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Landauer's setup (1/4)
Goal: Erasure process: E : {0,1} — {0}.

Figure I Bistable potential well.
x is a generalized coordinate representing
quantity which is switched.
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0—0

If the system is in 0, we don't have to do anything to erase.
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1—-0

Now consider if the system starts in state 1
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f(t
2

To get to zero, we could apply a force f(t) to the left
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1—-0

a(t)

Then remove the energy we added with a force g(t) to the right
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1—-0

Resulting in the system “erased” in state zero without any net energy
cost. 5/31
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Landauer's setup (4/4)

Landauer’s formulation

Wrong.

» We used two different processes depending on the initial state

» Our erasure operation should take any initial state p; to the
given final state pf
» Landauer’'s motivation [Lan61]: computers operate as a

function of circuit connections, not the specific data being
handled

» Landauer 1961: If we had friction, this would work (with
g(t) =0)
» On the other hand, our erasure map E cuts the size of phase

space; since entropy shouldn't decrease, we must have heat
output.
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The process

(Hs, hs, p') £ _
(HS; hg’gl)

Initial joint state: p' ® &'
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Modern (finite-dimensional) quantum formulation (1/3)

The process

S
(Hs, hs, p') & .
Arbitrary Pi (He, he, &)

Thermal: & = exp(—Bhe)/ Tr(...)
Initial joint state: p' ® &'
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Modern (finite-dimensional) quantum formulation (1/3)

The process

2~
”

coupling

Time evolution by unitary U. ..
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Modern (finite-dimensional) quantum formulation (1/3)

The process

S
P =True (Upl @ €'U") &
éf — TFHS(UP' Q& U*)
Final joint state: Up' @ £'U*.
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Modern (finite-dimensional) quantum formulation (2/3)
Quantities of interest

Def: S(p) := — Trplogp, S(nlv) == Tr (n(logn — log v))
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Modern (finite-dimensional) quantum formulation (2/3)
Quantities of interest
Def: S(p) := — Trplogp, S(n|v) :=Tr (n(logn — log v)) > 0.
» Entropy change of system: ASs := S(p') — S(p")
» Energy change of reservoir: AQg := Tr(hg&f) — Tr(heé).

Entropy production: L_[l:: S(Up @ & U*pf@ &) >0
key object #1

Computation of o using &' is Gibbs:
o=-S(Up@EU*) —Tr (Up' @ € U* (log pf @ 1d))
~Tr (Up' @ € U* (Id @ log £'))
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Modern (finite-dimensional) quantum formulation (2/3)
Quantities of interest
Def: S(p) := — Trplogp, S(n|v) :=Tr (n(logn — log v)) > 0.
» Entropy change of system: ASs := S(p') — S(p")
» Energy change of reservoir: AQg := Tr(hg&f) — Tr(heé).

Entropy production: L_[l:: S(Up @ & U*pf@ &) >0
key object #1

Computation of o using ¢ is Gibbs:
o=-S(Up@EU*) —Tr (Up' @ € U* (log pf @ 1d))
~Tr (Up' @ € U* (Id @ log £'))
==S(p' ® &) + S(p") — Tr(¢ log &)

= —5(p') = S(€') + S(p") — Tr(¢ log &)
[0 = —ASs + BAQ:.| the balance equation

v

v
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Modern (finite-dimensional) quantum formulation (3/3)
The Principle

c>0 = [AQs> B ASs. Landauer’s Principle

Special case: Erasure process of qubit: Hs = C?, p' = %Id,
pf =10)(0]. Then ASs = log2, and LP becomes

AQs > Tlog?2. (T=5"1 kg=1)

When do we have the equality AQs = f~1ASs?

When o = 0, which in this process occurs only when
ASs = AQg = 0 [JP14].
In fact, tighter bounds exist in finite dimensions [RW14].
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L2, Adiabatic theorems

The adiabatic limit

» In this unitary time evolution set up, we write Schrodinger's
equation

id—iU(s) = h(s)U(s), s € [0,1], with U(0) = Id.
» Then adiabatic limit concerns the solution Ut (s) of the

rescaled Schrddinger equation

id_(i Ur(t) = h(t/T) Ur(t), t €0, T], with Ur(0) = 1d,

in the limit T — oo.
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2. Adiabatic theorems

Kato's adiabatic theorem
Many, but Kato's is representative [Kat50]. Assumptions:
1. e(s) be a continuous parametrization of an eigenvalue of h(s)
for s € [0,1].
2. e(s) separated from the rest of the spectrum by a constant
gap.
3. Let P(s) be the projection onto the eigenspace of e(s). Then
we assume s — P(s) is C2.
Kato: Then there exists a unitary operator-valued function
[0, T] > t — W(t) that
1. Intertwine with P: W(t)P(0) = P(t/T)W(t).
2. Approximate time evolution on Ran P(0):
t/T

(UT(t)_eXp(_ir/ e(s)ds) W(1)) P(0) = O(T )

0
uniformly in t € [0, T].
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L Three ingredients
2. Adiabatic theorems

Adiabatic limit of Landauer’s Principle

At fixed T > 0, we can consider the quantities ASt, AQt defined
through the time evolution Ur = Ur(1). Then we obtain our

balance equation
ASt + o1 = BAQT,

with _ _ _
o1 = S(Ur(p' @ &) Uz|pr @ &F),

> In [JP14], the authors use a different adiabatic theorem and
show o1 — 0, when the reservoir is infinite dimensional, with
the help of an ergodicity assumption.
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RIS Setup (1/2)

1. System S starts in state p'
2. S interacts with a chain of probes {£,}72 ,, one at a time.

3. Assume after interacting with k — 1 probes, the system is in
state px_1. Then S interacts with kth probe &, which is
initially in state £}, via potential vx with coupling constants A«
for a time 7, by the unitary operator

U :=exp ( — it(hs @ Id + Id ® hg, + )\kvk))
4. We trace out & to obtain the system state

pk = Tre (Uk(pr—1 ® &) Uz).
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RIS Setup (2/2)

gk—2a hgk,Q gk+2) hgk 2
+

gk—la hgk,]_ gk hg gk—i—la h£k+1 @
\‘ n @
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Simplifications

» Here we will take 7, = 7 > 0 constant.

» We may always take Ay = A constant, because v, can change.
We don’t remove ) altogether though, because we may be
interested in the A — 0 limit later.

» We will also take £}< to be a thermal state at some inverse
temperature [y.
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Favorite example(s) (1/2)

» Qubits: Hg = C?, He, = He = C2.
» We define hs = E a*a and hg, = hg = Eg b*b, where a/a*,
resp. b/b*, are the annihilation/creation operators for S, resp.

01 « .« (00 « . (0 0
a—b—<0 0), a —b—<1 O)’ aa-bb-(0 1>.

0 0 ., (00
whs—(o E) andhgk:hg—(o E0>.

» Take constant potential v, = v.

» Take & = exp(—Bkhs, )/ Tr(...) Gibbs state at inverse
temperature Bx. < only parameter which changes between
probes
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Favorite example(s) (2/2)
» Two choices of potential for our qubits:
1. Full dipole:
1 * * 1 * * * *
VFD = E(a +a)®(b*+b) = 5(a®b+a ®@b+a®b*+a*@b*).

2. Rotating wave (common approx. when |E — Ey| < min{E, E}
and X < |El):

1
VRW = 5(3* ® b+ a® b*).

We will consider both potentials.
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Reduced dynamics

» We can consider only the dynamics on the system. Define

Ly : Ti(Hs) — Ti(Hs)
n = Tre (Uk(n®&)U;)

where Z;(#Hs) are the trace-class operators on Hg, i.e., all
linear operators.
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» We can consider only the dynamics on the system. Define
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where Z;(#Hs) are the trace-class operators on Hg, i.e., all
linear operators.
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L Three ingredients
L3. Repeated Interaction Systems

Reduced dynamics

» We can consider only the dynamics on the system. Define

[£4]: Ti(Hs) — Ti(Hs)
key object #2 n = Tre (Uk(n ® &) U)

where Z;(#Hs) are the trace-class operators on Hg, i.e., all
linear operators.

» Then .
pk = LxLy—1---L1p".

This is a Markovian form for the sequence of states (pk)«-
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L3. Repeated Interaction Systems

Reduced dynamics in our favorite examples

» With both vgw and vip, we've computed a 4x4 matrix
representation of the reduced dynamics £(3) in terms of

E, Ey, 8,7 and A. Recall only 8 changes with the step, so we
may obtain L, = L(Sk).
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L3. Repeated Interaction Systems

Reduced dynamics in our favorite examples

» With both vgw and vip, we've computed a 4x4 matrix
representation of the reduced dynamics £(3) in terms of

E, Ey, 8,7 and A. Recall only 8 changes with the step, so we
may obtain L, = L(Bk).

iR

R

i
N

Numerically obtained eigenvalues of Lgp with A =2, 7 = 0.5,
Eo = 0.8, and E = 0.9. The evals of Lgp are independent of 3.
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» L is trace preserving

20/31



Landauer’s Principle in Repeated Interaction Systems
L Three ingredients
L3. Repeated Interaction Systems

Properties of the reduced dynamics

» L is trace preserving

» L is completely positive: if 7 > 0 is a matrix on Hs @ C",
then (Lx ® Id)(n) > 0O, for every n € N.
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Properties of the reduced dynamics

» L is trace preserving

» L is completely positive: if 7 > 0 is a matrix on Hs @ C",
then (Lx ® Id)(n) > 0, for every n € N.

» Fact: if we choose the trace norm on our domain Z; (Hs),
(namely, [|n]|1 = Tr(v/n*n)) then the operator norm of Ly is

1Lkl = sup [|Lxnlly = 1.
Il =1
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Properties of the reduced dynamics

» L is trace preserving

» L is completely positive: if 7 > 0 is a matrix on Hs @ C",
then (Lx ® Id)(n) > 0, for every n € N.

» Fact: if we choose the trace norm on our domain Z;(Hs),
(namely, ||n]l1 = Tr(v/n*n)) then the operator norm of Ly is

|Ll| == sup [ Linlls =1
Inlli=1

» However, in general, we could have ||Lk|| > 1 when considered

as an operator on (Z1(Hs), || - ||2), where ||Al2 = /Tr(A*A).
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Outline

Combining the ingredients
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LCombining the ingredients

Landauer’s Principle at step k of an RIS

» The entropy change of S and energy change of & at step k is
given by
ASi = S(pk-1) = S(pk) = S(pr-1) — S(Li(pr-1));
AQy = Tr (he, Trs (Uk(pk—1 ® &) U;) ) — Tr(he, &),

v
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LCombining the ingredients

Landauer’s Principle at step k of an RIS

» The entropy change of S and energy change of & at step k is
given by

ASk = S(pk-1) — S(pk) = S(pk-1) — S(Li(pk-1));
AQy = Tr (he, Trs(Us(pk—1 ® &) U) ) — Tr(he, &),

~"
f
3

» So the balance equation holds at step k
ASy + ok = BrAGk,

with _ '
ok = S(Ur(pr—1 @ &)Uk Li(pr—1) @ &)
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Adiabatic RIS

» To consider an “adiabatic limit” of an RIS process, we will
consider T >> 0 interactions (i.e., S interacts with
51,65,...,57),and
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LCombining the ingredients

Adiabatic RIS

» To consider an “adiabatic limit” of an RIS process, we will
consider T >> 0 interactions (i.e., S interacts with
&1,&,...,E7), and

» We will sample the probe and interaction parameters from C?
functions. That is, define C? functions

s+ hg(s), s — B(s), s+ v(s)

for s € [0,1],
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Adiabatic RIS

» To consider an “adiabatic limit” of an RIS process, we will
consider T > 0 interactions (i.e., S interacts with
&1,&,...,E7), and

» We will sample the probe and interaction parameters from C?
functions. That is, define C? functions

s+ hg(s), s — B(s), s+ v(s)
for s € [0,1], and choose

he, ;= he(k/T), Bk, T = B(k/T), vi,T = v(k/T).
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LP in RIS in the adiabatic limit (1/2)

> At each step, we have oy 1 a relative entropy, which depends
on T as it depends on our parameters e.g. By 7 = B(k/T).
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LCombining the ingredients

LP in RIS in the adiabatic limit (1/2)

> At each step, we have oy 1 a relative entropy, which depends
on T as it depends on our parameters e.g. By 7 = B(k/T).
» We may sum over the first T steps and define
oT = Zz—:l Ok, T-
» Depends on T in two ways: each oy 1 has parameters
depending on T, and we consider T probes.
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LP in RIS in the adiabatic limit (1/2)

> At each step, we have oy 1 a relative entropy, which depends
on T as it depends on our parameters e.g. By 7 = B(k/T).
» We may sum over the first T steps and define
oT = Zz—:l Ok, T-
» Depends on T in two ways: each oy 1 has parameters
depending on T, and we consider T probes.

» We are interested in lim7_., o7. Does this vanish?
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LP in RIS in the adiabatic limit (2/2)

» We are in a fundamentally different setup that the
Hamiltonian/unitary evolution considered earlier.
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LP in RIS in the adiabatic limit (2/2)

» We are in a fundamentally different setup that the
Hamiltonian/unitary evolution considered earlier.

» We are also secretly in an infinite dimensional system: each
probe has a different Hilbert space, and we are taking the
number of probes T to infinity.
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LP in RIS in the adiabatic limit (2/2)

» We are in a fundamentally different setup that the
Hamiltonian/unitary evolution considered earlier.

» We are also secretly in an infinite dimensional system: each
probe has a different Hilbert space, and we are taking the
number of probes T to infinity.

» Each oy 7 > 0, so we need vanishing entropy production at
each step.
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LP in RIS in the adiabatic limit (2/2)

» We are in a fundamentally different setup that the
Hamiltonian/unitary evolution considered earlier.

» We are also secretly in an infinite dimensional system: each
probe has a different Hilbert space, and we are taking the
number of probes T to infinity.

» Each oy 7 > 0, so we need vanishing entropy production at
each step.

» In fact, want oy 7 = O(1/T?), so o7 = O(1/T).
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Strategy
» Our key object:

ok, = S(U,m(pr-1,7 @ & ) Ui 71L1 T (=1, 7) © &l 7).
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LCombining the ingredients

Strategy
» Our key object:
ok, 7 = S(Ue (P17 @ G D) Ui 71L1 T (p1-1.7) @ & 1),
where px_1.7 = Ly1,7Lk—27  L1,7p"

» oy 1 depends on parameters at step k and {L; 7 JI'(=0

» Assume p' is an eigenstate of Lo 7. Then our adiabatic
intuition tells us that for T large, p1,.7 = L1, 7(p') is close to
an eigenstate of £y 7.
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» Our key object:

ok, 1 =S(Ukm(pr-1.7 @ & 1)U 71L1 T (-1, 7) © &l 7).

where py 1 7 = L1, 7Lik—2,7 - L1,TP"

» oy 1 depends on parameters at step k and {L; 7 J’-‘:O

» Assume p' is an eigenstate of Lo, 7. Then our adiabatic
intuition tells us that for T large, p1,.7 = L1,7(p') is close to
an eigenstate of £; 7.

> Repeating this, we hope that adiabatically, px_1,7 is close to
Pk, 7, which we hope is close to an eigenstate of £ 7.
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- Combining the ingredients

Strategy
» Our key object:

ok, 1 =S(Ukm(pr-1.7 @ & 1)U 71L1 T (-1, 7) © &l 7).
where px_1.7 = Ly1,7Lk—27 L1,7p"

» oy 1 depends on parameters at step k and {L; 7 J’-‘:O
» Assume p' is an eigenstate of Lo, 7. Then our adiabatic
intuition tells us that for T large, p1,.7 = L1,7(p') is close to

an eigenstate of £; 7.

> Repeating this, we hope that adiabatically, px_1,7 is close to
Pk, 7, which we hope is close to an eigenstate of £ 7.

» Then oy 1 approximately only depends on parameters at step
k, and not on steps 0, ...,k — 1.
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Two assumptions

Assume s — L(s) is obtained as an adiabatic RIS, i.e. parameters
are sampled from C? functions, and

Al L(s) is irreducible for each s € [0,1]. That is, if P is a
Hermitian projector such that £(PZ1(Hs)P) C PZi(Hs)P
then P € {0,1d}.
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Two assumptions

Assume s — L(s) is obtained as an adiabatic RIS, i.e. parameters
are sampled from C? functions, and

Al L(s) is irreducible for each s € [0,1]. Thatis, if P is a
Hermitian projector such that £(PZ1(Hs)P) C PZi(Hs)P
then P € {0,1d}.

We know ||£(s)|| = 1, so all eigenvalues are on or within the unit

circle. Let P(s) denote the eigenprojection onto eigenvalues on the
unit circle.
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Two assumptions

Assume s — L(s) is obtained as an adiabatic RIS, i.e. parameters
are sampled from C? functions, and

Al L(s) is irreducible for each s € [0,1]. Thatis, if P is a
Hermitian projector such that £(PZ1(Hs)P) C PZi(Hs)P
then P € {0,1d}.

We know ||£(s)|| = 1, so all eigenvalues are on or within the unit
circle. Let P(s) denote the eigenprojection onto eigenvalues on the

unit circle.
iR

1

N,
Ny,




Landauer’s Principle in Repeated Interaction Systems
L Two tools
L-1. An adiabatic theorem for RIS

Two assumptions

Assume s — L(s) is obtained as an adiabatic RIS, i.e. parameters
are sampled from C? functions, and

Al L(s) is irreducible for each s € [0,1]. Thatis, if P is a
Hermitian projector such that £(PZ1(Hs)P) C PZi(Hs)P
then P € {0,1d}.

We know ||£(s)|| = 1, so all eigenvalues are on or within the unit

circle. Let P(s) denote the eigenprojection onto eigenvalues on the
unit circle.

A2 There is a uniform bound on the strictly contracting part of
L(s), i.e. if Q(s):=1d — P(s),

:= sup || L(s)Q(s)| < 1.
s€[0,1]
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L Two tools
1. An adiabatic theorem for RIS

Two assumptions
Assume s — L(s) is obtained as an adiabatic RIS, i.e. parameters
are sampled from C? functions, and

Al L(s) is irreducible for each s € [0,1]. Thatis, if P is a
Hermitian projector such that £(PZ1(Hs)P) C PZi(Hs)P

then P € {0,1d}.
We know ||£(s)|| = 1, so all eigenvalues are on or within the unit

circle. Let P(s) denote the eigenprojection onto eigenvalues on the

ergodicity

unit circle.
A2 There is a uniform bound on the strictly contracting part of

L(s), i.e. if Q(s):=1d — P(s),

:= sup || L(s)Q(s)| < 1.
s€[0,1]

hard to check
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Implications of these assumptions

1. Ateachstep 1 < k < T, Ly 1 := L(k/T) has a unique
invariant state pir > 0.
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1. Ateachstep 1 < k < T, Ly 1 := L(k/T) has a unique
invariant state pi,a"T > 0.

Notation: P,’;’T is the projection on to the jth peripheral eigenvalue
at step k, with adiabatic parameter T.
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Implications of these assumptions

1. Ateachstep 1 < k < T, Ly 1 := L(k/T) has a unique
invariant state pi"r > 0.

Notation: Plj;,T is the projection on to the jth peripheral eigenvalue
at step k, with adiabatic parameter T.

2. The theorem: there exist constants Tg > 0 and C > 0 such
that for all T > Ty, there exists maps (Ax 7)/_; such that

C
Py — A c__ =
L7 - L1,7Po — Ak, 7| < Ta—0)

APy = Pl AT, ATQ =0.
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L Two tools
L-1. An adiabatic theorem for RIS

Implications of these assumptions

1. Ateachstep 1 < k < T, Ly 1 := L(k/T) has a unique
invariant state pi"r > 0.

Notation: Plj;,T is the projection on to the jth peripheral eigenvalue
at step k, with adiabatic parameter T.

2. The theorem: there exist constants Tg > 0 and C > 0 such
that for all T > Ty, there exists maps (Ax 7)/_; such that

| Lk7- L1717 — ATl < - + 20K,

_Cc
(1-20)
Ak TPy = P 1 AT, Ak, 7Qo = 0.
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2. Perturbation of relative entropy
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Perturbation theory applied to relative entropy

For any state n and small enough perturbations Dy, Ds,

S(n+ Di|n + Do) = O((Dy — D»)?).
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Perturbation theory applied to relative entropy

For any state n and small enough perturbations Dy, Ds,
S(n+ Diln+ D2) = O((D1 — D2)?).
In fact, if n =, uipi is the eigendecomposition of 7, then
|S(n + D1ln + D2) — F(Dy — D2)| = O((|| D1l + || D2])?)

where F,(A) := F,(A, A) for

Jlogl) — log(ry
F, (A, B) ZTr ApiBpi) +Z Tr(Ap; Bp Og(“ﬂ). _:_g(”f).
i<j ! J
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L2, Perturbation of relative entropy

Perturbation theory applied to relative entropy

For any state n and small enough perturbations Dy, Ds,
S(n+ Diln+ D2) = O((D1 — D2)?).
In fact, if n =, uipi is the eigendecomposition of 7, then
|S(n + D1ln + D2) — F(Dy — D2)| = O((|| D1l + || D2])?)

where F,(A) := F,(A, A) for

log(11;) — log(11;
[F.(AB))= ZTrAp,Bp, —|—ZTrApj Og(“)._o_g(”f).

i<j Mi — [y
2nd order term: [|F,(A)|| = O(||A||?).
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Perturbing o 1
Now we want to write o 7 = S(n + D1|n + D2). But

ok, 1 = S(Uk,1(pk-1,7 ® & 1) Ui 7Lk, T(Pk-1,7) @ Efe 1)
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Perturbing o 1
Now we want to write o 7 = S(n + D1|n + D2). But

ok, 1 = S(Uk,1(pk-1,7 ® & 1) Ui 7Lk, T(Pk-1,7) @ Efe 1)

So we want to approximate px_1.7 & pi, T = py".
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difference
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Perturbing o 1
Now we want to write o 7 = S(n + D1|n + D2). But
ok, 1 = S(Uk,1(pk-1,7 ® & 1) Ui 7Lk, T(Pk-1,7) @ Efe 1)

So we want to approximate px_1,7 & pk, T R pi,?". The error is the
difference

Di,1 = Li,7(pk-1,7— 07 )®E) 7= Un, 7 ((pr—1, 7= PR 1) @& 1) Ui 7
Next, we'll try to approximate
U T((P7) ® Eir) Ui 7 = 0T @ & -
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Perturbing o 1
Now we want to write o 7 = S(n + D1|n + D2). But

ok, 1 = S(Uk,1(pk-1,7 ® & 1) Ui 7Lk, T(Pk-1,7) @ Efe 1)

So we want to approximate px_1 T =~ pi, T R~ pik”". The error is the
difference

Dy,1 = ‘Ck,T(pk—l,T_pil:\%')@)fL,T_Uk,T((Pk—l,T_Pi/?:%')@fLT) Uk -
Next, we'll try to approximate
Uk,T((P'/?,\%') ® &,T) Ui 1 = P ® &) - So the error is

X, = U T PP @ &7 Ui 7 — P © & 7
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Perturbing o 1
Now we want to write o 7 = S(n + D1|n + D2). But
o1 = S (U T(ok-1,7 @ & 1) Ui 71 Lk T(Pk-1,7) © € 1)
So we want to approximate px_1 T =~ pi, T R~ pi,?". The error is the
difference
Dy = Ly 7(pk—1,7 =Pk T2k 7= U T (01, 7= PR 7) @6k 1) Uk 7
Next, we'll try to approximate
Uk,T((ﬂ';?f%—) ® {}(’T) Ui 7 = PR ® & - So the erroris
Xi,m = UkT o ® &h 7 Ui 7 — 0l © S 7

Using our adiabatic theorem and perturbation of entropy, we can
find

Ok, T = FPT,VT@’EL,T(DI(’T — Xk,T) + 0(1/T3)
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I—Entropy production of RIS in adiabatic limit

Back to our examples

Consider our 2x2 examples.
» With vgrw, Xk,T = 0. Then

01,7 = Fyny (D7) + O(1/T7)
=0(1/T?)

and the entropy production o — 0.
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LEntropy production of RIS in adiabatic limit

Back to our examples

Consider our 2x2 examples.
» With vgrw, Xk,T = 0. Then

OKT = Fpik"‘fr(Dva) + O(]./T3)

=0(1/T?)

and the entropy production o — 0.

» With vep, Xk, 7 = O(X). We in fact find 07 — o0, even in
the small coupling limit A>T — 0 which | have not discussed.!

There are subtleties about A2 that require a modification to the setup.
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Bonus: adiabatic state preparation
Consider our 2x2 example with the RW approximation.
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|—Entropy production of RIS in adiabatic limit

Bonus: adiabatic state preparation

Consider our 2x2 example with the RW approximation. The
invariant state of £y 7 is

inv_ __ exp(—%,é’kjhg)
PiT Tr(...)
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LEm:ropy production of RIS in adiabatic limit

Bonus: adiabatic state preparation
Consider our 2x2 example with the RW approximation. The
invariant state of £y 7 is

i _ ©P(= 2 BiThs)
PeT = 7T ()

» Since any qubit state pf > 0 may be written as a Gibbs state
at some temperature ,Bf, we may choose our temperatures so
that 7 =p6(1) = GF. Then the system will be driven to

P = of, and thus drive initial states to our target state.
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Bonus: adiabatic state preparation

Consider our 2x2 example with the RW approximation. The
invariant state of £y 7 is

i _ ©P(= 2 BiThs)
PeT = 7T ()

» Since any qubit state pf > 0 may be written as a Gibbs state
at some temperature ,Bf, we may choose our temperatures so
that 7 =p6(1) = Bf. Then the system will be driven to

P = of, and thus drive initial states to our target state.
» If the initial state is in the eigenspace of the invariant state,

our adiabatic theorem tells us we create o1 ~ % entropy

production, and approximate pr 7 = o+ 0o(T).
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Bonus: adiabatic state preparation

Consider our 2x2 example with the RW approximation. The
invariant state of £y 7 is

i _ ©P(= 2 BiThs)
PeT = 7T ()

» Since any qubit state pf > 0 may be written as a Gibbs state
at some temperature Bf, we may choose our temperatures so
that 7 =p6(1) = Bf. Then the system will be driven to

P = of, and thus drive initial states to our target state.

» If the initial state is in the eigenspace of the invariant state,

our adiabatic theorem tells us we create o1 ~ % entropy

production, and approximate pr 7 = o+ 0o(T).

» Otherwise, we create o1 ~ % + ﬁ entropy production, and

approximate pr 7 = p + O(1/T) + O(£").
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Outline
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1. Landauer’s Principle
2. Adiabatic theorems
3. Repeated Interaction Systems

Combining the ingredients
Two tools
1. An adiabatic theorem for RIS

2. Perturbation of relative entropy
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