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Sakharov’s 1967 notion of “induced gravity” is currently enjoying a significant resurgence.

The basic idea, originally presented in a very brief 3-page paper with a total of 4 formulas,
is that gravity is not “fundamental” in the sense of particle physics. Instead it was argued

that gravity (general relativity) emerges from quantum field theory in roughly the same
sense that hydrodynamics or continuum elasticity theory emerges from molecular physics.

In this article I will translate the key ideas into modern language, and explain the various
versions of Sakharov’s idea currently on the market.
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1. Introduction

Einstein gravity (general relativity) is based on two key elements: (1) pseudo-

Riemannian geometry (Lorentzian geometry) — the geometric notions derived

from the Einstein Equivalence Principle, and (2) specific field equations for the

Ricci tensor. It is the second of these elements that Sakharov addresses in

developing his notion of “induced gravity”.1 There are by now a number of

versions of “induced gravity” on the market, some of which focus primarily on

particle physics and others which focus primarily on (semiclassical) gravity.

To set the general framework:

• Assume you are given a Lorentzian manifold.

• Make no assumptions about the dynamics of this geometry; leave it free

to flap in the breeze. Do not attempt to quantize geometry/gravity itself,

but quantize everything else. (The geometry is considered as a classical

background.)

∗ Permanent address after 1 July 2002:
School of Mathematics and Computer Science, Victoria University, PO Box 600, Wellington,
New Zealand.
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• Consider one-loop quantum field theory on this manifold.

• Then at one loop the effective action is guaranteed to contain terms of the

form: ∫
d4x
√−g

{
c0 + c1 R(g) + c2 (“R2”)

}
. (1)

Compare this with the standard Lagrangian for Einstein gravity
∫

d4x
√−g

{
−Λ − R(g)

16π G
+ K (“R2”) + Lmatter

}
. (2)

That is: the one loop effective action automatically contains terms pro-

portional to the cosmological constant, the Einstein–Hilbert action, plus

“curvature-squared” terms.

This is the central observation, and it is extremely suggestive, but is it enough

for us to recover all the interesting aspects of gravity? It is the answer to this

last question that generates all the interest, and all the difficulties and subtleties.

2. One-loop matter affects classical gravity

Start by considering the one-loop contribution to the effective action for a (pos-

sibly non-minimally coupled) scalar field:

Sg = −1

2
ln det(∆g +m2 + ξR) = −1

2
Tr ln(∆g + m2 + ξR). (3)

In Feynman diagram language this determinant represents the sum of all one-

loop diagrams coupled to an arbitrary number of classical external gravitons.

(Even though we have not at this stage defined gravity, we have defined the

notion of geometry. To connect with particle physics language we temporar-

ily assume that the geometry is close to flat, expand the spacetime metric as

gab = ηab + hab, and Fourier transform the hab(x). The resulting hab(k) are

defined to be “external gravitons”. Once you have developed this Feynman

diagram picture, purely as an aid to visualization, there is no need to remain

close to flat space as the determinant formula continues to make excellent sense

even for highly curved and/or topologically nontrivial manifolds.) For Feyn-

man diagrams whose only external legs are classical gravitons, particle-particle

interactions will contribute only at two-loops or higher.

The determinant can be rigorously defined by a number of different tech-

niques (e.g, zeta functions 2,3). It is somewhat more useful to adopt an explicit

cutoff. Use the standard identity

ln(b/a) =

∫ ∞

0

dx

x

[
e−ax − e−bx

]
. (4)

Now define Tr to include a trace over both spacetime and any internal indices

Tr[ ] ≡
∫

d4x tr[ ] (5)
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and adopt Schwinger’s proper time formalism.aThis yields the simple expression

Sg = Sg0 +
1

2
Tr

∫ ∞

0

ds

s

[
exp(−s[∆g + m2 + ξR])− exp(−s[∆g0 + m2 + ξR0])

]
.

(6)

Note that this computes the difference in the one-loop contribution to the effec-

tive that comes from comparing two different metrics (g and g0) defined on the

same topological manifold. (g0 is simply any convenient reference metric.) Since

this expression is ultraviolet divergent, one should regularize with a short dis-

tance cutoff. Note that dimensionally [s] = M−2 = L2 ≡ [κ−2]. The regularized

but unrenormalized one-loop contribution to the effective action is then

Sg = Sg0 +
1

2
Tr

∫ ∞

κ−2

ds

s

[
exp(−s[∆g + m2 + ξR])− exp(−s[∆g0 + m2 + ξR0])

]
.

(7)

Now use the heat kernel expansion as s→ 0:2,3

exp(−s[∆g +m2 + ξR]) =

√−g
(4π s)2

[
a0(g) + a1(g)s + a2(g)s2 + · · ·

]
. (8)

The coefficients an are variously denoted the Seeley–DeWitt coefficients, Hami-

dew coefficients, or the Minakshisundarum–Pliejel coefficients. 3 They are uni-

versal functions of the spacetime geometry, and we do not need to know their

explicit form just yet. Then

Sg = Sg0 +
1

32π2
Tr

{
[a0(g) − a0(g0)]

κ4

2
+ [a1(g) − a1(g0)] κ2

+[a2(g)− a2(g0)] ln(κ2/m2)

}
+ UV finite. (9)

That is, the use of the heat kernel expansion has permitted us to isolate the

both the form and severity of potential divergences — a result that is of course

well known and is the basis, in one form or another, of essentially all work in

curved-space quantum field theory. 4 (For that matter, the occurrence of quartic,

quadratic, and logarithmic divergences is quite standard in flat-space QFT.)

If we now consider Dirac/Weyl spinors, then provided there is no net chiral

anomaly, we can square the Dirac operator to write

S = + ln det([γ ·D] + m)

= +
1

2
ln det(−[γ ·D]2 +m2)

= +
1

2
ln det

(
∆ +

1

4
R+m2

)
. (10)

aThere is nothing particularly special about Schwinger’s regularization — for instance, we
could just as easily use Pauli–Villars regularization. On the other hand, zeta functions or
dimensional regularization are a trifle tricky because they are in a sense too powerful, and
have the effect of “hiding” some of the interesting terms.
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Note the relative minus sign; in fact all fermions contribute with a relative minus

sign. Summing over all particles, bose plus fermi:

Sg = Sg0 +
1

32π2
Str

{
[a0(g) − a0(g0)]

κ4

2
+ [a1(g) − a1(g0)] κ2

+[a2(g) − a2(g0)] ln(κ2/m2)

}
+ UV finite. (11)

Here we have introduced the “supertrace” operator Str, which sums over all

particle species but weights fermi fields with a relative minus sign. Specifically

Str[ ] ≡ Tr
[
(−)F

]
. (12)

Note that the usefulness of this “Str” object is not limited to supersymmetric

theories, it makes perfectly good sense in arbitrary QFTs, and is simply a useful

notational and bookkeeping trick.

Working from any of many standard references it is easy to see4

a0(g) = 1. (13)

a1(g) = k1 R(g) −m2. (14)

a2(g) = k2 CabcdC
abcd + k3 RabR

ab + k4 R
2 + k5 ∇2R

−m2 k1 R(g) +
1

2
m4. (15)

where the dimensionless constants ki depend on the particular particle species

being considered. The form of these coefficients can be deduced by power count-

ing and the fact that they must be scalar invariants of the spacetime geometry.

The particular coefficients involving the m2 and m4 terms are easily deduced

by combining a Taylor expansion of exp(−s m2) with the corresponding m = 0

Seeley–DeWitt expansion. Not all of the terms in a2 are truly independent.

Upon integration

∫ √−g a2(g) =

∫ √−g
{
k′2 Cabcd C

abcd + k′4 R
2 −m2k1 R(g) +

1

2
m4

}
.

(16)

The k5 term has been discarded because it is a total divergence, while the k3

term can be eliminated using the integral formula for the 4-dimensional Euler

characteristic. k′2 and k′4 are suitable linear combinations of k2, k3, and k4. For

most of the qualitative discussion below we will not need to know specific values

for the ki.

Suppose we now define str by

Str[ ] ≡
∫
d4x str[ ] (17)
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and proceed to unwrap the above results by collecting terms based on their

geometrical form:

Sg = Sg0 +
1

32π2

{
str

[
κ4

2
−m2κ2 +

m4

2
ln

(
κ2

m2

)]∫
d4x

[√−g − √−g0

]

+str

[
k1κ

2 − k1m
2 ln

(
κ2

m2

)]∫
d4x

[√−g R(g) −√−g0 R(g0)
]

+str

[
k′2 ln

(
κ2

m2

)]∫
d4x

[√−g C2(g) −√−g0 C
2(g0)

]

+str

[
k′4 ln

(
κ2

m2

)]∫
d4x

[√−g R2(g) −√−g0 R
2(g0)

]
}

+UV finite. (18)

It is now trivial to extract the coefficients in the one-loop effective action. Define

the gravitational couplings as follows

∫
d4x
√−g

{
−Λ− R(g)

16π G
+K2 Cabcd C

abcd + K4 R
2 + Lmatter

}
. (19)

Then explicitly keeping track of potential zero-loop (tree level) contributionsb

Λ = Λ0 −
1

32π2
str

[
κ4

2
−m2κ2 +

m4

2
ln

(
κ2

m2

)]
+ UV finite. (20)

1

G
=

1

G0
− 1

2π
str

[
k1κ

2 − k1m
2 ln

(
κ2

m2

)]
+ UV finite. (21)

K2 = (K2)0 +
1

32π2
str

[
k′2 ln

(
κ2

m2

)]
+ UV finite. (22)

K4 = (K4)0 +
1

32π2
str

[
k′4 ln

(
κ2

m2

)]
+ UV finite. (23)

These are regulated but unrenormalized one-loop expressions describing the in-

fluence of the matter sector on the gravitational couplings. We see that armed

with a knowledge of the particle spectrum and the cutoff, the one-loop QFT-

induced changes in the gravitational couplings are calculable. With these for-

mulae in hand, it is now easy to go back to Sakharov’s paper1 and see where

his ideas were coming from. It is also important to note that it is at this stage

that the road diverges. There are at least four main directions one can take —

• Sakharov: Demand one-loop dominance.

• Pauli: Demand one-loop finiteness.

bOf course, admitting the possibility of zero-loop contributions is anti-Sakharov in spirit, but
we shall see uses for this abberant behaviour later.
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• Frolov–Fursaev: Demand one-loop calculability.

• Renormalizability: Demand one-loop calculability for certain differences.

The same one-loop formulae can then have rather different implications depend-

ing on the route you take. After a brief digression on observational bounds, let

us consider the major options in turn.

3. Experimental/Observational bounds

Regarding the gravitational couplings, we have good experimental data on

Newton’s constant G, while for the cosmological constant we are certainly safe

in asserting

|8πG Λ| <∼ 10−120 M4
Planck. (24)

Current observational data indeed favours the stronger statement

8πG Λ ≈ +10−123 M4
Planck. (25)

In contrast, constraints on the dimensionless numbers K2 and K4 are quite

weak (amazingly weak). The linearized theory leads to a weak-field potential of

Yukawa form5

φ(r) ∝ 1

r
− 4

3

exp(−MPlanck r/
√
K2)

r
+

1

3

exp(−MPlanck r/
√
K4)

r
. (26)

Note that the strength of the Yukawa terms is fixed and it is only their ranges

that depend on K2/4.

Negative values for K2 and K4 lead to objectionable tachyonic behaviour.

(For instance, the static potential would not limit to the Newtonian value at

large distances but would instead oscillate wildly between zero and 8/3 times

the standard Newtonian value. In addition the linearized theory then exhibits

various instabilities.6)

Positive values for K2 and K4 are constrained by the fact that we have

directly tested the inverse square law for gravity down to approximately the

millimeter scale, implying MPlanck/
√
K >∼ 10−13 GeV. That is

K2/4
<∼ 10+64. (27)

This direct experimental bound leaves considerable maneuvering room. (Various

“fifth force” experiments currently in progress are likely to improve these bounds

somewhat in the not too distant future.7) Indirect arguments, based on using

the K4 term to drive cosmological inflation suggest8

K4 ∈ (10+11, 10+15). (28)

(Cosmology is rather insensitive to the K2 term since the Weyl tensor is iden-

tically zero in all FRW backgrounds.) There is certainly considerable room for
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deriving better phenomenological and observational bounds on these parame-

ters.

4. Sakharov: one-loop dominance

Sakharov’s own interpretation of the manner in which one-loop matter influences

gravity was this:1

• Set all tree-level constants to zero.

• Assume one-loop physics is dominant.

• Assume most dimensionless numbers of order one.

• Assume κ ≈ MPlanck; so there is an explicit cutoff at the Planck scale.

• Quietly agree to ignore Λ, K2, and K4.

Then the Newton constant is “induced” at one-loop. Keeping only the dominant

terms in the divergence

1

G
≈ − 1

2π
str[k1] κ2; str[k1] ≈ −1. (29)

This is the key observation: an approximate formula for Newton’s constant as a

function of the cutoff κ and selected features of the particle spectrum (encoded

in str[k1]). It is this conjectured connection between Newton’s constant and

particle physics that has led to so much attention being given to this idea.

(Over 260 citations as of February 2002.) This route certainly paints a coherent

and attractive physical picture — but is there real predictive power? And is it

possible to say more?

For instance, if we try to say something about the other gravitational cou-

plings:

Λ ≈ − 1

64π2
str[I] κ4; str[I] ≈ 0. (30)

K2 ≈
1

32π2
str[k′2] ln(κ2/µ2) ≈ 1. (31)

K4 ≈
1

32π2
str[k′4] ln(κ2/µ2) ≈ 1. (32)

Note that powers dominate over logarithms (wherever possible), and that the

smallness of the observed cosmological constant is very much put in by hand.

(More on this below.) In contrast K2 and K4 are naturally dimensionless num-

bers of order unity; which is certainly compatible with experiment.

5. Pauli: QFT compensation

A different interpretation of (some of) these formulae can be traced back all

the way to Wolfgang Pauli. The key discussion is contained in his 1950 lectures
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on quantum field theory (the “Feldquantisierung”).9 Because Pauli was working

in flat space, not curved, his comments were directed towards the cosmological

constant Λ (which he rephrased in terms of the net zero-point energy of the

QFT).c Pauli did not himself consider Newton’s constant G, but the relevant

extensions are straightforward.

Step 1: To guarantee a one-loop finite result for Λ you need:9

str(I) = str(m2) = str(m4) = 0. (33)

Once these finiteness constraints are enforced, the one-loop contribution to the

cosmological constant isd

Λ = Λ0 +
1

64π2
str

[
m4 ln

(
m2

µ2

)]
+ two loops. (34)

These finiteness constraints are a fore-runner of the idea of supersymmetry, and

were certainly known to many of the developers of supersymmetry (SUSY).

They give tight constraints on the particle physics content of the model; con-

straints that are certainly not satisfied by the standard model (SM), and cer-

tainly require “beyond the standard model” (BSM) physics. For instance, these

constraints are satisfied by arbitrary SUSY theories prior to spontaneous sym-

metry breakdown (SSB), and by all of the non-SUSY one-loop finite QFTs.10

Note the quantity µ appearing here is simply any convenient mass scale chosen

to make the argument of the logarithm dimensionless, and that Λ is independent

of µ thanks to the constraint str(m4) = 0.

Step 2: Now extend Pauli’s compensation idea to curved space. If you addi-

tionally assume

str(k1) = str(k1 m
2) = 0, (35)

then the one-loop contribution to Newton’s constant is finite and

1

G
=

1

G0
− 1

2π
str

[
k1 m

2 ln

(
m2

µ2

)]
+ two loops. (36)

Note that the finiteness constraint str(k1) = 0 is completely at odds with

Sakharov’s original version of the induced gravity proposal. Also note that

this constraint guarantees that G is independent of µ.

cOne particularly transparent way of seeing that the shift in the cosmological constant as
formulated above is equivalent to the net zero point energy is to note that9

∫ κ

0

k2
√
m2 + k2dk =

κ4

4
+
m2κ2

4
− m4 ln(κ2/m2)

8
+ finite.

The left hand side is manifestly proportional to the zero point energy, while the right hand
side precisely yields the one-loop shift in Λ.
dIndeed, as Pauli points out, if you now add the additional restriction str[m4 ln(m2/µ2)] then
the one loop contribution to the cosmological constant (zero point energy) is not just finite,
it’s zero.
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Arranging these secondary finiteness constraints is considerably more com-

plicated, the relevant coefficients being given in Table I. The vanishing of str(k1)

and str(k1 m
2) are now very strong constraints on the particle content. These

constraints are not derivable from unbroken SUSY alone, nor does one neces-

sarily need SUSY to satisfy these constraints. A suitable toy model has been

presented by Frolov and Fursaev.11

Step 3: For the final stage, you need to additionally assume

str(k′2) = str(k′4) = 0 (37)

in order to render the one-loop contributions to the “R2” coupling constants

finite. Under this assumption

K2/4 = (K2/4)0 −
1

32π2
str

[
k′2/4 ln

(
m2

µ2

)]
+ two loops. (38)

Note that k′2 and k′4 are rather messy coefficients that seem to follow no partic-

ular pattern. The quantities in Table I were generated from the corresponding

results presented in Birrell and Davis.4 (No explicit toy model satisfying these

Step 3 constraints in addition to Steps 1 and 2 is currently known; it appears

that one would need to include higher-spin fields.)

Table 1. The coefficients k0, k1, k′2 and k′4 .

Description k0 k1 k′2 k′4
Scalar (minimal) 1 1/6 1/120 1/72
Scalar (conformal) 1 0 1/120 0
Scalar (generic) 1 1/6− ξ 1/120 (1− 6ξ)2/72
Weyl spinor 2 −1/6 −1/40 0
Dirac spinor 4 −1/3 −1/20 0
Vector(1⊕ 0) 4 −1/3 7/60 1/36
Spin 1 (massive) 3 −1/2 13/120 1/72
Spin 1 (massless) 2 −2/3 1/10 0
Chiral supermultiplet 0 1/2 1/24 1/36
Vector supermultiplet (massless) 0 1/2 1/8 0
Vector supermultiplet (massive) 0 0 5/24 1/24

Total contributions to the ki summed over spin states for low-spin particles. (Here k0 = tr[I ]

counts the number of spin states.) For supermultiplets the net value, including the effect of

the minus sign for fermions, is reported.

The overall conclusion is that one can keep all the one-loop effects of matter

on the gravity sector finite, at the cost of very strong constraints on the particle

spectrum, requiring rather specific BSM physics. But maybe the price paid is

too high? Indeed Pauli finishes his own comments with the observation:

These requirements are so extensive that it is rather improbable

that they are satisfied in reality.



Sakharov’s induced gravity: a modern perspective 10

(And Pauli was only concerned with Step 1; the particle masses and their in-

fluence on the cosmological constant. His technique was completely unable to

even begin addressing Newton’s constant and K2/4 as influenced by the ki’s and

their constraints.)

6. Frolov–Fursaev: one-loop calculability

Suppose we boldly assume both Pauli compensation and Sakharov one-loop dom-

inance. That is, assume all finiteness constraints:

str(I) = str(m2) = str(m4) = 0. (39)

str(k1) = str(k1 m
2) = 0. (40)

str(k′2) = str(k′4) = 0. (41)

And in addition, assume all zero-loop (tree level) coefficients are zero. This is

(essentially) the Frolov–Fursaev variant of Sakharov’s proposal.11 (Note that in

the specific model they implement, Frolov and Fursaev do not impose finite-

ness/calculability on K2 and K4, and only impose the first two lines of con-

straints.) Then Λ, G, and K2/4 are one-loop calculable:

Λ = +
1

64π2
str

[
m4 ln

(
m2

µ2

)]
+ two loops. (42)

1

G
= − 1

2π
str

[
k1 m

2 ln

(
m2

µ2

)]
+ two loops. (43)

K2/4 =
1

32π2
str

[
k′2/4 ln

(
m2

µ2

)]
+ two loops. (44)

In contrast to Sakharov’s original idea,1 the cutoff has now disappeared. Given

a particle spectrum that satisfies the finiteness constraints, the one-loop induced

gravitational couplings are unambiguous. This is a very interesting proposal,

but it requires very tight interlocking constraints (extended Pauli compensation)

on the particle spectrum to permit it to work.

7. Renormalizability: invariance constraints

Suppose we want to be a little less ambitious, perhaps the interlocking con-

straints of Pauli compensation seem excessive, perhaps Sakharov’s version of

one-loop dominance with an explicit cutoff seems inelegant: Is there anything

interesting you can say just using “standard” renormalization theory?

By this I mean that we are asking that particle physics be at least one-

loop renormalizable in an arbitrary classical background gravitational field —

note that I am not placing any constraints on renormalizability of gravity itself.

(Indeed at this stage “gravity” is a purely descriptive statement about the ex-

istence of curved spacetime and has no dynamics.) Instead I am imposing the
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much weaker condition that particle physics does not violently damage classical

Einstein gravity. The very fact that both particle physics and classical Einstein

gravity work reasonably well on the surface of planet Earth is good evidence

that this is a quite reasonable physical demand.

Then renormalization in the gravity sector does indeed allow you to absorb

the one-loop divergences into the zero-loop bare quantities — but you are al-

lowed to do this once and once only. Once you have renormalized, you are

not allowed to change your mind about how big an infinity you dump into the

zero-loop bare quantities.

In particular: This means that QFTs can naturally be assigned to equiv-

alence classes under renormalization of the gravity sector. As one tunes the

QFT coupling constants, so that the QFT goes through a phase transition or

SSB, then the masses in the particle spectrum change, (and the very content

of the particle spectrum changes due to Higgs particles being eaten by gauge

bosons). Then gravitationally-equivalent QFTs are defined by demanding that

the coefficients of κ4, κ2, and log(κ2/µ2) in the regulated effective action are

not allowed to change. (Otherwise you are doing the equivalent of changing the

zero of energy in the middle of the calculation, or worse.) That is, as the QFT

goes through a phase transition or SSB, some specific quantities should be held

invariant , and in particular:

δstr(I) = δstr(m2) = δstr(m4) = 0. (45)

δstr(k1) = δstr(k1 m
2) = 0. (46)

δstr(k′2) = δstr(k′4) = 0. (47)

Note that as long as one is working strictly in flat space, the invariance con-

straints involving the str(ki) would never appear. The invariance constraints

involving str(mn) appear only if you take the net zero of energy seriously —

and it has been traditional in flat-space QFT to simply ignore the overall net

zero and only ask questions about excitations.

Some of these constraints are automatically satisfied — (1) Changing the

coupling constants, even if one induces SSB or a phase transition does not

change the net number of fermions or bosons so δstr[I ] = 0 automatically. (2)

As one goes through SSB a Higgs scalar is “eaten” by a gauge boson which

becomes massive. However k1 for a massive vector is calculated by adding k1

for a minimally coupled scalar to k1 for a massless vector. Other particles may

acquire mass but do not change their intrinsic character. Thus δstr[k1] = 0

provided all the Higgs particles are minimally coupled scalars [ ξ = 0 ]. (3) The

same argument applies to δstr[k′2] and δstr[k′4], without now any constraint on

the curvature coupling. Thus the only nontrivial invariance constraints are

δstr(m2) = δstr(m4) = δstr(k1 m
2) = 0. (48)
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We can view these invariance constraints as demanding that for gravitationally-

equivalent QFTs there are strong correlations between mass changes in the

fermi and bose sectors. It is far from trivial to satisfy these constraints, but it

is certainly much easier to do this than to satisfy the much stronger (extended)

Pauli finiteness constraints. Provided these invariance constraints are satisfied

then the gravitational couplings have finite changes as one varies the parameters

that are one-loop calculable:

δΛ = +
1

64π2
δstr

[
m4 ln

(
m2

µ2

)]
+ two loops. (49)

δ

(
1

G

)
= − 1

2π
δstr

[
k1 m

2 ln

(
m2

µ2

)]
+ two loops. (50)

δK2/4 =
1

32π2
δstr

[
k′2/4 ln

(
m2

µ2

)]
+ two loops. (51)

In this case, if you know the change in the particle spectrum, and can verify

that it satisfies the invariance constraints, then you can calculate (at one-loop)

finite changes in Λ, G, and K. (Note these changes are µ-independent.)

To reiterate: these invariance constraints are not satisfied by the standard

model (SM) as you modify the Higgs couplings or the Yukawa couplings. That

is: In the SM coupled to classical gravity (the curved-space SM), even after you

renormalize, all of the gravitational couplings, Λ, G, and K, are “unstable” in

the sense that they still suffer infinite shifts whenever the SM coupling constants

vary infinitesimally. This is one particularly acute version of the “cosmological

constant problem” (itself a variant of the “hierarchy problem”) demonstrating

why “beyond the standard model” (BSM) physics is essential. It is not just Λ

that is at risk, the Newton constant G is also subject to potentially disastrous

sensitivity to the coupling constants. Even if BSM physics patches up the

invariance constraints, one should still expect finite shifts in Λ, G, and K. Can

these be made compatible with experiment/observation?

Order unity changes inK2/4 are not a problem since the experimental bounds

on these constants are so poor. Assuming our invariance constraints, uncertain-

ties in the Newton constant due to uncertainties in the coupling constants are

of fractional order ∆g (MEW /MPlanck)2 ≈ ∆g 10−34, and unlikely to cause

immediate concern. It is changes in the cosmological constant that still prove

challenging. It is still distressingly easy to generate a “large” shift in the cosmo-

logical constant. (That is, “large” as far as cosmology/astrophysics is concerned,

consisting of numerous partially-cancelling terms each of which is individually

O(M4
EW ); this is “small” from a particle physics perspective but would still

seem to require some fine tuning.)

Suppose now that instead of comparing two different QFTs with different

couplings we want to consider a single definite QFT as a function of renormal-

ization scale. Then the the discussion is better rephrased in terms of β-functions
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and anomalous dimensions (γ-functions). Define, in the usual particle physics

fashion

βg ≡ µ
∂g

∂µ
; γm ≡

µ

m

∂m

∂µ
. (52)

Then one can define differential versions of the invariance constraints:

str
[
γm m2

]
= str

[
γm m4

]
= str

[
k1 γm m2

]
= 0, (53)

though the physics interpretation is now rather different. These differential ver-

sions of the invariance constraints greatly simplify the gravitational β-functions

so that

βΛ = − 1

32π2

{
str
[
m4
]
− 2str

[
γm m4 ln

(
m2

µ2

)]}
+ two loops. (54)

β1/G = +
1

π

{
str
[
k1 m

2
]
− str

[
k1 γm m2 ln

(
m2

µ2

)]}
+ two loops.(55)

βK2/4
= +

1

162π

{
str
[
k′2/4

]
− str

[
k′2/4 γm

]}
+ two loops. (56)

(Because of the constraints, the apparent explicit µ dependence is again an illu-

sion.) If we now move into a region where the particle masses are approximately

constant γm ≈ 0, explicit integration of the beta functions is trivial: the grav-

itational couplings exhibit standard logarithmic running. Indeed the one-loop

regulated formulae for Λ, G, and K2/4 now lead to:

Λ(µ) = Λ(µ0)− 1

64π2
str
[
m4
]

ln

(
µ2

µ2
0

)
+ two loops. (57)

1

G(µ)
=

1

G(µ0)
+

1

2π
str
[
k1 m

2
]

ln

(
µ2

µ2
0

)
+ two loops. (58)

K2/4(µ) = K2/4(µ0) +
1

32π2
str
[
k′2/4

]
ln

(
µ2

µ2
0

)
+ two loops. (59)

These formulae should be understood with all the usual particle physics caveats

regarding the physical interpretation of the renormalization point µ. They are

useful shorthand for estimating the strength of the dressed gravitational ver-

tex (classical external gravity dressed with one-loop matter) in scattering ex-

periments at an energy scale µ. One should not blindly insert these running

couplings into the classical field equations.

All in all, it is clear that even quite ordinary straightforward applications

of usual ideas of renormalizability have quite powerful implications in curved

spacetime — not only can we extract information regarding classical gravity, but

we can turn around and use classical gravity to suggest interesting constraints

on the particle spectrum.
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8. Variants

You can also construct variations on these four main themes by mixing and

matching. For instance one attractive variant of the original Sakharov approach

is to improve its treatment of the cosmological constant by using the Pauli

finiteness constraints to deal with Λ, while reserving Sakharov’s cutoff approach

for the Newton constant G and K2/4.

Similarly a variant on one-loop calculability (which is closer in detail, though

not in spirit, to what Frolov and Fursaev actually do) is to use combined Pauli

finiteness and Sakharov one-loop dominance on Λ and G, but take care of K2/4

using standard renormalization theory.

There are also variants of induced gravity in 1 + 1 and 2 + 1 dimensions,12,13

where the curvature-squared terms quietly drop out. In contrast in 5 + 1 di-

mensions (or higher) one would need to keep track of curvature-cubed terms

(or higher) as well. Other possibilities abound, such as the inclusion of external

dilaton fields or string-inspired moduli fields.

9. Summary and Discussion

One point that all approaches agree on is that one-loop matter effects lead to

shifts in Λ, G, and K. Depending on your choices you can interpret these shifts

using either —

• Sakharov: one-loop dominance.

• Pauli: one-loop finiteness.

• Frolov–Fursaev: one-loop calculable.

• Renormalization: calculable one-loop changes.

Whatever your viewpoint in this regard, the key point is this: Even if Einstein

gravity is not there at zero loops, it will automatically be generated at one-loop.

Thus we have seen how Sakharov’s ideas have been very fruitful — and

how they naturally lead in a number of different directions. There are still

many interesting questions to answer just at the level of QFT and particle

phenomenology. (Without requiring any particularly radical reassessment of

our world-view.) In particular the finiteness constraints (or even the much

weaker invariance constraints) place very interesting restrictions on the allowable

spectrum of particles in BSM physics.

But Sakharov also teaches us a lot about gravity: Suppose you have a man-

ifold that is “free to flap in the breeze”, on which you proceed to construct a

QFT. Then the geometry of that manifold serves as a classical external field,

and the effective action is a function of that geometry. Extremizing the effec-

tive action in the usual manner, because it automatically contains the classical

gravitational action, automatically leads to semiclassical quantum gravity, at
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least at the one-loop level. (By semiclassical gravity I mean that the classical

Einstein equations, plus curvature-squared corrections, are coupled to the ex-

pectation value of the quantum stress-energy tensor for all the quantized matter

fields.)

The important point here is that gravity was never put into the quantum

theory, and gravity was never quantized in any way shape or form. Nevertheless,

classical gravity (meaning the inverse square law implicit in the Einstein equa-

tions and Einstein–Hilbert action) automatically emerges in the semiclassical

limit. If you couple this with the observation that the only actual experiments

we can (currently) perform with gravity also inhabit this same semiclassical

realm, is there any real need to quantize gravity itself?

Most physicists would still answer this question in the affirmative — but then

Sakharov’s ideas still have considerable impact: If we consider any candidate

theory for quantum gravity (brane models, quantum geometry, lattice quantum

gravity) then Sakharov’s scenario tells us that trying to derive the inverse square

law from first principles is not the difficult step. Deriving the inverse square

law, and all of Einstein gravity is in fact automatic once you have demonstrated

the existence of Lorentzian manifolds — reasonably large reasonably flat arenas

on which to set up a low-energy QFT.
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