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What is an ’open’ system?

In contrast to a closed system

Environment

System

|ψ〉 ∈ Hsys

I No energy/information
flow across boundary (i.e.
Hint = 0)

I Described by |ψ〉 ∈ Hsys .

Evolution is unitary, governed by your favourite equation:

i~∂t |ψ〉 = H|ψ〉; ∂tρ = 1
i~ [H, ρ] ; U(x , t; x ′, t ′) =

∫ x(t)
x ′(t′)Dq e

i
~S[q,q̇]



Open systems

Allow for energy flow across boundary

Environment

System

Hsys Hint 6= 0

I Why would this be
interesting?

I No system is an island. We
want a more realistic model.

I Example: Quantum Control
I Model noise
I Model backreaction of

measurements
I Model effect of an

actuator



Open systems

System evolution is generically NOT unitary!

I Interactions are typically entangling

=⇒ ρsys becomes mixed

=⇒ tr
[
ρsys(T )2

]
≤ tr

[
ρsys(0)2

]
I But unitaries preserve purity

tr
[
(UρsysU†)2

]
= tr

[
ρ2
sys

]

I Interactions will also change the system’s entropy:

S(ρsys) = − tr(ρsys log ρsys) (1)



Problems to address

I How can we model the evolution of a subsystem
of a larger, closed system?

I How general are these models?

I Are there models we can use to characterise
typical behaviour?
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Operator sum

I Assume ρsys ⊗ |0〉 〈0| on Hsys ⊗Henv

I Assume evolution is unitary

ρsys ⊗ |0〉 〈0| 7→ U(ρsys ⊗ |0〉 〈0|)U† (2)

I Trace out environment using ONB {|k〉}k for Henv

Φ(ρsys) := trenv
[
U(ρsys ⊗ |0〉 〈0|)U†

]
=

∑
k

〈k|U(ρsys ⊗ |0〉 〈0|)U† |k〉

=
∑
k

EkρsysE †k (3)

where Ek := 〈k |U |0〉.



Operator sum

I Operator sum representation

Φ(ρsys) =
∑
k

EkρsysE †k (4)

I Φ characterised by operators {Ek}k
I Completeness relation:

∑
k E †kEk = 1

tr[Φ(ρsys)] = tr[
∑
k

EkρsysE †k ]

= tr[
∑
k

E †kEkρsys ]

= tr[ρsys ] = 1 (5)

I Indeed, this will be the case for Ek = 〈k |U |0〉



Operator sum

e.g. (Measurement)

I Hsys ⊗Henv = C2 ⊗ C2

I Find Φ(ρsys) for ρsys and ρenv = |0〉 〈0|, with

U = P0 ⊗ 1+ P1 ⊗ σx (6)

where P0 := |0〉 〈0|, P1 := |1〉 〈1|, σx := |0〉 〈1|+ |1〉 〈0|.
Solution:

E0 := 〈0|U |0〉 = P0 〈0|1 |0〉+ P1 〈0|σx |0〉 = P0 (7)

E1 := 〈1|U |0〉 = P0 〈1|1 |0〉+ P1 〈1|σx |0〉 = P1 (8)

(9)

I Operator sum:

Φ(ρsys) = P0ρP0 + P1ρP1 (10)



Converse: Extending operator sum
Problem: the environment is a big place.
What if we don’t have a complete model for its dynamics?

I Suppose we start with {Ek}k s.t.
∑

k E †kEk = 1
I Can we find suitable Henv so that evolution on Hsys ⊗Henv is

unitary?

Yes!
I Let Henv with ONB {|k〉}k (i.e. one |k〉 for each Ek)
I Define U on Hsys ⊗Henv by

U |ψ〉 |0〉 :=
∑
k

Ek |ψ〉 |k〉 (11)

Unitary:

〈φ| 〈0|U†U |ψ〉 |0〉 =
∑
k

〈φ|E †kEk |ψ〉 = 〈φ|ψ〉 (12)

(can extend to a unitary on all Hsys ⊗Henv )
Evolution:

trenv [U(ρsys ⊗ |0〉 〈0|)U†] =
∑
k

EkρsysE †k (13)
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Amplitude damping

Amplitude damping = Loss of energy

e.g. (Spontaneous emission)
I Hsys = Hatom and Henv = HEM

I ρenv = |0〉 〈0|
I Model for (unitary) evolution of Hsys ⊗Henv :

|g〉 |0〉 7→ |g〉 |0〉
|e〉 |0〉 7→

√
1− p |e〉 |0〉+

√
p |g〉 |1〉

I Operator elements:

E0 = 〈0|U |0〉 =

(
1 0
0
√

1− p

)
E1 = 〈1|U |0〉 =

(
0
√

p
0 0

)
(14)



Amplitude damping

Φ(ρsys) = E0ρsysE †0 + E1ρsysE †1 (15)

Write

ρsys =

(
ρ00 ρ01

ρ10 ρ11

)
(16)

then

Φ(ρsys) =

(
ρ00 + pρ11

√
1− pρ01√

1− pρ10 (1− p)ρ11

)
(17)



Amplitude damping

I Suppose we decided to apply Φ n times:

Φ(n)(ρsys) := Φ(Φ(. . .Φ(ρsys) . . . ))

=

(
ρ00 + pn(1− p)n−1ρ11 (1− p)n/2ρ01

(1− p)n/2ρ10 (1− p)nρ11

)
(18)

Suppose p is prob of decaying for interval δt, say p = Γδt.
Total time t = nδt, then p = Γδt = Γt

n .

Recall: limn→∞(1− Γt
n )n = e−Γt

Thus,

Φ(∞)(ρsys) =

(
ρ00 + (1− e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

)
(19)

We see that probability that atom stays in excited state decays as
e−Γt , as found previously.



Phase damping

Phase damping = Loss of information without loss
of energy

I Happens when system interacts weakly with many subsystems
in the environment.

I Will only change relative phase between energy eigenstates.

e.g. Model for evolution on Hsys ⊗Henv :

|g〉 |0〉 7→
√

1− p |g〉 |0〉+
√

p |g〉 |1〉
|e〉 |0〉 7→

√
1− p |e〉 |0〉+

√
p |e〉 |2〉

(20)

then,

E0 = 〈0|U |0〉 =
√

1− p1

E1 = 〈1|U |0〉 =
√

pPg

E2 = 〈2|U |0〉 =
√

pPe



Phase damping

Φ(ρsys) = (1− p)ρsys + pPgρsysPg + pPeρsysPe

=

(
ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)
(21)

If we go through procedure as before where p = Γδt, t = nδt,

Φ(n)(ρsys) =

(
ρ00 (1− p)nρ01

(1− p)nρ10 ρ11

)
(22)

then,

Φ(∞)(ρsys) =

(
ρ00 e−Γtρ01

e−Γtρ10 ρ11

)
(23)

I We see that for t →∞, Φ(∞)(ρsys) is an incoherent
superposition of eigenstates.

I We also see that tr[Hfreeρsys ] = tr[HfreeΦ(n)(ρsys)].
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Superoperators

Step back:

I Suppose we wanted to write down a general Φ : ρ 7→ ρ′.

I What properties should Φ have?

1. Hermiticity preserving: Φ(ρ)† = Φ(ρ) if ρ† = ρ

2. Trace preserving: 0 ≤ tr[Φ(ρ)] ≤ 1

3. Linear: Φ (
∑

i piρi ) =
∑

i piΦ(ρi )

4. Positive: Φ(ρ) ≥ 0 for any ρ ≥ 0

5. Completely positive: (1⊗ Φ)(ρ) ≥ 0 for any ρ ≥ 0



Completely positive maps

Why completely positive?

e.g. Transpose

I Single system H, operator ρ

Φ : ρ =
∑
i

pi |pi 〉 〈pi | 7→ ρT = ρ (24)

I Two qubit system
I |ψ〉 = 1√

2
(|00〉+ |11〉) ∈ Hsys ⊗Henv

I Φ⊗ 1 transposes first qubit, does nothing to second

(Φ⊗ 1) : 1
2 (|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|)
7→ 1

2 (|00〉 〈00|+ |10〉 〈01|+ |01〉 〈10|+ |11〉 〈11|)
(25)

I Eigenvalues of (Φ⊗ 1)(|ψ〉 〈ψ|) are: + 1
2 , + 1

2 , + 1
2 , and − 1

2 .



Kraus Representation theorem

thm. The map Φ is a superoperator (i.e. satisfies the properties
1-5 above), iff

Φ(ρ) =
∑
k

EkρE †k (26)

for some set of operators {Ek}k such that
∑

k E †kEk ≤ 1.



Next time:

Master equations

I Describe continuous time evolution of quantum channels:

ρ̇(t) =− i [H, ρ(t)]

+
∑
k

(
Lkρ(t)L†k −

1
2 L†kLkρ(t)− 1

2ρ(t)L†kLk

)
(27)
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