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FIG. 1. The probe atom (A) is shot through the cavity and
the target atom (B) is stationary at x = L/2, they interact
only via the field. We control the probe’s trajectory, and this
gives us control over the target qubit. The probe’s worldline
is given by t(⌧) = a

�1 sinh a⌧ , x(⌧) = a

�1(cosh a⌧ � 1)

The Hamiltonian for a single detector will be of the

form H = H
(d)
0

+ H
(f)
0

+ HI , where H
(d)
0

and H
(f)
0

are
the detector and field free Hamiltonians. The interaction
Hamiltonian HI is of the form HI = �⇠(⌧)µ(⌧)�[x(⌧)]
where �⇠(⌧) is a time dependent coupling strength con-
trolling the interaction time, µ(⌧) = (�+e�i⌦⌧ + H.c.) is
the monopole moment operator (in the interaction pic-
ture) where ⌦ is the energy gap between the two levels of
the atom, x(⌧) is the worldline of the atom parametrized
in terms of its proper time and �[x(⌧)] is the field opera-
tor which we expand in terms of stationary wave modes.
Throughout the paper we will use natural units c = ~ = 1
and we will take the scale ⌦ as our reference. How our
results translate into dimensionful units is explained in
the section ‘Experimental feasibility’ below.

Since there are two atoms with di↵erent states of mo-
tion (thus di↵erent proper reference frames) we need to
choose with respect to what time parameter we want the
full Hamiltonian to generate evolution. We choose the
proper time of the stationary atom; consequently there
is a redshift factor in front of the accelerated atom term
of HI . This is a somewhat subtle point which is discussed
in-depth in [13]. Taking all this into account we finally

obtain HI(t) = d⌧
dt H

(A)

I [⌧(t)] + H
(B)

I (t), where the indi-

vidual H
(d)

I are given by the single detector interaction
Hamiltonian shown above and t is the cavity rest frame
time.

We initially prepare the quantum field in the cav-
ity such that one of the field modes is in a coherent
state of complex amplitude ↵, and the rest of the modes
are lowly-populated. Preparing a near-resonant coherent
state reduces the amount of entanglement acquired be-
tween the atoms and the field. This in turn helps screen
out the mixedness e↵ects on the target qubit produced
by the ‘Unruh noise’ generated by the probe’s relativistic
motion [2, 14]. Thus the initial atoms-field density matrix
can be written as ⇢

0

= ⇢A,0 ⌦ ⇢B,0 ⌦ |↵!1i h↵!1 |⌦!n 6=!1

|0!ni h0!n |. Notice that, since we are in a cavity, the

frequencies !n = n⇡/L form a discrete set.
When the probe enters the cavity, it becomes coupled

to the field. We take a perturbative approach (valid for
small couplings and short times) to analyze the system
dynamics. The time evolution under this Hamiltonian
from a time t = 0 to time t = T is given by

U(T, 0) =11 � i

Z T

0

dt
1

HI(t1) �
Z T

0

dt
1

Z t1

0

dt
2

HI(t1)HI(t2),

plus terms O(�3), where the notation O(�n) refers to
powers of the coupling strengths of both the probe-field
�A and target-field �B , so that �A�B is an O(�2) term.
The density matrix after a time T will be given by the

perturbative expansion ⇢T = ⇢
0

+ ⇢
(1)

T + ⇢
(2)

T + O(�3)
where

⇢
(1)

T = U (1)⇢
0

+ ⇢
0

U (1)

†
, (1)

⇢
(2)

T = U (1)⇢
0

U (1)

†
+ U (2)⇢

0

+ ⇢
0

U (2)

†
. (2)

Recall that we are interested in the target’s final state,
and so we will trace out the field modes as well as the
probe’s state to obtain: ⇢T,B = TrA(Trf (⇢T )). We will
compare this to the target’s initial density matrix, and
quantitatively assess our ability to control the target
qubit by controlling the probe’s motion.

Performing 1-qubit rotations.- In [2], one-qubit gates
were obtained through the non-inertial motion of the
atom which supported the logical qubit. Arbitrary ro-
tations on the Bloch sphere were achieved introducing
no decoherence to leading order in perturbation theory.
The price to pay is that logical quantum operations are
performed on the qubit whose non-inertial trajectory had
to be controlled. As opposed to [2] we use the motion of
a di↵erent probe atom to gain control over the target
qubit, physically supported on a di↵erent atom which
rests in the cavity. Hence, we are not required to keep
under control both the trajectory and the internal state
of one atom simultaneously. While advantageous in this
sense, there is a trade-o↵ on the quality of the quantum
gates that we could implement with this setting. As the
‘remote control’ appears as a second order e↵ect, it is im-
possible to perform a 100% clean Bloch sphere rotation
via this mechanism and, unavoidably, some mixedness
will be introduced in the target state. In contrast, in [2]
the dynamics were fully unitary to leading order in per-
turbation theory. However, we will show that the mixed-
ness introduced in the stationary qubit is always small as
compared to the magnitude of the rotations that we can
obtain on the target’s Bloch sphere vector. Moreover,
we will show that it is indeed advantageous to consider
regimes where the probe’s trajectory is relativistic in or-
der to more e�ciently manipulate the target’s qubit.

First order contributions to the target’s time evolution
cannot be influenced by the interaction of the field and
the probe: At first order in perturbation theory we will
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The rope breaks, all right!
PHYSICS:

For the accelerated observer A: Because rocket B is faster than us!

PHENOMENOLOGY:

For the observer on the ground: Because both rockets go equally 
faster and faster, the length of the rope Lorentz-contracts!
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@Â(t)

@t
.



Same	
  Physics,	
  Different	
  Descriptions
Quantum	
  Mechanics	
  and	
  GR

d

dt
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Excuse me... Time? 
Whose time? Mine? Yours?

In non-relativistic quantum theory, time is a parameter!
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Rule of thumb

Thus, we can start with the Hamiltonian Ĥ(t), which generates translations
in the global time coordinate t, and then define

Ĥ(⌧) :=
dt

d⌧
Ĥ
⇥
t(⌧)

⇤

as the Hamiltonian which generates evolution for the entire system with respect
to the time coordinate ⌧
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What’s the full system’s free Hamiltonian:
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FIG. 1. The probe atom (A) is shot through the cavity and
the target atom (B) is stationary at x = L/2, they interact
only via the field. We control the probe’s trajectory, and this
gives us control over the target qubit. The probe’s worldline
is given by t(⌧) = a

�1 sinh a⌧ , x(⌧) = a

�1(cosh a⌧ � 1)

The Hamiltonian for a single detector will be of the

form H = H
(d)
0

+ H
(f)
0

+ HI , where H
(d)
0

and H
(f)
0

are
the detector and field free Hamiltonians. The interaction
Hamiltonian HI is of the form HI = �⇠(⌧)µ(⌧)�[x(⌧)]
where �⇠(⌧) is a time dependent coupling strength con-
trolling the interaction time, µ(⌧) = (�+e�i⌦⌧ + H.c.) is
the monopole moment operator (in the interaction pic-
ture) where ⌦ is the energy gap between the two levels of
the atom, x(⌧) is the worldline of the atom parametrized
in terms of its proper time and �[x(⌧)] is the field opera-
tor which we expand in terms of stationary wave modes.
Throughout the paper we will use natural units c = ~ = 1
and we will take the scale ⌦ as our reference. How our
results translate into dimensionful units is explained in
the section ‘Experimental feasibility’ below.

Since there are two atoms with di↵erent states of mo-
tion (thus di↵erent proper reference frames) we need to
choose with respect to what time parameter we want the
full Hamiltonian to generate evolution. We choose the
proper time of the stationary atom; consequently there
is a redshift factor in front of the accelerated atom term
of HI . This is a somewhat subtle point which is discussed
in-depth in [13]. Taking all this into account we finally

obtain HI(t) = d⌧
dt H

(A)

I [⌧(t)] + H
(B)

I (t), where the indi-

vidual H
(d)

I are given by the single detector interaction
Hamiltonian shown above and t is the cavity rest frame
time.

We initially prepare the quantum field in the cav-
ity such that one of the field modes is in a coherent
state of complex amplitude ↵, and the rest of the modes
are lowly-populated. Preparing a near-resonant coherent
state reduces the amount of entanglement acquired be-
tween the atoms and the field. This in turn helps screen
out the mixedness e↵ects on the target qubit produced
by the ‘Unruh noise’ generated by the probe’s relativistic
motion [2, 14]. Thus the initial atoms-field density matrix
can be written as ⇢

0

= ⇢A,0 ⌦ ⇢B,0 ⌦ |↵!1i h↵!1 |⌦!n 6=!1

|0!ni h0!n |. Notice that, since we are in a cavity, the

frequencies !n = n⇡/L form a discrete set.
When the probe enters the cavity, it becomes coupled

to the field. We take a perturbative approach (valid for
small couplings and short times) to analyze the system
dynamics. The time evolution under this Hamiltonian
from a time t = 0 to time t = T is given by

U(T, 0) =11 � i

Z T

0

dt
1

HI(t1) �
Z T

0

dt
1

Z t1

0

dt
2

HI(t1)HI(t2),

plus terms O(�3), where the notation O(�n) refers to
powers of the coupling strengths of both the probe-field
�A and target-field �B , so that �A�B is an O(�2) term.
The density matrix after a time T will be given by the

perturbative expansion ⇢T = ⇢
0

+ ⇢
(1)

T + ⇢
(2)

T + O(�3)
where

⇢
(1)

T = U (1)⇢
0

+ ⇢
0

U (1)

†
, (1)

⇢
(2)

T = U (1)⇢
0

U (1)

†
+ U (2)⇢

0

+ ⇢
0

U (2)

†
. (2)

Recall that we are interested in the target’s final state,
and so we will trace out the field modes as well as the
probe’s state to obtain: ⇢T,B = TrA(Trf (⇢T )). We will
compare this to the target’s initial density matrix, and
quantitatively assess our ability to control the target
qubit by controlling the probe’s motion.

Performing 1-qubit rotations.- In [2], one-qubit gates
were obtained through the non-inertial motion of the
atom which supported the logical qubit. Arbitrary ro-
tations on the Bloch sphere were achieved introducing
no decoherence to leading order in perturbation theory.
The price to pay is that logical quantum operations are
performed on the qubit whose non-inertial trajectory had
to be controlled. As opposed to [2] we use the motion of
a di↵erent probe atom to gain control over the target
qubit, physically supported on a di↵erent atom which
rests in the cavity. Hence, we are not required to keep
under control both the trajectory and the internal state
of one atom simultaneously. While advantageous in this
sense, there is a trade-o↵ on the quality of the quantum
gates that we could implement with this setting. As the
‘remote control’ appears as a second order e↵ect, it is im-
possible to perform a 100% clean Bloch sphere rotation
via this mechanism and, unavoidably, some mixedness
will be introduced in the target state. In contrast, in [2]
the dynamics were fully unitary to leading order in per-
turbation theory. However, we will show that the mixed-
ness introduced in the stationary qubit is always small as
compared to the magnitude of the rotations that we can
obtain on the target’s Bloch sphere vector. Moreover,
we will show that it is indeed advantageous to consider
regimes where the probe’s trajectory is relativistic in or-
der to more e�ciently manipulate the target’s qubit.

First order contributions to the target’s time evolution
cannot be influenced by the interaction of the field and
the probe: At first order in perturbation theory we will

Think of a Dirichlet cavity and a two-level atom in an arbitrary 
state of motion (with proper time   ). We sit at the lab.⌧
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FIG. 1. The probe atom (A) is shot through the cavity and
the target atom (B) is stationary at x = L/2, they interact
only via the field. We control the probe’s trajectory, and this
gives us control over the target qubit. The probe’s worldline
is given by t(⌧) = a

�1 sinh a⌧ , x(⌧) = a

�1(cosh a⌧ � 1)

The Hamiltonian for a single detector will be of the

form H = H
(d)
0

+ H
(f)
0

+ HI , where H
(d)
0

and H
(f)
0

are
the detector and field free Hamiltonians. The interaction
Hamiltonian HI is of the form HI = �⇠(⌧)µ(⌧)�[x(⌧)]
where �⇠(⌧) is a time dependent coupling strength con-
trolling the interaction time, µ(⌧) = (�+e�i⌦⌧ + H.c.) is
the monopole moment operator (in the interaction pic-
ture) where ⌦ is the energy gap between the two levels of
the atom, x(⌧) is the worldline of the atom parametrized
in terms of its proper time and �[x(⌧)] is the field opera-
tor which we expand in terms of stationary wave modes.
Throughout the paper we will use natural units c = ~ = 1
and we will take the scale ⌦ as our reference. How our
results translate into dimensionful units is explained in
the section ‘Experimental feasibility’ below.

Since there are two atoms with di↵erent states of mo-
tion (thus di↵erent proper reference frames) we need to
choose with respect to what time parameter we want the
full Hamiltonian to generate evolution. We choose the
proper time of the stationary atom; consequently there
is a redshift factor in front of the accelerated atom term
of HI . This is a somewhat subtle point which is discussed
in-depth in [13]. Taking all this into account we finally

obtain HI(t) = d⌧
dt H

(A)

I [⌧(t)] + H
(B)

I (t), where the indi-

vidual H
(d)

I are given by the single detector interaction
Hamiltonian shown above and t is the cavity rest frame
time.

We initially prepare the quantum field in the cav-
ity such that one of the field modes is in a coherent
state of complex amplitude ↵, and the rest of the modes
are lowly-populated. Preparing a near-resonant coherent
state reduces the amount of entanglement acquired be-
tween the atoms and the field. This in turn helps screen
out the mixedness e↵ects on the target qubit produced
by the ‘Unruh noise’ generated by the probe’s relativistic
motion [2, 14]. Thus the initial atoms-field density matrix
can be written as ⇢

0

= ⇢A,0 ⌦ ⇢B,0 ⌦ |↵!1i h↵!1 |⌦!n 6=!1

|0!ni h0!n |. Notice that, since we are in a cavity, the

frequencies !n = n⇡/L form a discrete set.
When the probe enters the cavity, it becomes coupled

to the field. We take a perturbative approach (valid for
small couplings and short times) to analyze the system
dynamics. The time evolution under this Hamiltonian
from a time t = 0 to time t = T is given by

U(T, 0) =11 � i

Z T

0

dt
1

HI(t1) �
Z T

0

dt
1

Z t1

0

dt
2

HI(t1)HI(t2),

plus terms O(�3), where the notation O(�n) refers to
powers of the coupling strengths of both the probe-field
�A and target-field �B , so that �A�B is an O(�2) term.
The density matrix after a time T will be given by the

perturbative expansion ⇢T = ⇢
0

+ ⇢
(1)

T + ⇢
(2)

T + O(�3)
where

⇢
(1)

T = U (1)⇢
0

+ ⇢
0

U (1)

†
, (1)

⇢
(2)

T = U (1)⇢
0

U (1)

†
+ U (2)⇢

0

+ ⇢
0

U (2)

†
. (2)

Recall that we are interested in the target’s final state,
and so we will trace out the field modes as well as the
probe’s state to obtain: ⇢T,B = TrA(Trf (⇢T )). We will
compare this to the target’s initial density matrix, and
quantitatively assess our ability to control the target
qubit by controlling the probe’s motion.

Performing 1-qubit rotations.- In [2], one-qubit gates
were obtained through the non-inertial motion of the
atom which supported the logical qubit. Arbitrary ro-
tations on the Bloch sphere were achieved introducing
no decoherence to leading order in perturbation theory.
The price to pay is that logical quantum operations are
performed on the qubit whose non-inertial trajectory had
to be controlled. As opposed to [2] we use the motion of
a di↵erent probe atom to gain control over the target
qubit, physically supported on a di↵erent atom which
rests in the cavity. Hence, we are not required to keep
under control both the trajectory and the internal state
of one atom simultaneously. While advantageous in this
sense, there is a trade-o↵ on the quality of the quantum
gates that we could implement with this setting. As the
‘remote control’ appears as a second order e↵ect, it is im-
possible to perform a 100% clean Bloch sphere rotation
via this mechanism and, unavoidably, some mixedness
will be introduced in the target state. In contrast, in [2]
the dynamics were fully unitary to leading order in per-
turbation theory. However, we will show that the mixed-
ness introduced in the stationary qubit is always small as
compared to the magnitude of the rotations that we can
obtain on the target’s Bloch sphere vector. Moreover,
we will show that it is indeed advantageous to consider
regimes where the probe’s trajectory is relativistic in or-
der to more e�ciently manipulate the target’s qubit.

First order contributions to the target’s time evolution
cannot be influenced by the interaction of the field and
the probe: At first order in perturbation theory we will

H0,⌧ = ⌦�+�� H0,t =
1X

j=1

!j a
†
jaj

Think of a Dirichlet cavity and a two-level atom in an arbitrary 
state of motion (with proper time   ). We sit at the lab.⌧
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FIG. 1. The probe atom (A) is shot through the cavity and
the target atom (B) is stationary at x = L/2, they interact
only via the field. We control the probe’s trajectory, and this
gives us control over the target qubit. The probe’s worldline
is given by t(⌧) = a

�1 sinh a⌧ , x(⌧) = a
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The Hamiltonian for a single detector will be of the

form H = H
(d)
0

+ H
(f)
0

+ HI , where H
(d)
0

and H
(f)
0

are
the detector and field free Hamiltonians. The interaction
Hamiltonian HI is of the form HI = �⇠(⌧)µ(⌧)�[x(⌧)]
where �⇠(⌧) is a time dependent coupling strength con-
trolling the interaction time, µ(⌧) = (�+e�i⌦⌧ + H.c.) is
the monopole moment operator (in the interaction pic-
ture) where ⌦ is the energy gap between the two levels of
the atom, x(⌧) is the worldline of the atom parametrized
in terms of its proper time and �[x(⌧)] is the field opera-
tor which we expand in terms of stationary wave modes.
Throughout the paper we will use natural units c = ~ = 1
and we will take the scale ⌦ as our reference. How our
results translate into dimensionful units is explained in
the section ‘Experimental feasibility’ below.

Since there are two atoms with di↵erent states of mo-
tion (thus di↵erent proper reference frames) we need to
choose with respect to what time parameter we want the
full Hamiltonian to generate evolution. We choose the
proper time of the stationary atom; consequently there
is a redshift factor in front of the accelerated atom term
of HI . This is a somewhat subtle point which is discussed
in-depth in [13]. Taking all this into account we finally

obtain HI(t) = d⌧
dt H

(A)

I [⌧(t)] + H
(B)

I (t), where the indi-

vidual H
(d)

I are given by the single detector interaction
Hamiltonian shown above and t is the cavity rest frame
time.

We initially prepare the quantum field in the cav-
ity such that one of the field modes is in a coherent
state of complex amplitude ↵, and the rest of the modes
are lowly-populated. Preparing a near-resonant coherent
state reduces the amount of entanglement acquired be-
tween the atoms and the field. This in turn helps screen
out the mixedness e↵ects on the target qubit produced
by the ‘Unruh noise’ generated by the probe’s relativistic
motion [2, 14]. Thus the initial atoms-field density matrix
can be written as ⇢

0

= ⇢A,0 ⌦ ⇢B,0 ⌦ |↵!1i h↵!1 |⌦!n 6=!1

|0!ni h0!n |. Notice that, since we are in a cavity, the

frequencies !n = n⇡/L form a discrete set.
When the probe enters the cavity, it becomes coupled

to the field. We take a perturbative approach (valid for
small couplings and short times) to analyze the system
dynamics. The time evolution under this Hamiltonian
from a time t = 0 to time t = T is given by

U(T, 0) =11 � i

Z T

0

dt
1

HI(t1) �
Z T

0

dt
1

Z t1

0

dt
2

HI(t1)HI(t2),

plus terms O(�3), where the notation O(�n) refers to
powers of the coupling strengths of both the probe-field
�A and target-field �B , so that �A�B is an O(�2) term.
The density matrix after a time T will be given by the

perturbative expansion ⇢T = ⇢
0

+ ⇢
(1)

T + ⇢
(2)

T + O(�3)
where

⇢
(1)

T = U (1)⇢
0

+ ⇢
0

U (1)

†
, (1)

⇢
(2)

T = U (1)⇢
0

U (1)

†
+ U (2)⇢

0

+ ⇢
0

U (2)

†
. (2)

Recall that we are interested in the target’s final state,
and so we will trace out the field modes as well as the
probe’s state to obtain: ⇢T,B = TrA(Trf (⇢T )). We will
compare this to the target’s initial density matrix, and
quantitatively assess our ability to control the target
qubit by controlling the probe’s motion.

Performing 1-qubit rotations.- In [2], one-qubit gates
were obtained through the non-inertial motion of the
atom which supported the logical qubit. Arbitrary ro-
tations on the Bloch sphere were achieved introducing
no decoherence to leading order in perturbation theory.
The price to pay is that logical quantum operations are
performed on the qubit whose non-inertial trajectory had
to be controlled. As opposed to [2] we use the motion of
a di↵erent probe atom to gain control over the target
qubit, physically supported on a di↵erent atom which
rests in the cavity. Hence, we are not required to keep
under control both the trajectory and the internal state
of one atom simultaneously. While advantageous in this
sense, there is a trade-o↵ on the quality of the quantum
gates that we could implement with this setting. As the
‘remote control’ appears as a second order e↵ect, it is im-
possible to perform a 100% clean Bloch sphere rotation
via this mechanism and, unavoidably, some mixedness
will be introduced in the target state. In contrast, in [2]
the dynamics were fully unitary to leading order in per-
turbation theory. However, we will show that the mixed-
ness introduced in the stationary qubit is always small as
compared to the magnitude of the rotations that we can
obtain on the target’s Bloch sphere vector. Moreover,
we will show that it is indeed advantageous to consider
regimes where the probe’s trajectory is relativistic in or-
der to more e�ciently manipulate the target’s qubit.

First order contributions to the target’s time evolution
cannot be influenced by the interaction of the field and
the probe: At first order in perturbation theory we will

H0,⌧ = ⌦�+�� H0,t =
1X

j=1

!j a
†
jaj

H0 = ⌦�+�� +
d⌧(t)

dt

1X

j=1

!j a
†
jaj

Think of a Dirichlet cavity and a two-level atom in an arbitrary 
state of motion (with proper time   ). We sit at the lab.⌧
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FIG. 1. The probe atom (A) is shot through the cavity and
the target atom (B) is stationary at x = L/2, they interact
only via the field. We control the probe’s trajectory, and this
gives us control over the target qubit. The probe’s worldline
is given by t(⌧) = a

�1 sinh a⌧ , x(⌧) = a

�1(cosh a⌧ � 1)

The Hamiltonian for a single detector will be of the

form H = H
(d)
0

+ H
(f)
0

+ HI , where H
(d)
0

and H
(f)
0

are
the detector and field free Hamiltonians. The interaction
Hamiltonian HI is of the form HI = �⇠(⌧)µ(⌧)�[x(⌧)]
where �⇠(⌧) is a time dependent coupling strength con-
trolling the interaction time, µ(⌧) = (�+e�i⌦⌧ + H.c.) is
the monopole moment operator (in the interaction pic-
ture) where ⌦ is the energy gap between the two levels of
the atom, x(⌧) is the worldline of the atom parametrized
in terms of its proper time and �[x(⌧)] is the field opera-
tor which we expand in terms of stationary wave modes.
Throughout the paper we will use natural units c = ~ = 1
and we will take the scale ⌦ as our reference. How our
results translate into dimensionful units is explained in
the section ‘Experimental feasibility’ below.

Since there are two atoms with di↵erent states of mo-
tion (thus di↵erent proper reference frames) we need to
choose with respect to what time parameter we want the
full Hamiltonian to generate evolution. We choose the
proper time of the stationary atom; consequently there
is a redshift factor in front of the accelerated atom term
of HI . This is a somewhat subtle point which is discussed
in-depth in [13]. Taking all this into account we finally

obtain HI(t) = d⌧
dt H

(A)

I [⌧(t)] + H
(B)

I (t), where the indi-

vidual H
(d)

I are given by the single detector interaction
Hamiltonian shown above and t is the cavity rest frame
time.

We initially prepare the quantum field in the cav-
ity such that one of the field modes is in a coherent
state of complex amplitude ↵, and the rest of the modes
are lowly-populated. Preparing a near-resonant coherent
state reduces the amount of entanglement acquired be-
tween the atoms and the field. This in turn helps screen
out the mixedness e↵ects on the target qubit produced
by the ‘Unruh noise’ generated by the probe’s relativistic
motion [2, 14]. Thus the initial atoms-field density matrix
can be written as ⇢

0

= ⇢A,0 ⌦ ⇢B,0 ⌦ |↵!1i h↵!1 |⌦!n 6=!1

|0!ni h0!n |. Notice that, since we are in a cavity, the

frequencies !n = n⇡/L form a discrete set.
When the probe enters the cavity, it becomes coupled

to the field. We take a perturbative approach (valid for
small couplings and short times) to analyze the system
dynamics. The time evolution under this Hamiltonian
from a time t = 0 to time t = T is given by

U(T, 0) =11 � i

Z T

0

dt
1

HI(t1) �
Z T

0

dt
1

Z t1

0

dt
2

HI(t1)HI(t2),

plus terms O(�3), where the notation O(�n) refers to
powers of the coupling strengths of both the probe-field
�A and target-field �B , so that �A�B is an O(�2) term.
The density matrix after a time T will be given by the

perturbative expansion ⇢T = ⇢
0

+ ⇢
(1)

T + ⇢
(2)

T + O(�3)
where

⇢
(1)

T = U (1)⇢
0

+ ⇢
0

U (1)

†
, (1)

⇢
(2)

T = U (1)⇢
0

U (1)

†
+ U (2)⇢

0

+ ⇢
0

U (2)

†
. (2)

Recall that we are interested in the target’s final state,
and so we will trace out the field modes as well as the
probe’s state to obtain: ⇢T,B = TrA(Trf (⇢T )). We will
compare this to the target’s initial density matrix, and
quantitatively assess our ability to control the target
qubit by controlling the probe’s motion.

Performing 1-qubit rotations.- In [2], one-qubit gates
were obtained through the non-inertial motion of the
atom which supported the logical qubit. Arbitrary ro-
tations on the Bloch sphere were achieved introducing
no decoherence to leading order in perturbation theory.
The price to pay is that logical quantum operations are
performed on the qubit whose non-inertial trajectory had
to be controlled. As opposed to [2] we use the motion of
a di↵erent probe atom to gain control over the target
qubit, physically supported on a di↵erent atom which
rests in the cavity. Hence, we are not required to keep
under control both the trajectory and the internal state
of one atom simultaneously. While advantageous in this
sense, there is a trade-o↵ on the quality of the quantum
gates that we could implement with this setting. As the
‘remote control’ appears as a second order e↵ect, it is im-
possible to perform a 100% clean Bloch sphere rotation
via this mechanism and, unavoidably, some mixedness
will be introduced in the target state. In contrast, in [2]
the dynamics were fully unitary to leading order in per-
turbation theory. However, we will show that the mixed-
ness introduced in the stationary qubit is always small as
compared to the magnitude of the rotations that we can
obtain on the target’s Bloch sphere vector. Moreover,
we will show that it is indeed advantageous to consider
regimes where the probe’s trajectory is relativistic in or-
der to more e�ciently manipulate the target’s qubit.

First order contributions to the target’s time evolution
cannot be influenced by the interaction of the field and
the probe: At first order in perturbation theory we will

H0 = ⌦�+�� +
d⌧(t)

dt

1X

j=1

!j a
†
jaj

It is easiest (but not always possible) to write the 
Hamiltonian that generates translations with respect to 

the atom’s proper time. In the interaction picture

HI = �
�
�+ei⌦⌧ + ��e�i⌦⌧

� 1X

j=1

h
a†je

i!jt(⌧) + aje
�i!jt(⌧)

i
sin kjx(⌧),
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FIG. 1. The probe atom (A) is shot through the cavity and
the target atom (B) is stationary at x = L/2, they interact
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The Hamiltonian for a single detector will be of the

form H = H
(d)
0

+ H
(f)
0

+ HI , where H
(d)
0

and H
(f)
0

are
the detector and field free Hamiltonians. The interaction
Hamiltonian HI is of the form HI = �⇠(⌧)µ(⌧)�[x(⌧)]
where �⇠(⌧) is a time dependent coupling strength con-
trolling the interaction time, µ(⌧) = (�+e�i⌦⌧ + H.c.) is
the monopole moment operator (in the interaction pic-
ture) where ⌦ is the energy gap between the two levels of
the atom, x(⌧) is the worldline of the atom parametrized
in terms of its proper time and �[x(⌧)] is the field opera-
tor which we expand in terms of stationary wave modes.
Throughout the paper we will use natural units c = ~ = 1
and we will take the scale ⌦ as our reference. How our
results translate into dimensionful units is explained in
the section ‘Experimental feasibility’ below.

Since there are two atoms with di↵erent states of mo-
tion (thus di↵erent proper reference frames) we need to
choose with respect to what time parameter we want the
full Hamiltonian to generate evolution. We choose the
proper time of the stationary atom; consequently there
is a redshift factor in front of the accelerated atom term
of HI . This is a somewhat subtle point which is discussed
in-depth in [13]. Taking all this into account we finally

obtain HI(t) = d⌧
dt H

(A)

I [⌧(t)] + H
(B)

I (t), where the indi-

vidual H
(d)

I are given by the single detector interaction
Hamiltonian shown above and t is the cavity rest frame
time.

We initially prepare the quantum field in the cav-
ity such that one of the field modes is in a coherent
state of complex amplitude ↵, and the rest of the modes
are lowly-populated. Preparing a near-resonant coherent
state reduces the amount of entanglement acquired be-
tween the atoms and the field. This in turn helps screen
out the mixedness e↵ects on the target qubit produced
by the ‘Unruh noise’ generated by the probe’s relativistic
motion [2, 14]. Thus the initial atoms-field density matrix
can be written as ⇢

0

= ⇢A,0 ⌦ ⇢B,0 ⌦ |↵!1i h↵!1 |⌦!n 6=!1

|0!ni h0!n |. Notice that, since we are in a cavity, the

frequencies !n = n⇡/L form a discrete set.
When the probe enters the cavity, it becomes coupled

to the field. We take a perturbative approach (valid for
small couplings and short times) to analyze the system
dynamics. The time evolution under this Hamiltonian
from a time t = 0 to time t = T is given by

U(T, 0) =11 � i

Z T

0

dt
1

HI(t1) �
Z T

0

dt
1

Z t1

0

dt
2

HI(t1)HI(t2),

plus terms O(�3), where the notation O(�n) refers to
powers of the coupling strengths of both the probe-field
�A and target-field �B , so that �A�B is an O(�2) term.
The density matrix after a time T will be given by the

perturbative expansion ⇢T = ⇢
0

+ ⇢
(1)

T + ⇢
(2)

T + O(�3)
where

⇢
(1)

T = U (1)⇢
0

+ ⇢
0

U (1)

†
, (1)

⇢
(2)

T = U (1)⇢
0

U (1)

†
+ U (2)⇢

0

+ ⇢
0

U (2)

†
. (2)

Recall that we are interested in the target’s final state,
and so we will trace out the field modes as well as the
probe’s state to obtain: ⇢T,B = TrA(Trf (⇢T )). We will
compare this to the target’s initial density matrix, and
quantitatively assess our ability to control the target
qubit by controlling the probe’s motion.

Performing 1-qubit rotations.- In [2], one-qubit gates
were obtained through the non-inertial motion of the
atom which supported the logical qubit. Arbitrary ro-
tations on the Bloch sphere were achieved introducing
no decoherence to leading order in perturbation theory.
The price to pay is that logical quantum operations are
performed on the qubit whose non-inertial trajectory had
to be controlled. As opposed to [2] we use the motion of
a di↵erent probe atom to gain control over the target
qubit, physically supported on a di↵erent atom which
rests in the cavity. Hence, we are not required to keep
under control both the trajectory and the internal state
of one atom simultaneously. While advantageous in this
sense, there is a trade-o↵ on the quality of the quantum
gates that we could implement with this setting. As the
‘remote control’ appears as a second order e↵ect, it is im-
possible to perform a 100% clean Bloch sphere rotation
via this mechanism and, unavoidably, some mixedness
will be introduced in the target state. In contrast, in [2]
the dynamics were fully unitary to leading order in per-
turbation theory. However, we will show that the mixed-
ness introduced in the stationary qubit is always small as
compared to the magnitude of the rotations that we can
obtain on the target’s Bloch sphere vector. Moreover,
we will show that it is indeed advantageous to consider
regimes where the probe’s trajectory is relativistic in or-
der to more e�ciently manipulate the target’s qubit.

First order contributions to the target’s time evolution
cannot be influenced by the interaction of the field and
the probe: At first order in perturbation theory we will

H0 = ⌦�+�� +
d⌧(t)

dt

1X
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†
jaj
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that’s fine (uncertainty principle) but not for long 
times…”
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If we start from an eigenstate of the free Hamiltonian, the evolved state 
would be a superposition with the same expectation of H but non-zero 

uncertainty… possibly more so the shorter the interaction…



Conservation	
  of	
  Energy?

�E�t � 1

2
~

This is the way to waive your hands about Heisenberg principle… but no 
‘non-conservation’ of energy

If we start from an eigenstate of the free Hamiltonian, the evolved state 
would be a superposition with the same expectation of H but non-zero 

uncertainty… possibly more so the shorter the interaction…



usual	
  approximations	
  in	
  QO

First order Dyson Series

Let us see it more rigorously!

Quantum entanglement survives a firewall
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We analyze how pre-existing entanglement between two Unruh-DeWitt particle detectors evolves
when one of the detectors falls through a Rindler firewall in (1+1)-dimensional Minkowski space. The
firewall e↵ect is minor and does not wash out the detector-detector entanglement, in some regimes
even preserving the entanglement better than Minkowski vacuum. The absence of cataclysmic
events should continue to hold for young black hole firewalls. A firewall’s prospective ability to
resolve the information paradox must hence hinge on its detailed gravitational structure, presently
poorly understood.

Introduction.— If black hole evaporation preserves
unitarity, it has been argued from preservation of corre-
lations that the horizon of a shrinking black hole must
develop a singularity even when the evaporation is still
slow and the black hole remains macroscopic [1–3] (for a
selection of reviews and debate see [4–7]). While model-
ing the gravitational aspects of this proposed singularity
has remained elusive, the nongravitational aspects of the
“firewall” version of the singularity [3] can be modeled
with a quantum field in Minkowski spacetime: a state
in which correlations across a Rindler horizon are sev-
ered can be written down by hand [8], mimicking the
severing that should develop dynamically during black
hole evaporation. This Rindler firewall can be studied by
usual quantum field theory techniques, and the conclu-
sions should apply to young gravitational firewalls where
the backreaction on the metric is still small.

In this paper we analyse the correlations between two
particle detectors when one of them falls through a
Rindler firewall. From the quantum field theory side,
this question is motivated by the fact that any measure-
ments of quantum fields are done through material par-
ticle detectors, and we may employ the Unruh-DeWitt
detector model [9, 10] to capture the essential aspects
of interactions between atoms and the electromagnetic
field [11, 12]. From the firewall side, focusing on the
correlations between two detectors is motivated by the
central role of quantum correlations in the firewall argu-
ment [3]. The response of a single detector falling through
the Rindler firewall is known to be sudden but finite [8].
For two detectors that are initially correlated, interaction
with the quantum field will decohere the two detectors:
might this decoherence be drastically enhanced when one
of the detectors goes through a Rindler firewall? A posi-
tive answer could be seen as indirect support of the fire-
wall argument as given in [3].

Our main conclusion runs contrary to these expecta-
tions. The Rindler firewall turns out to have only a mod-
est e↵ect on the decoherence between the two detectors,
and in certain regions of the parameter space the fire-

wall even preserves the entanglement between the two
detectors better than Minkowski vacuum. A firewall’s
prospective capability to resolve the black hole informa-
tion paradox must hence hinge on its detailed late time
gravitational structure, which at present is still poorly
understood.

Formalism: evolving an inertial detector

pair.— We consider a pair of Unruh-DeWitt detectors
[9, 10] coupled to a real scalar field � and moving in-
ertially in Minkowki spacetime without relative veloc-
ity [13]. We evolve the system with respect to the
Minkowski time t in a Lorentz frame in which the two
detectors are at rest, and we denote t by ⌧ as it coincides
with the detectors’ proper time. The interaction picture
Hamiltonian is

H =
X

⌫

�⌫�⌫(⌧)µ⌫(⌧)�
�
x⌫(⌧)

�
, (1)

where the index ⌫ labels the two detectors, x⌫(⌧) are
their worldlines, µ⌫(⌧) are the monopole moment op-
erators and �⌫ are the coupling constants. The real-
valued switching functions �⌫ specify how the interac-
tion is turned on and o↵. We assume that �⌫ either have
compact support or have su�ciently strong fallo↵ prop-
erties for the system to be treatable as asymptotically
uncoupled in the distant past and future.

If the initial state (= density matrix) of the system
is ⇢

0

, the final state after the interaction has ceased is
⇢T = U⇢

0

U †, where U is the interaction picture time
evolution operator. Assuming that each �⌫ is propor-
tional to a formal perturbative parameter �, U has the
Dyson expansion U = U (0) + U (1) + U (2) +O(�3) where
U (0) = 11 and

U (1)=�i

Z 1

�1
d⌧ H(⌧), U (2)=�

Z 1

�1
d⌧

Z ⌧

�1
d⌧ 0H(⌧)H(⌧ 0) .

(2)
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Rotating-wave approximation

Rotating-wave approximation         ) No ‘vacuum’ fluctuations
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Z t
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dt1 e
i(!0�!n)t1 ⇠ �T

D
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E
⇠ 1
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lim
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Z t

t0

dt1 e
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Figure 3. (Color online) Numerical values of the lowest order
contribution A4 from (19) to the signalling term in the Fermi
problem for two detectors separated by |xA �xB | = 5 for dif-
ferent switching times T , depending on the number of modes
below the cuto↵ NC . The biggest contribution are acquired
around the resonance mode number n = 15. For NC > n the
results oscillate around a limiting value which is approached
for higher cuto↵s. For the lowest switching time the detec-
tors are spacelike separated during the interaciton with the
field, hence no signalling is possible. (All plotted quantities
are dimensionless.)

for switching times T < |xA � xB|, grow with increasing
switching times T . Hence the lightcone where the switch-
ing time T = |xA � xB| equals the distance between the
detectors marks a critical case which we can use to quan-
tify the violation of causality in a model with UV-cuto↵:
To avoid superluminal signalling the coe�cients of the
channel in (17), like A, have to vanish on the lightcone.
As the value of |A4(T )| for a fixed cuto↵ NC is larger on
the lightcone than further outside the lightcone, we can
take |A4(T = |xA � xB|)| as a measure for the violation
of causality.

In other words, given that the coe�cients A,B,C,D
are smooth functions of time, their being zero outside the
light cone implies that their value is also zero right on the
light cone. If we are looking for an estimation of how big
the acausal error in signalling is for a finite number of
modes NC , we can analyze the value of the contributions
of Alice’s detector initial state to Bob’s detector right on
the light cone, since this is the most conservative sce-
nario.

Because of the oscillating behaviour that we observed
in figure 3 for large cuto↵s, it is not convenient to di-
rectly compare values of |A4(T = |xA � xB|)| obtained
for di↵erent values of NC to each other directly. Instead,
in figure 5, for a given cuto↵ NC , we plot the maximum
value obtained for |A4(T = |xA � xB|)| for any cuto↵ N
larger than or equal to NC .

Notice that for all switching times T the value of A4(T )
depends also on the mode n with which the detectors are
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Figure 4. (Color online) The signalling term A4 from (19)
in the Fermi problem for two detectors at a distance of
|xA � xB| = 2 for di↵erent switching times T for increas-
ing cuto↵s at NC . The dashed line indicates the lightcone. In
general the values of A4 inside the lightcone grow towards the
lightcone. Hence to check the level of causality violation for a
specific cuto↵ the value on the lightcone, i.e., for a switching
time T = |xA � xB| is relevant. (All plotted quantities are
dimensionless.)

resonant. In general, all contributions to the channel
coe�cients A,B,C,D and P in (17) tend to be smaller
for higher mode numbers n. Therefore, in order to be
able to compare the values for detectors being resonant
with di↵erent modes n on equal footing, in figure 5, we
show the value of the A4 term on the light cone divided
by the respective value of A4 for each n at a time in-
side the lightcone. Hence we are computing the relative
magnitude of the faster-than-light signalling signature as
compared to the causal signal. In particular, the values
in figure 5 have been normalized by the respective value
of |A4(T = 3

2 |xA � xB |, NC = 100)|.
Interestingly, we observe that this value decays follow-

ing a power law for cuto↵s NC well above the resonance
mode n.
The asymptotic power of this decay is the same for dif-

ferent choices of the mode the detectors are tuned to be in
resonance with. Similarly, the distance between the two
detectors and their positioning inside the cavity do not
change the slope of the decay, but only shift the asymp-
totic behaviour along the y-axis in a double-logarithmic
plot as in figure 5. This shift in the double-logaritmic
plot corresponds to a multiplying factor in front of the
functional relation between NC and A4.
The power law decay can be traced back to the struc-

ture of A4 as it is given in equation (A1) of the appendix.
Inside the cavity the 2-point function of the field is given
by a sum with a single contribution from each field mode.
Hence the 4-point function which occurs in A4 is given
by a twofold sum with two summation variables running
over all the field modes, because the 4-point function can
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Figure 5. (Color online) The plot shows maxN�NC |A4(N)|,
the maximum value of the signalling term A4 from (19) on
the light cone |A4(T = |xA � xB|)| obtained for any higher
cuto↵, i.e., for any number of modes N � NC larger than or
equal to NC . For di↵erent n the modes have been normalized
as explained in the text. The values of |A4| on the lightcone,
i.e., for T = |xA � xB| approach zero following a power law
for large numbers of modes NC . (All plotted quantities are
dimensionless.)

be expressed in terms of 2-point functions in the usual
way. For each term in this sum the time integrations
of equation (A1) lead to a polynomial in the summation
variables (with the physical parameters and trigonomet-
ric functions as coe�cients) which is divided by a com-
mon denominator. This denominator is itself a polyno-
mial in the summation variables. Hence for higher cuto↵s
the asymptotic power law behaviour should emerge from
the leading behaviour of the polynomial fraction for high
values of the summation variables.

B. Signalling using {|+i , |�i} encoding

We will discuss here how the use of |+i and |�i states
can lead to a large improvement in the ability of Alice
to signal Bob through the field as compared to preparing
Alice’s detector in the ground or excited states.

In (17) we see that the o↵-diagonal elements of ⇢T,B

are given by products of the factors C and D (and their
complex conjugates) with the o↵-diagonal elements � and
�⇤ of ⇢A,0. So in general (i.e., unless ⇢A,0 is diagonal)
the initial state of detector A has an influence on the
final state of detector B at second order in the coupling
strength, because C,D ⇠ O(�2). However to make use
of this e↵ect, e.g., for signalling, the o↵-diagonal element
of the input state � has to be large and on the recipi-
ents side, the o↵-diagonal elements of ⇢B,T have to be
measured.

As a simple example for this we look at the following
protocol: Just as before,the system is assumed to start

out in the state (3), i.e., the field is prepared in the vac-
uum, detector B in its ground state and detector A in an
arbitrary state

⇢A,0 =

✓
✓ �
�⇤ �

◆
. (28)

After the interaction has taken place between t = 0 and
T = 0 a measurement on detector B is performed in the
{|+i , |�i} basis.

|±i = 1p
2
(|gi± |ei) (29)

we find that the projectors onto these two states are given
by

P±(t = 0) = |±ih±| = 1

2

✓
1 ±1
±1 1

◆
. (30)

Because we work in the interaction picture P± needs to
be evolved with the corresponding free Hamiltonian.

P±(t) = exp(iH(D)
0 t)P±(t = 0) exp(�iH(D)

0 t)

=
1

2

✓
1 ±ei⌦Dt

±e�i⌦Dt 1

◆
(31)

So for t > T the probability to find detector B, e.g., in
the |+i-state is given by:

Tr (P+(t)⇢T,B) =
1

2
+ Re

�
(�C + �⇤D⇤) e�i⌦Bt

�
(32)

It is interesting to note, that this detection probability
is completely independent of all other terms occuring in
the general form of the channel. It is independent of A
and B and hence from the diagonal elements of ⇢A,0 and
the single detector excitation probability P does not have
any influence either.
This could be of use for signalling between the two

detectors: Say the detector A was intially prepared in
the |+i-state, for which � = 1

2 or the |�i-state, for which
� = � 1

2 . Then for a given set of parameters, i.e., if C
and D are known, the time point of the measurement on
detector B can be chosen such, that the probability to
find detector B in the |+i-state is given by

p (B = |+i |A = |±i) = 1

2
± |C +D⇤| . (33)

Figure 6 plots one example of the lowest order contribu-
tions to this probability.
The fact that C,D ⇠ O(�2) and that the detection

probabilities (33) are independent of the other factors
in the channel (17) indicates that the protocol outlined
above should allow for much enhanced signalling as com-
pared to the use of eigenstates like in the Fermi prob-
lem. Although the preparation and detection of |±i-
states might be experimentally more di�cult than the

Robert, Achim and me, Phys. Rev. A 89, 022330 (2014) 
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• Example: different observers of flat spacetime
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ct = ξ sinh aτ
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'(
, x = ξ cosh aτ
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'(

ct = −ξ 'sinh aτ '
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()
, x = −ξ 'cosh aτ '
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(x, t) ! u
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!̂ / e

�i!̂t(⇠, ⌧) ! uI
! / e�i!⌧(⇠, ⌧) ! uII
! / ei!⌧ 0

rµrµu = 0 Positive freq. solutions
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⌘

The field can be expanded in either basis

The change of basis is not trivial

Basis{

Basis
 
 
!
"
#

or equivalently

Field	
  Quan+za+on:	
  Observer	
  dependence



II I

c

F

P

Rob has no access to region II

First: change of Fock basis

Second: Trace out the disconnected region

tanh r! = exp

⇣
�⇡c!

a

⌘

Example: Minkowskian vacuum. Rob’s perspective

Result: thermal state

hN!,Ri =
1

e2⇡c/!a � 1 TU =
~a

2⇡KB

|0iM

|0iM =

O
!

1

cosh r!

1X
n=0

tanh

n r!|niI|niII

⇢R,! = TrII (|0!ih0!|) =
1

cosh

2 r!

X

n

tanh

2n r!|n!iIhn!|I

The	
  Importance	
  of	
  the	
  Horizon



The	
  Unruh-­‐DeWitt	
  detector	
  model

HI = �
�
�+ei⌦⌧ + ��e�i⌦⌧

� 1X

j=1

h
a†je

i!jt(⌧) + aje
�i!jt(⌧)

i
sin kjx(⌧),

Models the interaction of a two-level system with a scalar field

�+aj , ��a†j

��aj , �+a†j

Rotating-wave terms

Counter-rotating wave terms

Detector at rest (or inertial): x(⌧) = x0, t(⌧) = ⌧

ei[⌦⌧�!jt(⌧)]

ei[⌦⌧+!jt(⌧)]



The	
  Unruh-­‐DeWitt	
  detector	
  model

HI = �
�
�+ei⌦⌧ + ��e�i⌦⌧

� 1X

j=1

h
a†je

i!jt(⌧) + aje
�i!jt(⌧)

i
sin kjx(⌧),

�+aj , ��a†j

��aj , �+a†j

Rotating-wave terms

Counter-rotating wave terms

Both highly oscillatory and become not-negligible very soon.

What if the trajectory is constantly accelerated?

L

|�0i =
1O

n=1

|0!ni

x(0) = 0
x(⌧)

⌧ = 0 0 < ⌧ < TC ⌧ = TC

x(TC) = L

|gi
⇢(d) 6= |gihg|
⇢(f) 6= |0ih0|

x(⌧) = a

�1
(cosh a⌧ � 1)

t(⌧) = a�1 sinh a⌧

Counter-rotating terms allow for vacuum excitations

ei[⌦⌧�!jt(⌧)]

ei[⌦⌧+!jt(⌧)]



Accelerated	
  atom	
  in	
  the	
  vacuum

For an accelerated detector
x(⌧) = a

�1
(cosh a⌧ � 1)

t(⌧) = a�1 sinh a⌧

HI = �
�
�+ei⌦⌧ + ��e�i⌦⌧

� 1X

j=1

h
a†je

i!jt(⌧) + aje
�i!jt(⌧)

i
sin kjx(⌧),

• The counter-rotating and rotating terms quickly become comparable.

An accelerated detector probing the vacuum detects field quanta due to the

contribution of the counter-rotating terms. This is the ‘Unruh e↵ect’



The Unruh Effect

•Alice Observes the field vacuum.

•Rob observes a thermal bath of temperature 

Inertial frame

TU / a

Accelerated frame

Too small to be detected!!


