a
vector space because it obeys the defining axioms of a vector space: in brief, one can
suitably add any two elements of V and get an element of V and one can suitably
multiply any element of V with a number and get an element of V .

Exercise 3.6 Find and list the precise axioms that a set has to obey to be called a
vector space.

Definition: A map on a vector space that is infinite dimensional is called an operator.

For example, the derivative operator, D, acts on functions in V in this way:

D : g(λ)→ d

dλ
g(λ) (3.36)

The operatorD is a linear operator, i.e., it is a linear map, because it obeys ∂λ (c g(λ)) =
c ∂λg(λ) for all numbers c and because ∂λ(g1(λ) + g2(λ)) = ∂λg1(λ) + ∂λg2(λ). Here,
in order to simplify the notation, we introduced the notation: ∂λ := d

dλ

Exercise 3.7 Check whether or not the multiplication operator, M , which maps M :
g(λ)→ λg(λ) is a linear operator.

Exercise 3.8 Show that the two operators D and M on V do not commute, namely
by calculating (DM −MD)g(λ).

Exercise 3.9 Check whether or not the operator Q which acts on functions in V as
Q : g(λ)→ λ5g(λ) is a linear operator.

3.4.2 Choices of representation

We have just seen examples of linear maps and, since they generally do not commute,
they may be useful for representing the variables x̂

(r)
i (t) and p̂

(s)
j (t) as explicit math-

ematical objects. And this is what we need to be able to descend further down the
ladder of abstractions, down to predictions of numbers for measurement outcomes.

But could it be that one should use representations of the x̂
(r)
i (t) and p̂

(s)
j (t) as

nonlinear maps instead? Non-linear representations have been considered in the liter-
ature. There are articles by Steven Weinberg, for example, on this topic. This work
has shown, however, that any attempt at using nonlinear spaces or nonlinear operators
to define quantum theories generally leads to physically incorrect predictions. We will,
therefore, here only consider linear representations.



42 CHAPTER 3. QUANTUM MECHANICS IN HAMILTONIAN FORM

Now that we have settled on representations of the variables x̂
(r)
i (t) and p̂

(s)
j (t) as

linear operators, we still have plenty of choice, because there are so many vector spaces
and so many linear operators on them. And this leads to a worry: could it happen that
we invest great effort in developing one particular kind of representation of the variables
x̂
(r)
i (t) and p̂

(s)
j (t) as operators, say as matrices, and then it turns out that we have bet

on the wrong horse? Maybe, we should have instead developed a representation of the
x̂
(r)
i (t) and p̂

(s)
j (t) as, for example, multiplication and differentiation operators?

Fortunately, essentially3 all linear representations of variables x̂
(r)
i (t) and p̂

(s)
j (t) that

obey the canonical commutation relations are equivalent, i.e., they lead to the exact
same predictions! This is the content of the Stone von Neumann theorem, which we
will later cover more precisely. Technically, as we will see, all linear representations
are the same, up to a change of basis in the vector space. It may seem strange that,
for example, a space of column vectors with countably infinitely many entries could be
isomorphic to some space of functions on the real line. But this is what will turn out
to be the case4!

So to recapitulate: our task is to solve the equations of motion, the hermiticity
conditions and the canonical commutation relations for x̂

(r)
i (t) and p̂

(s)
j (t) as linear-

map-valued (instead of number-valued) functions of time.

We now know that the choice of which kind of linear representation we use will
ultimately not matter when calculating physical predictions.

As our first choice, let us, therefore, use the most concrete kind of linear maps to
represent the x̂

(r)
i (t) and p̂

(s)
j (t), namely, let us try to represent them as matrix-valued

functions in time. Historically, quantum mechanics was actually first written down in
terms of matrix-valued functions, back in June 1925 when the young Heisenberg had
some quiet time while escaping his hay fever on the island of Helgoland in the North
Sea.

3.4.3 A matrix representation

Let us now find out how the variables x̂
(r)
i (t) and p̂

(s)
j (t) can be represented as matrix-

valued functions in time, and how, therefore, the abstract equations of motion can
be represented as explicit matrix differential equations for matrix-valued functions of
time. To keep the number of indices in check, we will restrict ourselves here to the case
of just one x̂(t) and one p̂(t) operator.

3There is a small subtlety, arising from the fact that, as we’ll see later, the x̂ and p̂ are what are
called unbounded operators. This leaves some loopholes, in principle, but nature does not appear to
make use of those.

4If you want to know the essence already: the space of functions will be the set of equivalence classes
of square-integrable functions, two functions being in the same equivalence class if their difference has
vanishing integral over its norm squared. In this space of equivalence classes one can find bases of
countably infinitely many basis vectors.
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The canonical commutation relations are of course to hold at all times. To begin
with, let us ask whether it is possible to find two N × N matrices x̂(t0) and p̂(t0) so
that at the starting time, t0, of the experiment the canonical commutation relations
hold:

x̂(t0) p̂(t0) − p̂(t0) x̂(t0) = i~ 1 (3.37)

Here, 1 is the identity matrix. At this point it is useful to remember that the trace of
matrices Tr(A) =

∑
nAn,n is linear and cyclic:

Tr(A+B) = Tr(A) + Tr(B) and Tr(AB) = Tr(BA) (3.38)

Exercise 3.10 Verify Eqs.3.38 by writing the matrices in an orthonormal basis, i.e.,
with indices, and by then evaluating the trace by summing up the matrix elements on
the diagonal.

We see that the trace of the left hand side of Eq.3.37 vanishes, while the trace of the
right hand side is i~N . Thus, there are in fact no N × N matrices, i.e., there are no
finite-dimensional matrices x̂(t0) and p̂(t0) that obey the commutation relation Eq.3.37!
For infinite dimensional matrices, however, the trace may be ill-defined on both sides,
and our argument then does not apply. In fact, there exist infinite-dimensional matrices
which do obey the commutation relation.

In order to find such matrices we start by defining the ∞×∞ dimensional matrix:

an,m =



0
√

1 0 0 0
0 0

√
2 0 0

0 0 0
√

3 0
0 0 0 0

√
4

0 0 0 0 0
. . .


n,m

(3.39)

The hermitean conjugate is:

a†n,m =



0 0 0 0 0√
1 0 0 0 0

0
√

2 0 0 0
0 0

√
3 0 0

0 0 0
√

4 0
. . .


n,m

(3.40)

Their commutation commutation relation is:

aa† − a†a = 1 (3.41)
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Since they are not numbers, we should decorate a and a† with hats but traditionally
one doesn’t put hats on these operators.

Remark: In case you are wondering because you feel that you have seen similar things
before: fundamentally, these operators a and a† have absolutely nothing to do with
harmonic oscillators. What we are currently doing will be good for any choice of system,
not just harmonic oscillators. We are currently developing a representation of the
variables x̂(t) and p̂(t) as matrices and this representation will, of course, be good for
any arbitrary choice of Hamiltonian5.

Exercise 3.11 Verify Eq.3.41.

Using a and a†, we can now represent x̂(t0) and p̂(t0) as matrices that obey the canonical
commutation relation, namely by defining:

x̂(t0) = L(a† + a) (3.42)

and

p̂(t0) =
i~
2L

(a† − a) (3.43)

Here, L is some arbitrary real number with units of length, which we need because x̂
has a unit of length while a and a† do not have units. The definitions are such that
the realness conditions Eqs.3.27 are obeyed, i.e., such that the matrices are formally6

hermitean: x̂†(t0) = x̂(t0) and p̂†(t0) = p̂(t0).

Exercise 3.12 Verify that the two matrices defined in Eqs.3.42,3.43 with the help of
Eqs.3.39,3.40, are formally hermitean. I am using the term “formally” here to indicate
that, for the purposes of this exercise, you need not worry about potential subtleties that
may arise because these matrices are infinite dimensional.

Exercise 3.13 Show that the hermitean conjugation of matrices reverses the order,
i.e., that if A and B are linear maps, then (AB)† = B†A†. To this end, write out the
matrices with indices and use that hermitean conjugating a matrix means transposing
and complex conjugating it.

Technically, † is a map from the Poisson algebra into itself which is called an involution
because it is its own inverse. Because it also reverses the order it is called an “anti”
algebra mapping: First multiplying and then applying † is the same as first applying †

and then multiplying, up to the reversal of the order.
We see, therefore, why the imaginary unit i appeared in the canonical commutation

relations: If we apply † to the commutation relations x̂p̂− p̂x̂ = k1 we obtain p̂x̂− p̂x̂ =
k∗1, i.e., we obtain k = −k∗. Thus, k has to be imaginary. And of course it is: k = i~.

5Still, it is true also that the use of the a and a† will be particularly convenient when considering
the special case of harmonic oscillators.

6I am writing here “formally” hermitean, because the issue of whether a matrix is hermitean,
symmetric or self-adjoint is quite subtle for infinite-dimensional matrices, as we will see later.
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3.4.4 Example: Solving the equations of motion for a free
particle with matrix-valued functions

In the case of the free particle which moves in one dimension, the Hamiltonian is
Ĥ = p̂2/2m. The Hamilton equations or, equivalently, the Heisenberg equations, yield
the abstract equations of motion:

d

dt
x̂(t) =

1

m
p̂(t) (3.44)

d

dt
p̂(t) = 0 (3.45)

Let us view these equations as matrix equations. Using the results of the previous
section, it becomes clear that these equations are solved through

x̂(t) = x̂(t0) +
(t− t0)
m

p̂(t0) (3.46)

and
p̂(t) = p̂(t0), (3.47)

where x̂(t0) and p̂(t0) are the matrices of Eqs.3.42,3.43. Concretely, by substituting in
the matrices a and a†, we have:

x̂(t)n,m =


0

√
1
(
L− i~(t−t0)

2Lm

)
0

√
1
(
L+ i~(t−t0)

2Lm

)
0

√
2
(
L− i~(t−t0)

2Lm

)
0

√
2
(
L+ i~(t−t0)

2Lm

)
0

. . .

 (3.48)

p̂(t)n,m =


0 −

√
1 i~
2L

0√
1 i~
2L

0 −
√

2 i~
2L

0
√

2 i~
2L

0
. . .

 (3.49)

For simplicity, not all the many zeros in these matrices are shown. The only nonzero
terms are immediately to the left and right of the diagonal.

Exercise 3.14 Show that the matrices x̂(t) and p̂(t) obey at all times t > t0 all the
quantum mechanical conditions, i.e., the equations of motion, the hermiticity condition,
and the commutation relation.

Remark: We had constructed the representation in such a way that the commuta-
tion relation and the hermiticity condition hold at the initial time t0. Having solved



46 CHAPTER 3. QUANTUM MECHANICS IN HAMILTONIAN FORM

the equations of motion we found that the commutation relation and the hermitic-
ity conditions continue to hold at all times t. This is nontrivial but it is not a co-
incidence. As we will soon see, the quantum mechanical time evolution of all sys-
tems7 preserves the commutation relations and hermiticity. The preservation of the
commutation relations is of course the preservation of the Poisson bracket. And we
have in classical and quantum mechanics that the Poisson brackets between the po-
sitions and momenta are preserved by the dynamics through the Hamilton equation:
d/dt {x̂, p̂} = {{x̂, p̂}, Ĥ} = {1, Ĥ} = 0. We can also turn the logic around. Assume
we know nothing about Hamiltonians and about the dynamics of quantum systems.
Except, we may want to assume that, whatever the time evolution is, it must preserve
the Poisson algebra structure, i.e., we require that the Poisson brackets be conserved in
time. The structure of the Poisson algebra then demands (we don’t show this explicitly
here) that the time evolution must be generated through an equation of the type of
the Hamilton equation, by some generator which we may call H, and which we may
then as well call the Hamiltonian.

3.4.5 Example: Solving the equations of motion for a har-
monic oscillator with matrix-valued functions

The vibrational degree of freedom of a diatomic molecule such as HF, CO or HCl can
be described as a harmonic oscillator (as long as the oscillations are small). Now let
x stand for the deviation from the equilibrium distance between the two nuclei. This
distance oscillates harmonically and is described by this effective Hamiltonian of the
form of a harmonic oscillator:

Ĥ =
p̂2

2m
+
mω2

2
x̂2 (3.50)

The term “Effective Hamiltonian” expresses the fact that this Hamiltonian is not really
the exact Hamiltonian but that it is a good approximation to the Hamiltonian in the
regime of low energies (i.e., of small oscillations) that we are considering here. By the
way, how do we know that the true Hamiltonian is not simply a harmonic oscillator?
Easy: we know from experiments that diatomic molecules will, for example, split apart
at sufficiently high temperatures, i.e., that they do not have infinite binding energy.
A harmonic oscillator potential, however, just keeps going up faster with distance and
therefore if you tried to pull apart the two particles in the diatomic molecule, they
would just get pulled together more and more strongly. Diatomic molecules could
never be split if they were truly harmonically bound.

So then if we know that the true potential is not harmonic, how do we know
that a harmonic potential is a good approximation at low energies? That’s because

7With the possible exception of systems that involve black hole horizons or other gravitational
horizons or singularities.
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any potential V (x) is normally well described by a smooth function V (x) with a
minimum at, say x0, around which we can Taylor expand the potential: V (x) =
V (x0) + V ′(x0)(x − x0) + 1

2
V ”(x0)(x − x0)2 + .... Here, V ′(x0) = 0 because x0 is as-

sumed to be the minimum and therefore in the regime of small oscillations, where x is
close to x0, any potential starts out quadratic, i.e., as a harmonic oscillator.

Now let us remember that the matrix-valued functions x̂(t) and p̂(t) that we want
to solve the harmonic oscillator problem Eq.3.50 have to obey three conditions, as
always in quantum theory. First, the matrix-valued functions x̂(t) and p̂(t) must obey
the equations of motion of the harmonic oscillator given in Eq.3.50. Second, they
must be hermitean, x̂(t) = x̂†(t) and p̂(t) = p̂†(t). Third, they must obey the canonical
commutation relation [x̂(t), p̂(t)] = i~1 (where 1 is now to be represented by the identity
matrix).

Now the first problem would seem easy to solve: we know that the equations of
motion are solved any linear combination of sin(ωt) and cos(ωt). But these are just
number-valued functions and cannot by themselves obey the commutation relations!
On the other hand, we do have matrices a and a† that are beautifully noncommutative.
But they are constant in time and therefore cannot alone describe the dynamics given
by the equations of motion. This suggests that we try to construct the solution by
combining the a and a† matrices with the sine and cosine solutions. Let’s try this
ansatz8

x̂(t) = ξ(t)a+ ξ∗(t)a†, (3.51)

and let us choose ξ(t) to be a linear combination of the sine and cosine solutions to
the equations of motion:

ξ(t) := r sin(ωt) + s cos(ωt) (3.52)

Here, for now, r and s can be any complex numbers. By the way, whenever one makes
an ansatz of this kind (and one often does, especially in quantum field theory), then ξ(t)
is called a mode function. The task now is to find out if we can find coefficients r and
s such that the matrix-valued function x̂(t) and the corresponding p̂(t) = m ˙̂x(t) obey
the equations of motion, are hermitean and obey the canonical commutation relation.

Exercise 3.15 Show that for any arbitrary choice of complex numbers r, s, the matrix-
valued functions x̂(t) and p̂(t) defined through Eqs.3.51,3.52 obey the equations of mo-
tion at all time.

Exercise 3.16 Show that, again for any arbitrary choice of complex numbers r, s, the
matrix-valued functions x̂(t) and p̂(t) defined through Eqs.3.51,3.52 obey the hermiticity
conditions at all time.

8An ansatz is an educated guess.
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Exercise 3.17 Find the equation that the complex numbers r, s have to obey so that
the matrix-valued functions x̂(t) and p̂(t) defined through Eqs.3.51,3.52 obey the canon-
ical commutation relations at all time. This equation for r, s is called the Wronskian
condition and it has many solutions. Give an example of a pair of complex numbers
r, s that obey the Wronskian condition and write down x̂(t) explicitly with these values
for r, s filled in.

Since there are many pairs r, s that obey the Wronskian condition, our ansatz given
by Eqs.3.51,3.52 allows us to generate many solutions! We knew that there are always
many linear representations of x̂(t) and p̂(t) in quantum theory (and that they are all
physically equivalent because they are all related by changes of bases). Here, with our
ansatz we have found already infinitely many of these representations of x̂(t) and p̂(t)
for the harmonic oscillator. Actually, among the representations that we just found,
some representations are particularly convenient and most of the time one uses one of
those. These choices of r, s turn out to be convenient because the matrix-representation
of the Hamiltonian Ĥ(t) is much simpler for clever choices of r, s than for other choices.

Exercise 3.18 Use Eqs.3.51,3.52 to express the Hamiltonian in terms of functions
and the operators a, a†. There should be terms proportional to a2, to (a†)2, aa† and a†a.

Exercise 3.19 It turns out that it is possible to choose the coefficients r and s so that
the terms in the Hamiltonian which are proportional to a2 and (a†)2 drop out. Find
the condition which the equation that r and s have to obey for this to happen. Choose
a pair of complex numbers r, s such that the Hamiltonian simplifies this way, and of
course such that the Wronskian condition is obeyed. Write down Ĥ(t) as an explicit
matrix for this choice of r, s. It should be a diagonal matrix.

Remark: Notice that this convenient choice of r, s depends on the parameters m and
ω of the harmonic oscillator. This means that each harmonic oscillator has its own
optimal choices of parameters r, s. Making such wise choices of the parameters r, s
is particularly useful in quantum field theory where each wavevector (and therefore
frequency ω) of a quantum field has its own harmonic oscillator degree of freedom,
and should therefore best have its own convenient choice of r, s that diagonalizes its
Hamiltonian.

3.4.6 From matrix-valued functions to number predictions

Let us assume now that we have solved a quantum mechanical problem in the sense
that we have found explicit matrix-valued functions x̂

(r)
i (t) and p̂

(j)
j (t) which obey

the canonical commutation relations, the hermiticity conditions, and the equations of
motion. For example, the quantum mechanical problem of the free particle in one
dimension is solved by the matrix-valued functions given in Eqs.3.48,3.49.
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How then are we to further descend the ladder of abstraction, down to the most
concrete level, namely that of predictions of numbers that will be measured in experi-
ments? How can we extract from those matrix-valued functions the information which
will let us predict the outcome of say a position or a momentum measurement at some
time t?

To this end, assume that we have solved the dynamics, i.e., that we have calculated
x̂(t) and p̂(t) as explicit matrix-valued functions of time. Then we can also immediately
write down the time evolution of any polynomial f(x̂(t), p̂(t)) of the x̂(t) and p̂(t)
that we may be interested in. For example, we can write down the time evolution of
the Hamiltonian Ĥ(x̂(t), p̂(t)) or say the first component of the angular momentum:
L̂3(t) = x̂2(t)p̂3(t)− p̂2(t)x̂3(t).

Mathematically, the problem now boils boils down to this question: Given such
a matrix valued function f̂(x̂(t), p̂(t)), let us pick a time t. Then f̂(x̂(t), p̂(t)) at the
time t is an explicit infinite-by-infinite matrix. How can we extract from that matrix
a prediction for the number-valued outcome, f̄(t), of an experiment that measures f̂?
For example, say we want to measure the position at time t. Given the matrix x̂(t) by
what method can we extract from that matrix a prediction for the position x̄(t)?

To find that method, let us start with the observation that the method by which
we extract a number-valued prediction f̄(t) from a matrix f̂(t) should not depend on
the basis in which we write down the matrix f̂(t). The reason is that a change of basis
in a vector space yields merely another way to write down the same linear map. And
physical predictions should not depend on any human choice of how (i.e., in which
basis) to write down a map. This means that f̄(t) should be a scalar formed from the
matrix f̂(t).

Now how can one get a scalar from a matrix? By using the scalar product of course.
So assume that we are given two column vectors with coefficients ψi and φi. Then

∞∑
n,m=1

ψ∗nf̂n,m(t)φm (3.53)

is scalar. Could this be the prediction for the measurement outcome? No this cannot
be quite right because this quantity is generally complex while measurement outcomes
are of course always real numbers. This leaves us with the conjecture that the predicted
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value, which we will denote by f̄(t) for a measurement of f̂(t) at time t, is9 of the form:

f̄(t) =
∞∑

n,m=1

ψ∗nf̂n,m(t)ψm (3.54)

Now that we are using the same vector left and right, this number is guaranteed to
be real for all quantities f̂ which are hermitean, f̂ † = f̂ , i.e., for all quantities that in
classical mechanics are real-valued, as it should be.

Let us check that Eq.3.54 always comes out real if f̂ is what is called an observable,
i.e., if f̂ obeys f̂ † = f̂ , i.e., if f̂ ∗s,r = f̂r,s. Indeed10:

f̄(t)∗ =

(
∞∑

r,s=1

ψ∗r f̂r,s(t)ψs

)∗
=

∞∑
r,s=1

ψrf̂
∗
r,s(t)ψ

∗
s =

∞∑
r,s=1

ψ∗s f̂s,r(t)ψr = f̄(t) (3.55)

So this works! And, for example, the predictions for measurements at time t of the
position, momentum, angular momentum or energy are, therefore:

x̄(t) =
∞∑

n,m=1

ψ∗nx̂n,m(t)ψm (3.56)

p̄(t) =
∞∑

n,m=1

ψ∗np̂n,m(t)ψm (3.57)

L̄(i)(t) =
∞∑

n,m=1

ψ∗nL̂
(i)
n,m(t)ψm (3.58)

H̄(t) =
∞∑

n,m=1

ψ∗nĤn,m(t)ψm (3.59)

9There is a more general possibility: clearly, f̄ should depend on f̂ linearly (they have the same

units) and this leaves the possibility that f̄(t) = Tr(ρf̂(t)) =
∑

i,j ρi,j f̂j,i(t) where ρ is some hermitean
matrix. As we will see, we will make use of this possibility when describing a system whose initial
conditions we are not quite sure of, where we can only give probabilities of initial conditions, i.e.,
where we don’t even know for sure even the initial expectation values of the various observables. In
this case, we say that the system is described by a mixed state and the matrix ρ is called the mixed
state matrix. The term “mixed” is used because the uncertainties in predictions then have mixed
origins - both from quantum effects but also from our ignorance of the system to start with. What we
consider so far are so-called pure states ψ, which are the special case where ρi,j = ψ∗i ψj . For general
ρ, the normalization condition

∑
i ψ
∗
i ψi = 1 is replaced by Tr(ρ) = 1.

10This argument is correct for finite-dimensional matrices only. Quantum mechanics requires
infinite-dimensional matrices where the sums are infinite sums and analytic issues therefore arise.
That there is a fundamental difference between finite and infinite-dimensional vector spaces we saw
earlier when we found that the canonical commutation relations do not possess finite-dimensional
representations. We will, therefore, later revisit the issue of hermiticity.
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3.5 Initial conditions

In order to obtain those scalar functions for predictions, f̄(t), we had to introduce a
complex vector with infinitely many coefficients!

ψn =


ψ1

ψ2

ψ3
...

 (3.60)

We are free to choose ψ, and it is a convention to choose a vector ψ of unit length, i.e.,
for which

∑∞
n ψ∗nψn = 1. We call such vectors normalized. For example, the vector ψ

could be given by:

ψn =
1

5


4
3i
0
0
...

 (3.61)

There are, of course, infinitely many choices for such vectors ψ. But what does making
a choice of such a vector ψ mean? What is the physics of that choice?

Obviously the choice of ψ determines the predictions that we make for all possible
measurements at any time t! The choice of ψ in fact even determines what the expected
outcome is for measurements at the initial time t0! And this last observation reveals
what the choice of the vector ψ means physically: the choice of ψ is the choice of initial
conditions!

Remember that when we solved the equations of motion to obtain those matrix-
valued functions x̂(t) and p̂(t), we did not have an opportunity to specify the initial
conditions of the experimental setup. We did not have an opportunity to specify, for
example, whether the particle was initially, i.e., at the time t0, fast or slow, or where
the particle was at the initial time t0.

Now we have an opportunity to specify how the system started off at time t0: The
choice of ψ encodes our specification of the initial state of the system: by choosing
a vector ψ we are choosing an experimental starting condition at time t0. Namely,
by choosing ψ, we are choosing what measurement outcomes to expect if we measure
any arbitrary observable, f̂ , right at the initial time t0. Since there are infinitely many
observables, it is plausible that we get to choose infinitely coefficients in ψ to fix their
initial conditions. For example, some of these observables are:

x̄(t0) =
∞∑

n,m=1

ψ∗nx̂n,m(t0)ψm (3.62)

p̄(t0) =
∞∑

n,m=1

ψ∗np̂n,m(t0)ψm (3.63)
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L̄(i)(t0) =
∞∑

n,m=1

ψ∗nL̂
(i)
n,m(t0)ψm (3.64)

H̄(t0) =
∞∑

n,m=1

ψ∗nĤn,m(t0)ψm (3.65)

And of course also for any f̂ obeying f̂ † = f̂ , we have

f̄(t0) =
∞∑

n,m=1

ψ∗nf̂n,m(t0)ψm (3.66)

3.6 Emergence of probabilities

The fact that we have equations of motion and that initial conditions are to be specified
is not unusual of course, because this is also what one does in classical mechanics. But
what seems unusual here is that we have to specify so many initial conditions. In
order to choose a vector ψ that describes the initial state of our quantum system,
we get to choose its infinitely many coefficients ψi (with the only constraint being
that ψ should be normalized). Why are there so many initial conditions? In classical
mechanics, it sufficed to specify the initial position and the initial momentum and that
determined the initial state completely! And from that initial condition you could then
calculate x(t) and p(t). And, in classical mechanics, once you have x(t) and p(t) you
automatically also have the predictions for any f(x(t), p(t)).

So let us ask: in quantum mechanics, does it really matter which values we choose
for the infinitely many coefficients of ψ or do perhaps only two of these coefficients
matter? Isn’t it the case that once we can make a prediction x̄(t) and p̄(t) we can also
predict any f̄(x̂(t), p̂(t))? If that were true, then this should be true:

f̄(x̂(t), p̂(t)) = f(x̄(t), p̄(t)) (3.67)

Actually, this equation does generally not hold in quantum mechanics! Mathematically,
it is because, for example, when A is a square matrix and v is a vector then generally
v†Anv 6= (v†Av)n. Therefore, just because we have a prediction for the position and
the momentum does not mean that we have a prediction for other measurements such
as the energy or the angular momentum!

Exercise 3.20 Give a counter example for Eq.3.67. To this end, write out Eq.3.67
explicitly, i.e., in matrix form, for the case f̂(x̂(t), p̂(t)) = x̂2. Then choose a suitable
normalized ψ so that Eq.3.67 is seen to be violated. (It is not difficult to find such a
ψ, almost every one will do.)

On one hand, this explains why, mathematically, we have to specify so many initial
conditions in quantum mechanics, namely all those coefficients ψi. But what is the
physics of this?
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To see this, let us have a closer look at the observation that knowing the number-
valued predictions x̄(t), p̄(t) does not alone suffice to make predictions of the outcome
of other measurements f̄ . Namely, this means, in particular, that even if we have
a prediction for, say, the position, x̄(t), we actually don’t automatically have also a
prediction for the square of the position: x2(t).

From the perspective of classical mechanics this is weird. If we have a prediction for
the position shouldn’t we have a prediction for the square of it too? Well yes. Except,
if the prediction is not certain, if it has some statistical spread or uncertainty. Then,
even in classical physics, the square of the expectation value of a measurement need
not be the expectation value of the square. In fact, as is well known, the statistical
variance (∆(Q))2 of any variable Q is defined as the difference between the two

(∆(Q))2 :=
(
Q− Q̄

)2
= Q2 − Q̄2 (3.68)

which, as the middle term shows, is also the mean of the squared deviation from the
mean. ∆Q is called the uncertainty in Q.

Now in quantum mechanics, if f̂ is an observable, i.e., if it is hermitean, so is f̂ 2.
This is because if f̂ † = f̂ then (f̂ 2)† = f̂ 2. And it is important that in quantum
mechanics they are independent observables. For example, their initial values can be
specified independently. This is because, as always in statistics, we generally have
f 2 6= f̄ 2. The average of some squared numbers is rarely the same as the square of the
average of those numbers: generally, e.g. (a21 + a22)/2 6= ((a1 + a2)/2)2. Interestingly,
this means that quantum mechanics also allows us to calculate the variance in the set
of measurement outcomes of each observable f̂ , namely through this mean value:

(∆f(t))2 = (f(t)− f̄(t))2 = f 2(t)− f̄ 2 (3.69)

For example, from Eq.3.69:

(∆x(t))2 =
∞∑

r,s,t=1

ψ∗r x̂r,sx̂s,tψt −

(
∞∑

u,v=1

(ψ∗ux̂u,vψv)

)2

(3.70)

Here, the number x̂r,s is the matrix element of the matrix x̂ with indices r, s. Similarly,
given ψ, also all the higher moments of the probability distributions of positions and
momenta are predictable, such as xn(t) and pn(t).

What we have found, therefore, is that in quantum mechanics, since the predictions
generally (i.e., except for special cases) obey

f̄(x̂(t), p̂(t)) 6= f(x̄(t), p̄(t)), (3.71)

the predictions should come with uncertainty. They should be statistical. Our predic-
tions for observables f̄(t) such as x̄(t), p̄(t), H̄(t), L̄i(t), ... can only be predictions for
expectation values. There will generally be a spread of outcomes, i.e., there will be
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nontrivial variances. This crucial finding, namely that the predicted expectation values
of observables f̂ are largely independent, also explains why it takes so many numbers,
namely all the coefficients ψi to specify initial conditions in quantum mechanics. In
effect, one has to specify all the initial expectation values of all the possible observ-
ables. And there are infinitely many polynomials f̂(x̂, p̂) that obey f̂(x̂, p̂)† = f̂(x̂, p̂).
In effect, we need to specify so many initial conditions because we need to fix an entire
probability distribution.

We therefore arrive at this interpretation: Assume we run an ensemble of experi-
ments, each with the same initial experimental setup, i.e., all described by the same
initial state vector ψ. Then, having calculated the solutions to the equations of motion
as in Eqs.3.48,3.49, we can calculate the mean of any observable f̄(t), such as, for
example, position x̄(t) and momentum p̄(t) that will be measured in an ensemble of
measurements by using Eqs.3.56,3.57. In fact, we can only predict means. But this
also includes the ability to predict the variance of any variable, because the variance
of an observable is a mean value too, as Eq.3.69 shows.

Remark: Also for systems of many particles, such as a molecule, all observables f̂(t),

such as x̂
(r)
i and p̂

(s)
j , can be represented as matrices acting in the same vector space.

The choice of ψ in this vector space determines how all the constituent particles start
off, because all f̄(t0) are determined, including, e.g., x̄

(r)
i (t0) =

∑
i ψ
∗
i x̂

(r)
i (t0)ψi etc.

Remark: We say that ψ is the so-called state vector of the system. It is clear from
Eqs.3.54 that if two state vectors ψ and φ differ only by a phase, ψn = eiαφn for all
n, then they yield the same predictions and are, therefore, describing the same state.
The state vector of any system is defined only up to an overall phase.

Remark: Conversely, assume we prepare an experimental setup for which we know
the ensemble mean values at initial time f̄(t) for all observables f̂ :

x̄(t0) = a1, p̄(t0) = a2, x2(t0) = a3, p2(t0) = a4, x3(t0) = a5, ... (3.72)

There are, clearly, infinitely many observables f̂ (with f̂ † = f̂) whose initial values can
be specified. Which ψ describes a system with so-specified initial conditions? ψ can be
calculated from Eqs.3.72, which are infinitely many equations for the unknown vector
components {ψi} in terms of the given coefficients {aj}:∑
i,j

ψ∗i x̂i,j(t0)ψj = a1,
∑
i,j

ψ∗i p̂i,j(t0)ψj = a2,
∑
i,j,k

ψ∗i x̂i,kx̂k,j(t0)ψj = a3, ... (3.73)

Mathematically, we are dealing with a so-called moment problem. We must ask, in
particular, what conditions the coefficients {ai} must obey for there to exist a matching
state ψ. Physically, this is the question which initial conditions can actually occur
in an experimental setup. We anticipate, of course, that the {ai} cannot be chosen
completely arbitrarily because some observables are interfering variables. This question
will later lead us to Heisenberg’s famous uncertainty relations.
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Exercise 3.21 Verify that ψ of Eq.3.61 is normalized. For this choice of ψ, calculate
explicitly the expectation values x̄(t), p̄(t) as well as the uncertainties in those predic-
tions, i.e., the standard deviations ∆x(t) and ∆p(t) for the free particle. Your results
should show that neither the position nor the momentum are predicted with certainty at
any time, not even at the initial time t0. The fact that ∆x(t) grows in time expresses
that a momentum uncertainty over time leads to increasing position uncertainty. ∆p(t)
remains constant in time, expressing that the momentum of a free particle, no matter
what value it has, remains unchanged.

Finally, we also have to conclude that if we measure our system at time say t1 then
we gain information and we have to update our initial state vector accordingly to a
new initial state vector ψ′ which is such as to encode our knowledge of the initial state
of the system at t1. We will later revisit the question of this so-called wave function
collapse.

Exercise 3.22 Spell out the step of the second equality in Eq.3.68.

3.7 The Hilbert space of quantum mechanics, and

Dirac’s notation

In the previous sections, we solved the equations of motion for matrix-valued functions
x̂(t)ij and p̂(t)ij. And, of course, once we have the x̂(t)ij and p̂(t)ij, we can easily

calculate from them the matrix-valued function of time f̂(t)ij for every observable f̂ ,

i.e., for every polynomial in the x̂ and p̂ that obeys f̂ = f̂ †.
We also found out how to specify initial conditions, namely by choosing vector

coefficients ψi. Of course, the coefficients ψi themselves are numbers and not vectors.
The ψi are the coefficients of an abstract vector. Following Dirac, we will call that
abstract vector a “ket” and denote by |ψ〉. By working with column vectors and
matrices, we have implicitly chosen a basis in the vector space. Let us give these basis
vectors the names |bn〉, for n = 1, 2, ....

The fact that the numbers ψi are the coefficients of |ψ〉 in the basis {|bn〉}∞n=1 that
we have implicitly chosen is expressed in the equation:

|ψ〉 =
∑
n

ψn|bn〉 (3.74)

Therefore, the abstract vector |ψ〉 is an element of the abstract vector space of initial
state vectors. Once we choose a basis, then the abstract vector |ψ〉 has a unique
collection of coefficients ψn that expand |ψ〉 in that basis. The coefficients ψn are
usually arranged in a column and that column of numbers is also being called a column
vector. But keep in mind that this column is really just the collection of the numbers
ψn. This column vector of coefficients is not the state vector |ψ〉. Instead, one says
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that the column vector of the coefficients represents the abstract initial state vector
|ψ〉 in the basis {|bn〉}∞n=1.

Similarly, the matrix elements x̂(t)ij themselves are of course simply numbers. They
are the coefficients of the abstract linear map x̂(t) from the vector space into itself, in
the basis {|bn〉}∞n=1. We say that the matrices, such as (x̂(t)ij)

∞
i,j=1 provide a represen-

tation of the abstract operator x̂(t) that maps the abstract vector space of initial state
vectors into itself. Whenever then we change basis in the vector space, as we will freely
do later, then this implies a corresponding change of the coefficients of the matrices
x̂(t)ij, p̂(t)ij, ..., f̂(t)ij as well as the coefficients ψi of the vector ψ. The abstract initial

state vector |ψ〉 and the abstract operators such as x̂(t), p̂(t) and f̂(t) stay the same
as we change the choice of basis. But their representation in terms of column vectors
and matrices will change11.

The representations that we have used so far have been so-called discrete represen-
tations, i.e., representations that use a basis of countably many, i.e., discretely-labeled
basis vectors {|bn〉}∞n=1. One of the perks of working with infinite-dimensional vector
spaces is that they also admit so-called continuous representations. One may loosely
think of these representations as using a set of continuously-labeled basis {|bλ〉}λ∈K
where K = R or K ⊂ R. It is also possible to have representations using bases that
are in part discrete and in part continuous12. This means that the way that concrete
quantum mechanical calculations look like can depend very much on which basis one
chooses to work with, i.e., on the choice of representation.

Always, however, the number-valued predictions of expectation values of a quantum
theory only depend on the abstract operators x̂(t), p̂(t),... and on the abstract vectors
ψ. The predictions, x̄(t), p̄(t), ... f̄(t) are scalars, i.e., they are basis independent.
Choices of basis, i.e., choices of representation are merely issues of convenience.

Let us now study what ultimately matters, namely the abstract structure of the
vector space of initial state vectors and the structure of the abstract operators acting
as maps on this abstract vector space.

3.7.1 Hilbert spaces

We begin by reviewing the definition of a complex vector space. In brief, a complex
vector space is a set, H, which is an abelian group over the complex numbers:

Definition: Any set H is called a complex vector space, if

11Notice that we can always rotate any basis so that in the new basis the vector |ψ〉 is the vector
with the coefficients ψi = δi,0. This is usually not convenient but it is possible.

12For example, the eigenbasis of the Hamiltonian of the Hydrogen atom is of this form, containing
a countable number of eigenstates that are bound states and an uncountable number of eigenstates
that are scattering states.
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a) it possesses an operation H×H → H called “addition” which obeys the rules for a
commutative (i.e., also called abelian) group and if

b) the set H has a multiplication C × H → H obeying the following axioms for all
|v〉, |w〉 ∈ H and for all α, β ∈ C:

(α + β)|v〉 = α|v〉+ β|v〉 (3.75)

α(|v〉+ |w〉) = α|v〉+ α|w〉 (3.76)

(αβ)|v〉 = α(β|v〉) (3.77)

1|v〉 = |v〉 (3.78)

Notice that every set obeying these axioms is a complex vector space. To illustrate
this point, consider, for example, the set of 3 × 2 matrices with complex entries. We
can add such matrices and we can multiply them with complex numbers. It is easy
to check that the above axioms are obeyed, so this set is a complex vector space.
Also, consider, for example, the set of complex-valued continuous functions on R4,
such as g(x1, x2, x3, x4) = x1 cos(x2x

x
3)eix2x4 or h(x1, x2, x3, x4) = x1 + i(x2 + x34). We

can add such functions and we can multiply them with complex numbers and we will
always get yet another continuous function on R4. It is easy to check that the set of
complex-valued continuous functions on R4 is a complex vector space (which is infinite
dimensional). Also, and this will be very important, given any complex vector space
one can construct another complex vector space, called the dual vector space, H∗.

Definition: For any complex vector space, H, we define the complex vector space
called its dual space, H∗, as the set of continuous13 linear maps v̂ → C. We call
the elements of H∗ “bra” vectors and use the notation 〈r| ∈ H∗. They linearly map
elements of H into complex numbers:

〈r| : H → C (3.79)

〈r| : |v〉 → 〈r|v〉 (3.80)

That they are linear maps means:

〈r| : (α|v〉+ β|w〉)→ α〈r|v〉+ β〈r|w〉 (3.81)

Exercise 3.23 Verify that H∗ is a complex vector space.

13Aren’t all linear maps continuous? Well no, not necessarily in infinite-dimensional spaces! Con-
sider for example the map φ : H → C that maps vectors |ψ〉 into numbers through |ψ〉 → φ(|ψ〉) :=∑

n n!ψn in some basis. The map φ is clearly a map from the vector space into the complex numbers
that is linear. But φ is not continuous. To see this, consider that arbitrarily small changes to the
vector |ψ〉 (i.e., to the coefficients ψn) can change φ(|ψ〉) arbitrarily strongly.
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Definition: A complex vector space is said to possess a scalar product or also called
inner product if it possesses a map H × H → C that obeys certain conditions that
we’ll discuss below. So an inner product takes two vectors in H and maps then into
a number. Equivalently, a vector space with an inner product is a vector space that
possesses a map H → H∗ obeying certain conditions. How does this yield an inner
product of two vectors in H? Take the first vector, map it into a vector in H∗ and
then use that dual vector to linearly map the second vector in H to obtain a number,
which is then the value of the inner product.

Concretely, such a map is usually denoted by † : H → H∗ and it is called a
hermitean conjugation map. We can use the hermitean conjugation map to map any
element |v〉 ∈ H into an element in |v〉† ∈ H∗. One could give this image of the
vector |v〉 any name but one traditionally chooses to call it by the same name as its
pre-image: 〈v| := |v〉† ∈ H∗. The hermitian conjugation map is required to be what is
called anti-linear, i.e., linear but with a complex conjugation:

† : H → H∗ (3.82)
† : r|v〉+ s|w〉 → r∗〈v|+ s∗〈w| ∀|v〉, |w〉 ∈ H,∀r, s ∈ C (3.83)

What then is the list of requirements that defines an inner product, or scalar product?
A scalar product is required to map any two vectors |v〉, |w〉 ∈ H into a complex number
denoted by 〈v|w〉 ∈ C, obeying these conditions:

〈u| (α|v〉+ β|w〉) = α〈u|v〉+ β〈u|w〉 (3.84)

〈v|w〉∗ = 〈w|v〉 (3.85)

〈v|v〉 ≥ 0 (3.86)

〈v|v〉 = 0 only if |v〉 = 0 (3.87)

Definition: A complex vector space equipped with a scalar product is called a unitary
vector space or inner product space or also pre-Hilbert space.

Definition: The “length” or “norm”, || |v〉||, of a vector |v〉 ∈ H is defined as
|| |v〉|| = 〈v|v〉1/2. We say that |v〉 is normalized if || |v〉|| = 1.

Definition: The distance d(|v〉, |w〉) between two vectors is defined as ||(|v〉 − |w〉)||.

Since quantum mechanics requires infinite-dimensional representations, we will have to
be concerned with sequences of vectors and their convergence. For example, if we are
to make sense of a series such as Eq.3.74 we need to define what it means to sum up
an infinite number of basis vectors.

Definition: We say that a sequence of vectors |vn〉 converges (namely to some vec-
tor |v〉), and we write limn→∞ |vn〉 = |v〉, iff (i.e., if and only if) it is true that
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limn→∞ d(|vn〉, |v〉) = 0.

Definition: A sequence {|vn〉} is called fundamental (or Cauchy), if and only if
limn,m→∞ d(|vn〉, |vm〉) = 0. By this is meant that ∀ε > 0, ∃R so that ∀n,m > R:
d(|v̂n〉, |vm〉) < ε.

Definition: A pre-Hilbert space is called a Hilbert space if all its fundamental se-
quences converge14.

Remark: Since the distance to a vector of infinite length would be infinite, no se-
quence could converge to a vector of infinite length. All vectors in a Hilbert space have
finite length.

How then, do these abstract concepts relate to the concrete vector components ψn and
explicit matrix elements x̂r,s, p̂r,s and f̂r,s?

To see this connection, we need the concept of Hilbert basis:

3.7.2 Hilbert bases

Definition: We say that a set of orthonormal vectors {|bn〉}, i.e., a set of vectors obey-
ing 〈bn|bm〉 = δn,m, is a Hilbert basis for H, if all |ψ〉 ∈ H have a unique representation
of the form:

|ψ〉 =
∑
n

ψn|bn〉 (3.88)

Definition: A Hilbert space H is called “separable”, if it possesses a countable Hilbert
basis.

Are they big enough for quantum mechanics? Yes, actually we know already that in
quantum mechanics we can work with a separable Hilbert because we have succeeded

14This means that in order to obtain a Hilbert space from a given pre-Hilbert space it may be
necessary to add new elements to it - for the Cauchy sequences to converge to - until every Cauchy
sequence has an element to converge to. This is similar to how the set of real numbers R is obtained
from the set of rational numbers, Q: There are Cauchy sequences in Q which have no rational number
to converge to. Consider, for example, the sequence of rational numbers sn where sn = trunkn(

√
2),

namely, sn is given by the first n digits of
√

2. Clearly, the sequence (sn) is a Cauchy sequence but
it does not converge to any number in Q. That’s because

√
2 /∈ Q. So we add

√
2 and all other

such irrational numbers to finally obtain R. Now you may say yes but coming from Q we don’t know
what, for example,

√
2 is. How can we add it to Q then? Good that you ask! Here is roughly how

you can do it. Consider all Cauchy sequences that seem to want to converge to the same point, say√
2. How do we know that two Cauchy sequences want to converge to the same point? When their

difference converges to zero. All these Cauchy sequences that want to converge to the same point
in that sense form an equivalence class of sequences. We can call that equivalence class

√
2. In this

way, any real number is really a set of equivalence classes of Cauchy sequences, where the elements
within an equivalence class all converge to the same point (in the sense above). The completion of a
pre-Hilbert space to obtain a Hilbert space is analogous.
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above in representing the canonical commutation relations in a representation of matri-
ces and column vectors. In fact, in quantum mechanics, it always suffices to consider
a separable Hilbert space. Separable Hilbert spaces are the smallest Hilbert spaces
after finite-dimensional Hilbert spaces. Recall that there are different kinds of infinity:
following Cantor, we say that two sets have the same number of elements, or have the
same “cardinality”, if their elements can be mapped bijectively into another. For ex-
ample, there are just as many even numbers, as there are natural numbers, as there are
rational numbers. There are, however, many more real numbers, i.e., their cardinality
is higher. Quantum field theory does appear to require nonseparable Hilbert spaces
whose bases have the cardinality of the real numbers. If nature possesses a shortest
length scale then a separable Hilbert space could suffice for quantum field theory as
well.

Theorem: All Hilbert bases of a given Hilbert space have the same cardinality.

This theorem implies for quantum mechanics, because we know its Hilbert space is
separable, that all its Hilbert bases are countable. This means that whatever Hilbert
basis we may choose, our vectors will always be represented as column vectors and
our x̂, p̂ and general f̂ will be represented as matrices. It also means that the Hilbert
space of a single 1-dimensional harmonic oscillator has the same dimension (namely
countable infinity) as does the Hilbert space of a space ship15.

As we will see later, there is a way to use what amounts to a continuous basis, but
these come at the cost of the “basis vectors” having infinite length and therefore not
being in the Hilbert space.

3.7.3 Discrete wave functions and matrix representations

Following up on Eq.3.88, it is important now to note that the coefficients ψn of the
vector |ψ〉 in the {|bn〉} basis can be calculated through the scalar products:

ψn = 〈bn|ψ〉 (3.89)

Eq.3.89 is easily verified by applying 〈bm| from the left in Eq.3.88:

〈bm|ψ〉 = 〈bm|
∑
n

ψn|bn〉

15Following up on previous comments: In quantum field theory, which supersedes quantum mechan-
ics, the Hilbert space is, in principle, non-separable. That’s because every wave vector, of which there
are continuously infinitely many, has its own harmonic oscillator. To avoid this problem, in practice
we can consider a finite region of spacetime so that the set of wave vectors becomes discrete. If we
further consider only wavelengths larger than some very small cutoff then only finitely many wave
vectors remain and the Hilbert space is then separable. It is generally considered likely that there is
a smallest length scale in nature, due to quantum gravity effects.
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=
∑
n

ψn〈bm|bn〉

=
∑
n

ψnδn,m

= ψm

Definition: We call the set of coefficients ψn = 〈bn|ψ〉 the “wave function” of the
state |ψ〉 in the basis {|bn〉}.

Remark: We have not yet introduced “continuous bases” such as the “position basis”
|x〉 because they come with another set of issues to discuss. But it may be worth
mentioning already that for them the corresponding definition will be: We call the set
of coefficients ψ(x) = 〈x|ψ〉 the “wave function” of the state |ψ〉 in the basis of the |x〉.

A very useful observation is that the elements |bn〉 of any Hilbert basis can be used to
provide a representation of the identity map in this way:

1 =
∑
n

|bn〉〈bn| (3.90)

This is called the resolution of the identity in terms of the basis vectors |bn〉. For
example, using Eq.3.89:

1|ψ〉 =
∞∑
n=1

|bn〉〈bn|ψ〉 =
∑
n

ψn|bn〉 (3.91)

Resolutions of the identity are commonly used for the important task of turning ab-
stract equations into equations for concrete matrices and concrete vector coefficients.
For example, let us insert the identity in the expression for the length of a vector:

〈ψ|ψ〉 = 〈ψ|1|ψ〉 (3.92)

=
∑
n

〈ψ|bn〉〈bn|ψ〉 (3.93)

=
∑
n

ψ∗nψn (3.94)

Since all vectors |ψ〉 ∈ H are of finite length, we conclude that the vector components
must be square summable: ∑

n

ψ∗nψn <∞ (3.95)

Further, if matrix elements f̂r,s are given in the {|bn〉} basis, then they define a linear

map f̂ :

f̂ =
∞∑

r,s=1

|br〉 fr,s 〈bs| (3.96)
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Conversely, the matrix elements of a linear map f̂ in the basis of the |bn〉 can be
calculated as scalar products:

f̂r,s = 〈br|f̂ |bs〉 (3.97)

This equation follows from Eq.3.96 by applying to it 〈bn| and |bm〉 from the left and
right respectively.

3.7.4 The domain of operators

We need to be careful because in infinite-dimensional Hilbert spaces linear maps nor-
mally cannot be allowed to act on all vectors of the Hilbert space! This is because if
|ψ〉 ∈ H and if therefore

∑
n ψ
∗
nψn < ∞, this does not imply that f̂ |ψ〉 ∈ H. This is

because the coefficients φn =
∑

m f̂n,mψm may not be square summable:
∑

n φ
∗
nφn =

divergent, i.e., we may have |φ〉 /∈ H.

For example, consider this matrix:

(f)n,m :=


12 0 0 0
0 22 0 0
0 0 32 0
0 0 0 42

. . .


n,m

(3.98)

The column vector16

(ψ)n =


1/1
1/2
1/3
1/4

...


n

(3.99)

is square summable17. Therefore, the coefficients ψn define a vector |ψ〉 ∈ H. Now the
action of the matrix (f)n,m on this column vector would yield a column vector with the
components φn =

∑∞
m=1 fnmψm = n. But the length of this column vector φ would be

infinite because
∑∞

n=1 n
2 =∞. Therefore, the numbers φn cannot be the coefficients of

any vector in the Hilbert space relative to any basis. Therefore, the abstract operator
f̂ defined by the matrix above cannot be allowed to act on the abstract Hilbert space
vector |ψ〉 defined by the column vector above (namely because it would map it outside
the Hilbert space).

Definition: We call the set Df ⊆ H of vectors on which f̂ is allowed to act the domain

of f̂ . In general, we have some freedom in choosing the domain of an operator. But

16Keep in mind that this so-called ‘column vector’ is really just the collection of the coefficients of
an abstract Hilbert space vector relative to a choice of basis.

17Namely,
∑∞

n=1 1/n2 = π2/6. In the year 1735, Leonard Euler, who was 28 at the time, was the
first to solve this tough old problem and that started his fame.
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we have to keep in mind that domains must always be chosen such that the image of
every vector in the domain is also inside the Hilbert space:

∀|v〉 ∈ Df : f̂ |v〉 ∈ H (3.100)

Note that we can allow the matrix (f̂)n,m of Eq.3.98 to act, for example, on all column
vectors which possess only finitely many nonzero components, i.e., all the corresponding
states are in the domain of the linear map f̂ =

∑
n,m f̂n,m|bn〉〈bm| that is defined by the

matrix elements of Eq.3.98. But of course the domain of this f̂ can be made a little
larger by allowing it to act on vectors with infinitely many nonzero coefficients that,
however, have to decay fast enough.

Exercise 3.24 Let us consider how large we can make the domain Df ⊂ H of the

operator f̂ defined in Eq.3.98. Concretely, how fast do the coefficients ψn of |ψ〉 have
to decay, as n→∞. For this exercise, assume that the coefficients |ψn| scale as ns for
n → ∞. What then are the allowed values for s? Hint: The so-called Dirichlet series
representation of the Riemann zeta function ζ(r) :=

∑∞
n=1 1/nr diverges for r ≤ 1 but

converges for r > 1.

3.7.5 Changes of basis

Using the Dirac bra-ket notation, we can now rewrite equations such as Eq.3.54 in a
much more compact form:

f̄(t) = 〈ψ|f̂(t)|ψ〉 (3.101)

We can easily recover Eq.3.54 from Eq.3.101, simply by twice inserting the resolution
of the identity:

f̄(t) = 〈ψ|f̂(t)|ψ〉 (3.102)

= 〈ψ|1f̂(t)1|ψ〉 (3.103)

=
∞∑

n,m=1

〈ψ|bn〉〈bn|f̂ |bm〉〈bm|ψ〉 (3.104)

=
∞∑

n,m=1

ψ∗nf̂n,mψm (3.105)

The beauty of Dirac’s notation is that it does not refer to any particular choice of
basis. If we do want to work in a particular basis, say {|bn〉}∞n=1 then we can simply
suitably insert resolutions of the identity in terms of the basis vectors. If we then wish
to change basis then we can do this by inserting resolutions of the identity for the new
basis, say {|cn〉}∞n=1:

f̄(t) = 〈ψ|f̂(t)|ψ〉 (3.106)
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=
∑
n,m

〈ψ|bn〉〈bn|f̂ |bm〉〈bm|ψ〉 (3.107)

=
∑
n,m

〈ψ|1|bn〉〈bn|1f̂1|bm〉〈bm|1|ψ〉 (3.108)

=
∑

n,m,r,s,u,v

〈ψ|cr〉〈cr|bn〉〈bn|cs〉〈cs|f̂ |cu〉〈cu|bm〉〈bm|cv〉〈cv|ψ〉 (3.109)

Let us denote the linear map that maps the basis vectors of one basis into the basis
vectors of the other basis by Û :

Û : |bn〉 → Û |bn〉 = |cn〉 (3.110)

Since Û is a linear map, it can be written in the form:

Û =
∑
r,s

|br〉 Urs 〈bs| (3.111)

Applying 〈bm| to the right of Û |bn〉 = |cn〉 we can now identify the change of basis
coefficents of Eq.3.109 as the matrix elements of Û :

〈bm|cn〉 = Umn (3.112)

Exercise 3.25 By comparing Eqs.3.108 and Eq.3.109, find out how to express the
wave function of |ψ〉 in the b basis in terms of its wave function in the c basis, using
the matrix of Û . Also express the representation of f̂ as a matrix in the b basis in
terms of its representation as a matrix in the c basis, using the matrix representation
of Û . Finally write Eq.3.109 in terms of a row vector, some matrices and a column
vector.

Exercise 3.26 Assume that the basis vectors |bn〉 are orthonormal. Show that if the
new vectors |cn〉 are to be an orthonormal basis too then Û has to obey Û † = Û−1. This
means that Û is what is called a unitary operator.

Definition: An operator that obeys Û † = Û−1 is called a unitary operator.

Remark: In real vector spaces, matrices R that obey Rt = R−1 are called rotation
matrices because they rotate orthonormal basis vectors into orthonormal basis vectors.
Here, we are working with Hilbert spaces, i.e., with complex vector spaces. Here, as
Eq.3.110 shows, the unitaries play the role of rotations of orthonormal basis vectors
into orthonormal basis vectors. Notice that Rt is defined through Rt

nm = Rmn, i.e., it
is the transpose of R. In contrast, U † is the transposed and also complex conjugated of
U , i.e., it obeys U †nm = (Umn)∗.
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In Dirac’s notation it is clear that all the physical predictions f̄(t) = 〈ψ|f̂ |ψ〉 only
depend on f̂(t), which is a linear map, and on the choice of state vector |ψ〉. The
predictions do not depend on the basis which we choose in the vector space while the
coefficients ψn of |ψ〉 as a column vector and the matrix elements f̂r,s of f̂(t) as a matrix
strongly depend on the choice of basis.

Recall, in particular, that when we represented x̂ and p̂ using the matrices a and
a†, in Eqs.3.42,3.43 we encountered the arbitrary constant L. In fact, the very choice
of matrices a and a† was merely convenient, but not unique. In general, there are
infinitely many solutions to the quantum mechanical equations of motion, canonical
commutation relations and hermiticity conditions in terms of matrix-valued functions.
As we mentioned already, the Stone von Neumann theorem assures us that all those
different matrix-valued function solutions to the quantum mechanical problem merely
differ by a choice of basis. All physical predictions f̄(t) are obtained basis independently
and are, therefore, identical.

Exercise 3.27 Assume that b, b† are linear maps on a Hilbert space and are obeying
[b, b†] = 1, where 1 is the identity map. Assume that there is a normalized18 vector,
which we denote by |0〉, which obeys b|0〉 = 0. Show that the vector |z〉 which is defined
through |z〉 = ezb

†|0〉 is an eigenvector of b if z is any complex number. These vectors
are related to so-called coherent states which are of practical importance, for example,
in quantum optics (light is often found in a similar quantum state). These states are
also of importance regarding the problem of “decoherence” in quantum measurement
theory, as we will discuss later.

18Notice that |0〉 is normalized, i.e., that it is of length one. This means that, in spite of its
misleading (but usual) name, |0〉 is certainly not the zero-length vector of the Hilbert space.
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Chapter 4

Eigenbases of Observables and the
Spectral Theorem

We saw that quantum mechanics requires its Hilbert spaces to be infinite dimensional.
The reason was that if commutation relations of the form [x̂, p̂] = i~1 had a represen-
tation in terms of N -dimensional matrices then the trace could be taken on both sides
of the equation, yielding the contradiction 0 = i~N .

Exercise 4.1 Are there any values of β for which the commutation relation [x̂, p̂] =
i~(1 + βp̂2) may possess a finite-dimensional Hilbert space representation?

We will now study in more detail the properties that operators in infinite-dimensional
Hilbert spaces can possess. In particular, we know that every self-adjoint matrix Q̂
in a finite-dimensional Hilbert space can be diagonalized, i.e., that there exists an
orthonormal basis of eigenvectors of Q̂ in the Hilbert space. The situation is more
subtle in infinite dimensions, as the full spectral theorem for self-adjoint operators
on general Hilbert spaces shows. Physicists speak of self-adjoint operators that pos-
sess non-normalizable eigenvectors which are not in the Hilbert space. What is the
underlying mathematics?

4.1 Self-adjointness

What we have to look out for when defining self-adjointness in the infinite-dimensional
case is that an operator can only act on those Hilbert space vectors that it maps into
vectors that are in the Hilbert space, i.e., that are again normalizable. Since this
requirement is nontrivial in infinite dimensional Hilbert spaces, the domain DQ̂ of an

operator Q̂, i.e., the set of vectors on which it is allowed to act can be smaller than the
entire the Hilbert space.

Actually, for an operator on an infinite-dimensional Hilbert space it happens easily
that its domain is smaller than the Hilbert space. For example, recall the operator

67
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Q̂ whose matrix representation in a Hilbert basis is diagonal with the diagonal entries
being 1, 25, 35, 45, ..., and consider the vector with the coefficients (1, 1/2, 1/3, 1/4, ...) in
the same basis. The vector is is in the Hilbert space because its coefficients are square-
summable. But this vector is not in the domain of the operator Q̂. That’s because the
image of our vector would be the vector with the coefficients (1, 24, 34, 44, ...) and this
vector is not normalizable and therefore not in the Hilbert space.

As a consequence, in the case of infinite-dimensional Hilbert spaces we have to
carefully define the domain of all operators. Here is the definition of what we mean by
the adjoint operator of an operator Q̂, which is careful enough to be applicable also
for infinite-dimensional Hilbert spaces:

Definition (adjoint operator): Assume that Q̂ is an operator on a Hilbert space H
with domain DQ̂, the domain being the maximal set of Hilbert space vectors that Q̂

maps into the Hilbert space. Then the domain of the adjoint operator, denoted Q̂† is:

DQ̂† =
{
|φ〉 ∈ H | ∃ |ϕ〉 so that 〈ϕ|ψ〉 = 〈φ|Q̂|ψ〉 ∀|ψ〉 ∈ DQ̂

}
(4.1)

Then, Q̂† is defined to act on its domain as:

Q̂†|φ〉 = |ϕ〉 (4.2)

Definition (self-adjoint operator): An operator Q̂ is called self-adjoint if it is the
same operator as its adjoint, and this includes that the requirement that their domains
agree: DQ̂ = DQ̂† .

4.2 The spectrum of an operator

Going back to the basics, we begin by reviewing the concept of eigenvector.

Definition (eigenvector): For an operator Q̂ on a Hilbert space H (finite or infinite
dimensional), an eigenvector is any vector |ψ〉 ∈ DQ ⊂ H for which there is a number
λ, called an eigenvalue, such that:

Q̂|ψ〉 = λ|ψ〉 (4.3)

The notions of eigenvector and eigenvalue are useful for infinite-dimensional Hilbert
spaces too but we need the more general notions of spectrum and spectral resolution.
To arrive at these notions, it will be useful to rewrite Eq.4.3 in this form:

(Q̂− λ1)|ψ〉 = 0 (4.4)

This equation shows us that the eigenvector |ψ〉 is a vector that the operator (Q̂− λ1)
maps into the zero-vector. As a consequence, the operator (Q̂ − λ1) maps any set of
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vectors that differ only by multiples of the vector |ψ〉 to the same vector. Therefore,
we can draw the important conclusion that if λ is an eigenvalue of Q̂, then the operator
(Q̂− λ1) is not invertible1.

This is a very important observation because we can now refer to eigenvalues with-
out referring to eigenvectors! That will come in handy when we want to deal with what
would be eigenvectors if they weren’t non-normalizable. We are now ready to define
the spectrum of an operator on a Hilbert space H.

Definition (spectrum): For any operator Q̂ on a Hilbert spaceH, any number λ ∈ C
is said to be in the spectrum of Q̂, if the operator (Q̂−λ1) does not possess an inverse
that is defined on the entire Hilbert space H.

According to this definition, eigenvalues clearly are part of the spectrum because for
them, as we just saw, (Q̂− λ1) does not possess an inverse. We define:

Definition (point spectrum): The set of eigenvalues forms the subset of the spec-
trum that is called the point spectrum.

So what other values can there possibly be in the spectrum, besides eigenvalues? The
answer is that - in infinite-dimensional Hilbert spaces - in can happen that there are
values λ for which (Q̂− λ1) does have an inverse (Q̂− λ1)−1, but this inverse cannot
be defined on the entire Hilbert space H, i.e., its domain is smaller than the Hilbert
space. By the way, (Q̂− λ1)−1 is also called the resolvent.

Definition (continuous spectrum): The set of λ ∈ C for which (a) the resolvent
(Q̂ − λ1)−1 exists but (b) the domain of (Q̂ − λ1)−1 is smaller than H and (c) no
Hilbert space vector is orthogonal to the domain of the resolvent, forms the subset of
the spectrum that is called the continuous spectrum.

Definition (residual spectrum): In principle, for arbitrary operators Q̂ on a Hilbert
space, there is also the possibility that (a) (Q̂ − λ1)−1 exists but (b) the domain of
(Q̂−λ1)−1 is smaller than H and (c) there are Hilbert space vectors orthogonal to the
domain of (Q̂− λ1)−1 (in this case, we say that the domain of (Q̂− λ1)−1 is not dense
in H). The set of these λ forms what is called the residual spectrum of Q̂.

Proposition: The residual spectrum of self-adjoint and unitary operators is the empty
set.

Therefore, we won’t be concerned much with residual spectra.

Remark: It can be shown that the values in the continuous spectrum never arise as
isolated points (unlike in the case of the point spectrum) but that they arise in con-
tinuous intervals, hence the naming.

1Technically, the operator is not injective. Let’s recall the relevant definitions: A map is called
injective (or one-to-one) if every element of the target set is hit at most once. Injectivity is the
condition needed for invertibility. A map is called surjective (or onto) if every element of the target
set is hit at least once. A map is called bijective if it is both injective and surjective, i.e., if every
element of the target set is hit exactly once.
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It is clear that the values of the continuous spectrum are not eigenvalues because eigen-
values possess eigenvectors in the Hilbert space. Instead, we have:

Definition (approximate eigenvalues): The elements, λ, of the continuous spec-
trum are called approximate eigenvalues.

This terminology is justified because it can be shown that:

Proposition: If λ is in the continuous spectrum, i.e., if it is an approximate eigenvalue,
then:

∀ε > 0 ∃|ψ〉 ∈ H with || |ψ〉 || = 1 so that ||(Q̂− λ1)|ψ〉|| < ε (4.5)

Therefore, there will always be Hilbert space vectors that approximate what would
be eigenvectors arbitrarily closely, namely in the sense of Eq.4.5. It is in this sense
that one speaks of an approximate eigenvalue having an approximate eigenvector or
an improper eigenvector or a non-normalizable eigenvector.

In quantum mechanics, there are plenty of operators which possess a continuous
spectrum, such as the position and momentum operators. We see here already that
these operators will not have eigenvectors for their continuous spectrum. However the
fact that the continuous spectrum consists of approximate eigenvalues will translate
into the important statement that their “eigenfunctions”, such as Dirac deltas, can
always be approximated with square integrable functions. For example, the Dirac
delta can be approximated in this way:

∫ b

a

f(x) δ(x) dx = lim
ε→0

∫ b

a

f(x)
ε

π

1

x2 + ε2
dx (4.6)

Terminology (bound and scattering states): In quantum mechanics, one often
encounters operators that possess both a point spectrum and a continuous spectrum.
For example, the Hamilton operators for systems such as an atom or a molecule will
have both a point spectrum and a continuous spectrum. This is because these systems
have bound states and scattering states. For example, the electron of a Hydrogen atom
is not able to escape a nucleus if it is in a low energy eigenstate. Its wave function
decays away from the nucleus and is normalizable. The energy levels of bound states
belong to the point spectrum and are discrete, therefore. However, we can also shoot
an electron very fast by a proton. Since we can do so with arbitrary increments of the
energy we expect that this is the case of the continuous spectrum. And yes, in this
case, the wave function is coming in from infinitely far, getting scattered off the proton
and also spreading away infinitely far. Such wave functions are not normalizable. If
they are energy eigenstates they can therefore only be approximate eigenvectors and
belong to the continuous spectrum.
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4.3 The spectral theorem for self-adjoint operators

Theorem (Spectral theorem for self-adjoint operators): Assume that f̂ is a
self-adjoint operator: f̂ = f̂ †. Then, the spectrum of f̂ is real and consists of a point
spectrum or a continuous spectrum, or both. The operator f̂ possesses an eigenbasis
consisting of a discrete set of eigenvectors corresponding to the eigenvalues from the
point spectrum and a continuous set of approximate eigenvectors corresponding to the
continuous spectrum.

Exercise 4.2 Assume that |ψ〉 is an eigenvector of a self-adjoint operator f̂ with eigen-
value λ. Show that λ is real.

Definition: Instead of the terms eigenvectors and approximate eigenvectors, one
sometimes also speaks of proper and improper eigenvectors respectively.

In the case of self-adjoint operators on finite-dimensional Hilbert spaces, the spec-
trum consists purely of a point spectrum because in finite dimensional Hilbert spaces
all vectors can be normalized. The spectral theorem in finite dimensions guarantees
that the corresponding eigenvectors span the Hilbert space. For example, consider a
self-adjoint operator Q̂ in an N -dimensional Hilbert space and its eigenbasis {|qn〉}Nn=1

and the corresponding (point) spectrum of eigenvalues q1, ..., qN . In this case, it is easy
to write down a resolution of the identity by summing over the values of the spectrum:

1 =
N∑
n=1

|qn〉〈qn| (4.7)

Similarly, we have the spectral representation of Q̂:

Q̂ =
N∑
n=1

qn |qn〉〈qn| (4.8)

On infinite-dimensional Hilbert spaces, however, the spectra will generally contain both
continuous and discrete parts. Resolutions of the identity and spectral representations
of operators should therefore contain also integrals. In practice, most physicists simply
write down sums and integrals as needed with a tacit understanding that there may
be subtleties.

But there is a mathematically rigorous way to treat these sums and integrals in a
unified way, namely through the notion of Stieltjes integral which we will come back
to in Sec.??.
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4.3.1 Case 1: The self-adjoint operator f̂ possesses only a
point spectrum

We covered this case before. Let’s do a quick review and close with an important new
definition at the end of the section. So there is then an eigenbasis {|fn〉} of vectors
obeying:

f̂ |fn〉 = fn |fn〉 and 〈fn|fm〉 = δnm (4.9)

We can sum them up to obtain a resolution of the identity:

1 =
∑
n

|fn〉〈fn| (4.10)

It allows us to quickly expand vectors in the eigenbasis of f̂ :

|ψ〉 = 1|ψ〉 =
∑
n

|fn〉〈fn|ψ〉 =
∑
n

ψn|fn〉 (4.11)

In the last step we used this definition:

Definition: The collection of numbers ψn = 〈fn|ψ〉 is called the wave function of the
state |ψ〉 in the eigenbasis of f̂ .

Notice that it is a function of n which takes only discrete values because the spectrum
is here discrete. Later, in the case of the continuous spectrum, the wave function will
be defined over the continuous spectrum.

The resolution of the identity also allows us to quickly expand arbitrary operators, ĝ,
in the eigenbasis of f̂ :

ĝ = 1ĝ1 =
∑
n,m

|fn〉〈fn|ĝ|fm〉〈fm| =
∑
n,m

gnm|fn〉〈fm| (4.12)

In the last step we used this definition:

Definition: We call gnm := 〈fn|ĝ|fm〉 the matrix elements of the operator ĝ in the
eigenbasis of f̂ .

For example, if we choose for ĝ to be ĝ = f̂ then we obtain

fnm = 〈fn|f̂ |fm〉 = fn 〈fn|fn〉 = fn δnm (4.13)

i.e., f̂ is diagonal in its own eigenbasis, as expected. For illustration, let us also express
an equation, say

|φ〉 = ĝ|ψ〉 (4.14)

in the f̂ eigenbasis. We begin by multiplying the equation with 〈fr| from the left:

〈fr|φ〉 = 〈fr|ĝ|ψ〉 (4.15)
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Therefore:
〈fr|φ〉 = 〈fr|ĝ1|ψ〉 =

∑
n

〈fr|ĝ|fn〉〈fn|ψ〉 (4.16)

We obtain the following equation for explicit column vectors (the wave functions) and
a matrix:

φr =
∑
n

gr,nψn (4.17)

We obtained these expansions of vectors and operators and their equations in eigenbases
by using the resolution of the identity. It it will be very useful later also to consider
partial resolutions of the identity, namely by not summing all the way:

Definition: We define a partial resolution of the identity:

ÊN :=
N∑
n

|fn〉〈fn| (4.18)

Clearly, in the limit, we obtain the resolution of the identity:

lim
N→∞

ÊN = 1 (4.19)

It will be important later that each ÊN is an operator, defined on the entire Hilbert
space, which is a projector, namely, that it obeys ÊN = Ê†N and Ê2

N = ÊN .

Definition: An operator P̂ is called a projector if it is self-adjoint, and obeys:
P̂ 2 = P̂ .

Exercise 4.3 Show that ÊN is a projector.

We now come to case 2 of the spectral theorem:

4.3.2 Case 2: The spectrum of f̂ is purely continuous

In this case, let us give the spectrum a name:

J := spec(f̂) ⊆ R (4.20)

Notice that J can be a subset of the real line but it can also be the full real line. J can
also consist of several disconnected pieces2. To start with, let us use the notation that

2For example, the Hamiltonian of electrons in a periodic potential, e.g., in a crystal, tends to
possess a continuous spectrum that consists of several disjoint stretches, called bands. Insulators,
semiconductors and conductors are distinguished by the degree to which the states in the highest
energetically accessible band are filled with electrons.
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is common in physics. In physics notation, f̂ has a basis of approximate eigenvectors
{|f〉}f∈J that are continuum normalized

〈f |f ′〉 = δ(f − f ′) (4.21)

and yield a resolution of the identity:

1 =

∫
J

|f〉〈f | df (4.22)

Similarly to case 1 where f̂ possesses only a purely point spectrum, here too we obtain
wave functions for states and matrix elements for operators:

|ψ〉 = 1|ψ〉 =

∫
J

|f〉〈f |ψ〉 df =

∫
J

ψ(f) |f〉 (4.23)

In the last step we used this definition:

Definition: We call ψ(f) := 〈f |ψ〉 the wave function of the state |ψ〉 in the eigenbasis
of f̂ .

Further, we obtain for operators:

ĝ = 1ĝ1 =

∫
J

∫
J

|f〉〈f |ĝ|f ′〉〈f ′| df df ′ =
∫
J

∫
J

g(f, f ′)|f〉〈f ′| df df ′ (4.24)

In the last step we used this definition:

Definition: We call g(f, f ′) := 〈f |ĝ|f ′〉 the matrix elements of ĝ in the eigenbasis of
f̂ . We may also sometimes use the notation gf,f ′ for g(f, f ′). The function g(f, f ′) is

also called the integral kernel of ĝ in the continuous eigenbasis of f̂ .

Notice that gf,f ′ behaves like a matrix with continuous rather than discrete indices. In
fact, everything is the same as for a matrix, except that summations over indices are
now integrations.

For example, let us express the equation |φ〉 = ĝ|ψ〉 in the f̂ eigenbasis, as in the
discussion of case 1 above. Now, however, we pick an operator f̂ whose spectrum is
continuous. We begin by multiplying the equation with 〈f̂ | from the left:

〈f |φ〉 = 〈f |ĝ|ψ〉 (4.25)

Therefore:

〈f |φ〉 = 〈f |ĝ1|ψ〉 =

∫
J

〈f |ĝ|f ′〉〈f ′|ψ〉 df ′ (4.26)

We obtain the following equation for explicit column vectors (the wave functions) and
a matrix, though now all indices are continuous:

φ(f) =

∫
J

g(f, f ′)ψ(f ′) df ′ (4.27)
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Let us also quickly consider the matrix elements, i.e., the integral kernel, of f̂ in its
eigenbasis, in the case where the spectrum is continuous:

f(f, f ′) = 〈f |f̂ |f ′〉 = f ′〈f |f ′〉 = f ′ δ(f − f ′) (4.28)

Therefore:

f̂ =

∫
J

∫
J

f ′ δ(f − f ′)|f〉〈f ′| df df ′ =
∫
J

f |f〉〈f | df (4.29)

4.3.3 Case 3: The self-adjoint operator f̂ has a point spectrum
and a continuous spectrum

In this case, we have:

1 =
∑
n

|fn〉〈fn|+
∫
J

|f〉〈f | df (4.30)

f̂ =
∑
n

fn |fn〉〈fn|+
∫
J

f |f〉〈f | df (4.31)

Exercise 4.4 Derive the expression for the abstract equation |φ〉 = ĝ|ψ〉 in this basis.

Exercise 4.5 Look up and state the complete spectrum of the Hamiltonian of the Hy-
drogen atom (without spin or higher order corrections of any form). Give the exact
source in a textbook.

4.4 The spectral theorem for unitary operators

The spectral theorem for self-adjoint operators f translates directly into a spectral
theorem for unitary operators, i.e., for operators obeying U † = U−1. This is because
there is a bijective map, called the Cayley transform, that maps every self-adjoint
operator into a unitary operator and vice versa:

Û := (f̂ − i1)(f̂ + i1)−1 (4.32)

Exercise 4.6 Show that Û is unitary.

The Cayley transform is invertible:

f̂ = −i(Û − 1)−1(Û + 1) (4.33)

Clearly, in the eigenbasis of f̂ , where f̂ is diagonal, also Û is diagonal. This means
that f̂ and Û possess the same eigenvectors and approximate eigenvectors, with the
same multiplicities (i.e. with the same dimension of the eigenspaces). Further, since
both operators are simultaneously diagonal, if r ∈ R is in the spectrum of f̂ , then
α = (r − i)(r + i)−1 (which is a Moebius transform of r), is in the spectrum of Û .
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Exercise 4.7 Show that each α is a complex number on the unit circle of the complex
plane, i.e., that its modulus squared is αα∗ = 1.

Therefore, the spectral theorem for self-adjoint operators implies a corresponding
spectral theorem for unitary operators. They too only possess a point and or a contin-
uous spectrum, with corresponding eigenvectors and approximate eigenvectors.

Remark: You may wonder why we here did we not use exponentiation to obtain a
unitary operator for any self-adjoint operator, through Ũ := exp(if̂). The reason is
that, while we could use exponentiation, it has a drawback. The drawback is that the
exponentiation map is not invertible because of the periodicity of exp(ir). Multiple
eigenvalues of f̂ could map into one eigenvalue for Ũ . The Cayley transform is invert-
ible, i.e., it maps each unitary operator uniquely to a self-adjoint operator and vice
versa.

The most general spectral theorem is for normal operators: The spectral the-
orem naturally generalizes beyond self-adjoint and unitary operators, namely to all
operators that are called normal. An operator Q̂ is called normal if it commutes with
its adjoint, i.e., if [Q̂, Q̂†] = 0. For example, the operators a and a† that obey [a, a†] = 1
are clearly not normal. Indeed, the eigenstates of a that you calculated in Exercise
3.27, the so-called coherent states, can be shown to be not orthogonal to another.

Exercise 4.8 Assume that f̂ is a self-adjoint operator with a purely point spectrum
{fn}. Further assume that Û is the Cayley transform of f . Determine whether or not
the operator Q̂ := f̂ + Û is a normal operator. If not, why not? If yes, what is the
spectrum of Q̂?



Chapter 5

The position and momentum
representations

5.1 The eigenbasis of the position operator

We had found a representation of the position operator (parametrized by a parameter
L that specifies the unit of length) in Eqs.3.42,3.48:

x̂n,m =


0

√
1L 0 0√

1L 0
√

2L 0
0

√
2L 0

√
3L

0 0
√

3L 0
. . .


n,m

(5.1)

Here, the subscript n,m indicates the matrix element in the (n+1)’st row and (m+1)’st
column, because we will count from 0. We are here obviously dealing with a discrete,
i.e., countable, basis. Let us call these basis vectors |En〉 for n = 0, 1, 2, 3, .... Then we
have

〈En|x̂|Em〉 = x̂n,m (5.2)

and

x̂ =
∞∑

n,m=0

|En〉x̂n,m〈Em| (5.3)

Clearly, x̂ is not diagonal in the {|En〉} basis. Now to find a basis in which x̂ is diagonal,
i.e., to find an eigenbasis of x̂, we need to find the solutions to the eigenvalue equation:

x̂|x〉 = x|x〉 (5.4)

To this end, we first act with 〈En| from the left to obtain:

〈En|x̂|x〉 = x〈En|x〉 (5.5)

77
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Inserting a resolution of the identity we obtain a concrete eigenvalue equation in a
basis:

∞∑
m=0

〈En|x̂|Em〉〈Em|x〉 = x〈En|x〉 (5.6)

We know the matrix elements 〈En|x̂|Em〉 of the position operator, namely

〈En|x̂|Em〉 = L



0
√

1 0 0 0√
1 0

√
2 0 0

0
√

2 0
√

3 0
0 0

√
3 0

√
4

0 0 0
√

4 0
. . .


n,m

(5.7)

and our task is to determine for which real eigenvalues x there exists a column vector
that is an eigenvector. Its components are then the wave function 〈En|x〉 for a position
eigenstate |x̂〉 in the {|En〉} basis. Once we have these wave functions, 〈En|x〉, of
position eigenstates, we can write down the position eigenvectors |x〉 themselves in the
basis {|En〉}:

|x〉 =
∑
n

|En〉〈En|x〉 (5.8)

Now Eq.5.6 yields an equation for each n ∈ {0, 1, 2, .... These equations are

L
√

1〈E1|x〉 = x〈E0|x〉 (5.9)

L
√

1〈E0|x〉+ L
√

2〈E2|x〉 = x〈E1|x〉 (5.10)

L
√

2〈E1|x〉+ L
√

3〈E3|x〉 = x〈E2|x〉 (5.11)

and so on. We have arrived at a recursion for the coefficients 〈En|x〉 which gives us
a solution, i.e., a full set of coefficients 〈En|x〉 for any choice of x! This is because
once we pick an arbitrary value for the first coefficient, 〈E0|x〉, we can then calculate
the second coefficient, namely 〈E2|x〉. From these two we can calculate the third,
〈E3|x〉. In this way, iteratively, all 〈En|x〉 are determined and can be calculated. An
important conclusion we can draw from this is that no matter what value for x we try,
we always find an eigenvector for it! This means that the spectrum of x̂ is the real line:
spec(x̂) = R.

The recursion problem can be solved in closed form. Without proof (which is
straightforward but tedious) we only state the result:

〈En|x〉 =
e−

x2

4L2√
π1/22n(n)!

Hn

(
x√
2L

)
(5.12)
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Here, Hn is the n’th Hermite polynomial, defined through:

Hn(z) := (−1)n ez
2 dn

dzn
e−z

2

(5.13)

But then, didn’t we have for each eigenvalue x a choice in what value we wanted to
give to the first coefficient, 〈E0|x〉 ? Yes we did. In the equation Eq.5.12, can we
make this choice such that the eigenvectors |x〉 come out normalizable? Here, let us
remember that we just established that the spectrum is the real line and is, therefore,
purely continuous. From the spectral theorem, we conclude that the eigenvectors |x̂〉
are not normalizable. Instead, therefore, the choice of the first coefficient is made for
each x such that the resulting eigenvectors come out to be what is called continuum
normalized. Namely, one can show that with Eq.5.12, we have:

〈x|x′〉 =
∞∑
n=0

〈x|n〉〈n|x′〉 = δ(x− x′) (5.14)

Therefore, we have now found the wave function 〈En|x〉 of each position eigenstate |x〉
in the basis {|En〉}n. In fact, we have inadvertently also obtained the position wave
functions of the eigenstates of harmonic oscillators! To see this, let us briefly review
aspects of the harmonic oscillator.

5.2 The energy eigenbasis of a harmonic oscillator

Following up on Exercise (3.19), we express the harmonic oscillator’s Hamiltonian

Ĥ =
p̂2

2m
+
mω2

2
x̂2 (5.15)

in terms of operators a, a† which obey [a, a†] = 1. In the {|En〉} basis, these operators
have the matrix elements given in Eqs.3.39,3.40. We make again the ansatz:

x̂ = L(a† + a), p̂ = iK(a† − a) with L,K ∈ R (5.16)

So far, the parameters L and K are still arbitrary real numbers. The ansatz needs
to solve the hermiticity conditions x̂ = x̂† and p̂ = p̂† and it obviously does. A little
calculation shows that this ansatz also succeeds in solving the canonical commutation
relations [x̂, p̂] = i1, namely if we choose K = (2L)−1 which we will henceforth do.
Now, only L is still left as a free parameter in our ansatz. (For now, let us not worry
about the time evolution and consider only one arbitrary point in time.) Therefore,
we have found a valid way of writing x̂ and p̂.

At this point we are still free to choose any real value for L and, in principle, any
value of L is as good as any other. Let us now express the Hamiltonian in terms of the
a, a† operators:

Ĥ =
−1

2m 4L2

(
(a†)2 − a†a− aa† + a2

)
+
mω2L2

2

(
(a†)2 + a†a+ aa† + a2

)
(5.17)
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We notice that we can make the (a†)2 and a2 terms cancel by choosing L so that the
prefactors match, i.e., so that

1

8mL2
=
mω2L2

2
(5.18)

which is solved by:
L = (2mω)−1/2 (5.19)

We conclude that for every harmonic oscillator, when expressing the x̂ and p̂ operators
in terms of a and a†, there is an especially convenient choice of L :

x̂ =
1√

2mω
(a† + a), p̂ = i

√
mω

2
(a† − a) (5.20)

This is because with this choice of L, the form of the oscillator’s Hamiltonian, after a
short calculation, simplifies to:

Ĥ = ~ω(a†a+ 1/2) (5.21)

How does this help us to find the spectrum of Ĥ? Recall that we know the matrix
elements an,m = 〈En|a|Em〉 and a†n,m = 〈En|a†|Em〉 of the operators a and a† in the
basis {|E0〉, |E1〉, |E2〉, |E3〉, ...}, namely:

an,m =



0
√

1 0 0 0
0 0

√
2 0 0

0 0 0
√

3 0
0 0 0 0

√
4

0 0 0 0 0
. . .


n,m

(5.22)

The hermitean conjugate is:

a†n,m =



0 0 0 0 0√
1 0 0 0 0

0
√

2 0 0 0
0 0

√
3 0 0

0 0 0
√

4 0
. . .


n,m

(5.23)

Clearly then, the matrix elements of the so-called number operator N̂ := a†a in the
basis {|E0〉, |E1〉, ...} are

N̂n,m = (a†a)n,m = n δn,m =



0 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

. . .


n,m

(5.24)
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Clearly, N̂ is a self-adjoint operator, N̂ † = N̂ , since it is diagonal in the basis {|E0〉, |E1〉, ...}
and is, therefore, diagonalizable. Since

Ĥ = ~ω(N̂ + 1/2) (5.25)

we have that the Hamiltonian is diagonal in the basis {|E0〉, |E1〉, ...}, i.e., that Ĥ|En〉 =
En|En〉, and that its eigenvalues are En = ~ω(n + 1/2) for n ∈ {0, 1, 2, ...}. The
spectrum of the Hamiltonian of a harmonic oscillator is, therefore, purely a point
spectrum.

Therefore, this Hamiltonian reads in its eigenbasis:

Ĥ =
p̂2

2m
+
mω2

2
x̂2 =

∞∑
n=0

En|En〉〈En| (5.26)

The state |En〉 can therefore also be interpreted the n’th excited state of a harmonic
oscillator with frequency ω. Now what is the position wave function of the n’th eigen-
state of this harmonic oscillator? By definition it is given by 〈x|En〉. But we have
〈x|En〉 = (〈En|x〉)∗ = 〈En|x〉 because 〈En|x〉 is real. This means that we have inad-
vertently also obtained the position wave functions of the eigenstates of the harmonic
oscillator!

Exercise 5.1 Consider the harmonic oscillator of above, choose L = (2mω)−1/2 and
assume that the oscillator system is in this state:

|ψ〉 =
1√
2

(|E0〉 − |E1〉) (5.27)

Calculate H̄ and x̄ and the position wave function ψ(x) := 〈x|ψ〉.
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