(Some) Relativistic aspects of the Light-Matter interaction

Eduardo Martín-Martínez Inst. for Quantum Computing, UW Perimeter Institute

Think of a Dirichlet cavity and a two-level atom in an arbitrary state of motion. We sit at the lab.

Think of a Dirichlet cavity and a two-level atom in an arbitrary state of motion. We sit at the lab.

What's the Free Hamiltonian (Schrödinger picture) of the different components of the system?

Think of a Dirichlet cavity and a two-level atom in an arbitrary state of motion. We sit at the lab.

What's the Free Hamiltonian (Schrödinger picture) of the different components of the system?

$$H_{0,\text{atom}} = \Omega \sigma^+ \sigma^ H_{0,\text{field}} = \sum_{j=1}^{\infty} \omega_j a_j^{\dagger} a_j$$

Think of a Dirichlet cavity and a two-level atom in an arbitrary state of motion. We sit at the lab.

What's the Free Hamiltonian (Schrödinger picture) of the different components of the system?

$$H_{0,\text{atom}} = \Omega \sigma^+ \sigma^ H_{0,\text{field}} = \sum_{j=1}^{\infty} \omega_j a_j^{\dagger} a_j$$

$$H_0 = \Omega \,\sigma^+ \sigma^- + \sum_{j=1}^{\infty} \omega_j \,a_j^{\dagger} a_j \,?$$

Relativity: Who measures what? Same Physics, Different Descriptions

Bell Rocket "Paradox"

Does the rope break or not??

Why??

Relativity: Who measures what? Same Physics, Different Descriptions

Does the rope break or not??

Why??

Who measures what? Same Physics, Different Descriptions

Does the rope break or not??

Why??

Who measures what? Same Physics, Different Descriptions

PHYSICS:

The rope breaks, all right!

Who measures what? Same Physics, Different Descriptions

PHYSICS:

The rope breaks, all right!

PHENOMENOLOGY:

For the accelerated observer A: Because rocket B is faster than us!

For the observer on the ground: Because both rockets go equally faster and faster, the length of the rope Lorentz-contracts!

Quantum Mechanics and GR Same Physics, Different Descriptions

In non-relativistic quantum theory, time is a parameter!

$$\frac{d}{dt}\hat{A}(t) = \frac{i}{\hbar} \left[\hat{H}(t), \hat{A}(t)\right] + \frac{\partial \hat{A}(t)}{\partial t}.$$

Quantum Mechanics and GR Same Physics, Different Descriptions

In non-relativistic quantum theory, time is a parameter!

Excuse me... Time? Whose time? Mine? Yours? $\frac{d}{dt}\hat{A}(t) = \frac{i}{\hbar} \left[\hat{H}(t), \hat{A}(t)\right] + \frac{\partial \hat{A}(t)}{\partial t}.$ $\frac{d}{d\tau}\hat{A}[t(\tau)] = \frac{dt}{d\tau}\frac{d}{dt}\hat{A}(t)\Big|_{t=t(\tau)} = \frac{dt}{d\tau}\frac{i}{\hbar} \left[\hat{H}(t), \hat{A}(t)\right] + \frac{dt}{d\tau}\frac{\partial \hat{A}(t)}{\partial t}\Big|_{t=t(\tau)}$ $\frac{d}{d\tau}\hat{A}[t(\tau)] = \frac{i}{\hbar} \left[\left(\frac{dt}{d\tau}\hat{H}[t(\tau)]\right), \hat{A}[t(\tau)]\right] + \frac{\partial \hat{A}[t(\tau)]}{\partial\tau}$

Quantum Mechanics and GR Same Physics, Different Descriptions

Rule of thumb

Thus, we can start with the Hamiltonian $\hat{H}(t)$, which generates translations in the global time coordinate t, and then define

$$\hat{H}(\tau) := \frac{dt}{d\tau} \hat{H}[t(\tau)]$$

as the Hamiltonian which generates evolution for the entire system with respect to the time coordinate τ

Think of a Dirichlet cavity and a two-level atom in an arbitrary state of motion (with proper time τ). We sit at the lab.

What's the Free Hamiltonian (Schrödinger picture) of the different components of the system?

$$H_{0,\text{atom}} = \Omega \sigma^+ \sigma^ H_{0,\text{field}} = \sum_{j=1}^{\infty} \omega_j a_j^{\dagger} a_j$$

$$H_0 = \Omega \,\sigma^+ \sigma^- + \sum_{j=1}^{\infty} \omega_j \,a_j^{\dagger} a_j \,?$$

Think of a Dirichlet cavity and a two-level atom in an arbitrary state of motion (with proper time τ). We sit at the lab.

What's the Free Hamiltonian (Schrödinger picture) of the different components of the system?

$$H_{0,\tau} = \Omega \,\sigma^+ \sigma^- \qquad \qquad H_{0,t} = \sum_{j=1}^{\infty} \omega_j \,a_j^{\dagger} a_j$$

$$H_0 = \Omega \,\sigma^+ \sigma^- + \sum_{j=1}^{\infty} \omega_j \,a_j^{\dagger} a_j \,?$$

Think of a Dirichlet cavity and a two-level atom in an arbitrary state of motion (with proper time τ). We sit at the lab.

What's the Free Hamiltonian (Schrödinger picture) of the different components of the system?

$$H_{0,\tau} = \Omega \,\sigma^+ \sigma^- \qquad \qquad H_{0,t} = \sum_{j=1}^{\infty} \omega_j \,a_j^{\dagger} a_j$$

$$H_0 = \Omega \,\sigma^+ \sigma^- + \frac{\mathrm{d}\tau(t)}{\mathrm{d}t} \sum_{j=1}^\infty \omega_j \,a_j^\dagger a_j$$

What about the interaction Hamiltonian?

It is easiest (but not always possible) to write the Hamiltonian that generates translations with respect to the atom's proper time. In the interaction picture

$$H_I = \lambda \left(\sigma^+ e^{i\Omega\tau} + \sigma^- e^{-i\Omega\tau} \right) \sum_{j=1}^{\infty} \left[a_j^\dagger e^{i\omega_j t(\tau)} + a_j e^{-i\omega_j t(\tau)} \right] \sin k_j x(\tau),$$

$$H_0 = \Omega \,\sigma^+ \sigma^- + \frac{\mathrm{d}\tau(t)}{\mathrm{d}t} \sum_{j=1}^\infty \omega_j \,a_j^\dagger a_j$$

But in my experiments atoms do not travel anywhere near c. Should I care?

Atom at rest:

$$x(\tau) = x_0, \quad t(\tau) = \tau$$

$$H_I = \lambda \left(\sigma^+ e^{i\Omega\tau} + \sigma^- e^{-i\Omega\tau} \right) \sum_{j=1}^{\infty} \left[a_j^{\dagger} e^{i\omega_j t(\tau)} + a_j e^{-i\omega_j t(\tau)} \right] \sin k_j x(\tau),$$

$$H_0 = \Omega \,\sigma^+ \sigma^- + \frac{\mathrm{d}\tau(t)}{\mathrm{d}t} \sum_{j=1}^\infty \omega_j \,a_j^\dagger a_j$$

$$H_{0} = \frac{\Omega}{2}\sigma_{z} + \sum_{j}\omega_{j}a_{j}^{\dagger}a_{j}$$
$$\hbar\omega_{j} = \lambda \left(\sigma^{+} + \sigma^{-\hbar}\Omega\sum_{j=1}^{\infty} \left[a_{j}^{\dagger} + a_{j}\right]\sin k_{j}x,$$
$$\sigma^{+}a_{\omega}\left|1_{\omega}\right\rangle\left|g\right\rangle \longrightarrow \left|0\right\rangle^{j}\left|\overline{e}^{1}\right\rangle$$

$$\sigma^{+}a_{\omega}^{\dagger} |0\rangle |g\rangle \longrightarrow |1_{\omega}\rangle |e\rangle$$
$$0 \qquad \qquad \hbar(\Omega + \omega_{j})$$

Atom at rest:

 $\sigma^+ a_j, \ \sigma^- a_j^{\dagger}$ Rotating-wave terms $\sigma^- a_j, \ \sigma^+ a_j^{\dagger}$ Counter-rotating wave terms

$$x(\tau) = x_0, \quad t(\tau) = \tau$$

Atom at rest:

 $x(\tau) = x_0, \quad t(\tau) = \tau$

$$\begin{aligned} & \hbar\omega_{j} & \hbar\Omega \\ & \sigma^{+}a_{\omega} |1_{\omega}\rangle |g\rangle \longrightarrow |0\rangle |e\rangle & \text{Neglect the CRW terms because} \\ & \sigma^{+}a_{\omega}^{\dagger} |0\rangle |g\rangle \longrightarrow |1_{\omega}\rangle |e\rangle & \text{They do not conserve energy... for some time} \\ & 0 & \hbar(\Omega + \omega_{j}) \end{aligned}$$

 $\sigma^+ a_j, \ \sigma^- a_j^{\dagger}$ Rotating-wave terms $\sigma^- a_j, \ \sigma^+ a_j^{\dagger}$ Counter-rotating wave terms

Atom at rest:

 $\begin{aligned} x(\tau) &= x_0, \quad t(\tau) = \tau \\ & \hbar\omega_j & \hbar\Omega \\ \sigma^+ a_\omega & |1_\omega\rangle & |g\rangle \longrightarrow |0\rangle & |e\rangle \\ \sigma^+ a_\omega^\dagger & |0\rangle & |g\rangle \longrightarrow |1_\omega\rangle & |e\rangle \\ & 0 & \hbar(\Omega + \omega_j) \end{aligned}$ "The that's f.

$$\sigma^+ a_j, \ \sigma^- a_j^{\dagger}$$
 Rotating-wave terms
 $\sigma^- a_j, \ \sigma^+ a_j^{\dagger}$ Counter-rotating wave terms

Atom at rest:

 $x(\tau) = x_0, \quad t(\tau) = \tau$

People like Sakurai say that...

Neglect the CRW terms because "They do not conserve energy... for some time that's fine (uncertainty principle) but not for long times..."

Atom at rest:

$$x(\tau) = x_0, \quad t(\tau) = \tau$$

Is there a problem with energy conservation?

$$\begin{split} & \hbar\omega_j & \hbar\Omega \\ & \sigma^+ a_\omega \left| 1_\omega \right\rangle \left| g \right\rangle \longrightarrow \left| 0 \right\rangle \left| e \right\rangle \\ & \sigma^+ a_\omega^\dagger \left| 0 \right\rangle \left| g \right\rangle \longrightarrow \left| 1_\omega \right\rangle \left| e \right\rangle \\ & 0 & \hbar(\Omega + \omega_j) \end{split}$$

Atom at rest:

$$x(\tau) = x_0, \quad t(\tau) = \tau$$

Is there a problem with energy conservation?

$$\begin{split} & \hbar\omega_j & \hbar\Omega \\ & \sigma^+ a_\omega \left| 1_\omega \right\rangle \left| g \right\rangle \longrightarrow \left| 0 \right\rangle \left| e \right\rangle \\ & \sigma^+ a_\omega^\dagger \left| 0 \right\rangle \left| g \right\rangle \longrightarrow \left| 1_\omega \right\rangle \left| e \right\rangle \end{split}$$

 $0 \qquad \qquad \hbar(\Omega+\omega_j)$

$$H_0 = \frac{\Omega}{2}\sigma_z + \sum_j \omega_j a_j^{\dagger} a_j \qquad H_I = \lambda \left(\sigma^+ + \sigma^-\right) \sum_{j=1}^{\infty} \left[a_j^{\dagger} + a_j\right] \sin k_j x,$$

Atom at rest:

$$x(\tau) = x_0, \quad t(\tau) = \tau$$

Is there a problem with energy conservation?

$$\begin{split} & \hbar\omega_j & \hbar\Omega \\ & \sigma^+ a_\omega \left| 1_\omega \right\rangle \left| g \right\rangle \longrightarrow \left| 0 \right\rangle \left| e \right\rangle \\ & \sigma^+ a_\omega^\dagger \left| 0 \right\rangle \left| g \right\rangle \longrightarrow \left| 1_\omega \right\rangle \left| e \right\rangle \\ & 0 & \hbar(\Omega + \omega_j) \end{split}$$

$$H_0 = \frac{\Omega}{2}\sigma_z + \sum_j \omega_j a_j^{\dagger} a_j \qquad H_I = \lambda \left(\sigma^+ + \sigma^-\right) \sum_{j=1}^{\infty} \left[a_j^{\dagger} + a_j\right] \sin k_j x,$$

Time independent Hamiltonian... Conserves energy at all times

Atom at rest:

$$x(\tau) = x_0, \quad t(\tau) = \tau$$

$$H_0 = \frac{\Omega}{2}\sigma_z + \sum_j \omega_j a_j^{\dagger} a_j \qquad H_I = \lambda \left(\sigma^+ + \sigma^-\right) \sum_{j=1}^{\infty} \left[a_j^{\dagger} + a_j\right] \sin k_j x,$$

Atom at rest:

$$x(\tau) = x_0, \quad t(\tau) = \tau$$

 $\begin{array}{ccc}
 \hbar\omega_{j} & \hbar\Omega \\
 \sigma^{+}a_{\omega} \left| 1_{\omega} \right\rangle \left| g \right\rangle \longrightarrow \left| 0 \right\rangle \left| e \right\rangle & \text{These guys are not eigenstates} \\
 \sigma^{+}a_{\omega}^{\dagger} \left| 0 \right\rangle \left| g \right\rangle \longrightarrow \left| 1_{\omega} \right\rangle \left| e \right\rangle & \text{of the full Hamiltonian!} \\
 0 & \hbar(\Omega + \omega_{j})
\end{array}$

$$H_0 = \frac{\Omega}{2}\sigma_z + \sum_j \omega_j a_j^{\dagger} a_j \qquad H_I = \lambda \left(\sigma^+ + \sigma^-\right) \sum_{j=1}^{\infty} \left[a_j^{\dagger} + a_j\right] \sin k_j x,$$

If we start from an eigenstate of the free Hamiltonian, the evolved state would be a superposition with the same expectation of H but non-zero uncertainty... possibly more so the shorter the interaction...

If we start from an eigenstate of the free Hamiltonian, the evolved state would be a superposition with the same expectation of H but non-zero uncertainty... possibly more so the shorter the interaction...

$$\Delta E \Delta t \ge \frac{1}{2}\hbar$$

This is the way to waive your hands about Heisenberg principle... but no 'non-conservation' of energy

usual approximations in QO

Let us see it more rigorously!

First order Dyson Series

 $U = U^{(0)} + U^{(1)} + U^{(2)} + \mathcal{O}(\lambda^3)$

$$U^{(1)} = -i \int_{t_0}^t \mathrm{d}t \, H_I(t)$$

Excitation probability

$$\sum_{\phi} \left| \left\langle \phi, e \right| U^{(1)} \left| 0, d \right\rangle \right|^2$$

usual approximations in QO

Typical approximations made in quantum optics when $\Omega = \omega_j$ $\Delta T \gg \Omega^{-1}$ Single mode approximation $\lim_{\substack{t \to \infty \\ t_0 \to -\infty}} \int_{t_0}^{t} \mathrm{d}t_1 \, e^{\mathrm{i}(\,\Omega \, -\omega_j)t_1} \sim \Delta T$ $\lim_{\substack{t \to \infty \\ t_0 \to -\infty}} \int_{t_0}^{\iota} \mathrm{d}t_1 \, e^{\mathrm{i}(\Omega - \omega_n)t_1} \sim \Delta T \left\langle e^{-\mathrm{i}(\Omega - \omega_n)t_1} \right\rangle \sim \frac{1}{(\Omega - \omega_n)}$ $\Delta T \gg (2\Omega)^{-1}$ Rotating-wave approximation $\lim_{\substack{t \to \infty \\ t_0 \to -\infty}} \int_{t_0}^{\iota} \mathrm{d}t_1 \, e^{\mathrm{i}(\,\Omega + \omega_n)t_1} \sim \Delta T \left\langle e^{\mathrm{i}(\,\Omega + \omega_n)t_1} \right\rangle \sim \frac{1}{(\,\Omega + \omega_n)}$

Rotating-wave approximation \Rightarrow No 'vacuum' fluctuations

usual approximations in QO

QED is a covariant theory These approximations destroy that

Robert, Achim and me, Phys. Rev. A 89, 022330 (2014)

Causality, Covariance and the SMA/RWA

Every time you make one of those approximations

Einstein kills a kitten...

Field Quantization: Observer dependence

The Importance of the Horizon

Example: Minkowskian vacuum. Rob's perspective

 $|0\rangle_{\mathrm{M}}$

First: change of Fock basis

$$|0\rangle_{\rm M} = \bigotimes_{\omega} \frac{1}{\cosh r_{\omega}} \sum_{n=0}^{\infty} \tanh^n r_{\omega} |n\rangle_{\rm I} |n\rangle_{\rm II}$$

Second: Trace out the disconnected region

$$\rho_{\mathrm{R},\omega} = \mathrm{Tr}_{\mathrm{II}}\left(|0_{\omega}\rangle\langle 0_{\omega}|\right) = \frac{1}{\cosh^{2}r_{\omega}}\sum_{n} \tanh^{2n}r_{\omega}|n_{\omega}\rangle_{\mathrm{I}}\langle n_{\omega}|_{\mathrm{I}}$$

Result: thermal state

$$\langle N_{\omega,\mathrm{R}} \rangle = \frac{1}{e^{2\pi c/\omega a} - 1} \qquad T_{\mathrm{U}} = \frac{\hbar a}{2\pi K_{\mathrm{B}}}$$

The Unruh-DeWitt detector model

$$H_I = \lambda \left(\sigma^+ e^{i\Omega\tau} + \sigma^- e^{-i\Omega\tau} \right) \sum_{j=1}^{\infty} \left[a_j^{\dagger} e^{i\omega_j t(\tau)} + a_j e^{-i\omega_j t(\tau)} \right] \sin k_j x(\tau),$$

Models the interaction of a two-level system with a scalar field

$$\sigma^{+}a_{j}, \ \sigma^{-}a_{j}^{\dagger}$$
 Rotating-wave terms $e^{i[\Omega\tau-\omega_{j}t(\tau)]}$
 $\sigma^{-}a_{j}, \ \sigma^{+}a_{j}^{\dagger}$ Counter-rotating wave terms $e^{i[\Omega\tau+\omega_{j}t(\tau)]}$

Detector at rest (or inertial): $x(\tau) = x_0$, $t(\tau) = \tau$

The Unruh-DeWitt detector model

$$H_I = \lambda \left(\sigma^+ e^{i\Omega\tau} + \sigma^- e^{-i\Omega\tau} \right) \sum_{j=1}^{\infty} \left[a_j^{\dagger} e^{i\omega_j t(\tau)} + a_j e^{-i\omega_j t(\tau)} \right] \sin k_j x(\tau),$$

What if the trajectory is constantly accelerated?

Both highly oscillatory and become not-negligible very soon.

Counter-rotating terms allow for vacuum excitations

Accelerated atom in the vacuum

$$H_I = \lambda \left(\sigma^+ e^{i\Omega\tau} + \sigma^- e^{-i\Omega\tau} \right) \sum_{j=1}^{\infty} \left[a_j^\dagger e^{i\omega_j t(\tau)} + a_j e^{-i\omega_j t(\tau)} \right] \sin k_j x(\tau),$$

For an accelerated detector

 $x(\tau) = a^{-1}(\cosh a\tau - 1)$ $t(\tau) = a^{-1}\sinh a\tau$

• The counter-rotating and rotating terms quickly become comparable.

An accelerated detector probing the vacuum detects field quanta due to the contribution of the counter-rotating terms. This is the 'Unruh effect'

Inertial frame

Accelerated frame

• Alice Observes the field vacuum.

• Rob observes a thermal bath of temperature $T_{\mathrm{U}} \propto a$