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We calculate the impact of quantum gravity–motivated ultraviolet cutoffs on inflationary predictions for
the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid
possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of
small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with
the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could
be as large as one part in 105; i.e., eventual observability may not be ruled out.
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It is widely expected that the very notion of distance in
space and time breaks down at or before the Planck scale, due
to quantum fluctuations of the metric (see Ref. [1] for a
review).Tounderstand the structureof spacetime at thePlanck
scale will, therefore, require a theory of quantum gravity.
There are several current approaches to a consistent theory of
quantum gravity, including string theory, loop quantum
gravity, and others [2,3]. It has proven exceedingly difficult,
however, to test models for Planck-scale physics experimen-
tally, chiefly due to the extremely small scales involved.
One of the most promising approaches to experimentally

probing quantum gravity theories is to look for small
imprints that Planck-scale physics may have left in the
cosmic microwave background (CMB) and the subsequent
structure formation [4–9]. This is because, according to the
standard inflationary scenario, the quantum fluctuations
that seeded the CMB’s inhomogeneities likely originated
only about 5 or 6 orders of magnitude away from the
Planck scale [9], namely, when the comoving modes’
fluctuations froze at their Hubble horizon crossing.
The magnitude of the imprint of Planck-scale physics in

the CMB has been estimated using various approaches.
These generally model the influence that Planck-scale
physics exerts on inflationary quantum field theory through
an ultraviolet (UV) cutoff at the Planck scale and through
generalized dispersion relations [8,10–21]. Of crucial
importance is the question of how the magnitude of the
effect scales with the ratio of the Planck and Hubble
lengths during inflation [9,22]. Let us denote the Hubble
scale at the end of inflation by LHubble and define σ ¼
LPlanck=LHubble. Several studies found that the imprint of
quantum gravity in the CMB should be of the order of σα

with either α ¼ 1 [14] or α ¼ 2 [8]. If indeed α ¼ 1, then

we may be a mere 5 orders of magnitude away from
measuring Planck-scale physics, which is relatively close
when compared to accelerator physics, where there are
about 15 orders of magnitude to cross.
Models for how Planck-scale physics influences infla-

tionary quantum field theory, such as modified dispersion
relations, generally break local Lorentz invariance [9]. This
makes it unclear to what extent the predicted imprints on
the CMB are due to Planck-scale physics and to what extent
the predicted imprints are caused by the breaking of local
Lorentz invariance. Therefore, to isolate the effect of
Planck-scale physics on the CMB, we employ functional
analytic methods that allow us to model natural UV cutoffs
fully covariantly.
Our main results are that covariant UV cutoffs can produce

small characteristic oscillations in the fluctuation spectrum
and that this imprint on the CMB is of first order; i.e., α ¼ 1.
The overall amplitude is sensitive to the timing of the
comoving modes’ quantum-to-classical transition. This tran-
sition is generally expected tohaveoccurred soonafter horizon
crossing [23–27]. This is because, after horizon crossing,
comoving modes quickly become extremely squeezed, which
makes them extremely susceptible to environment-induced
decoherence [28]. We will be able to conclude, therefore, that
the relative size of the imprint of a covariant Planck-scale
cutoff in the CMB could be as large as one part in 105 so that
eventual observability may not be ruled out.
Fully covariant natural ultraviolet cutoffs.—Our aim is to

covariantly model possible first order corrections to standard
quantum field theory (QFT) as the Planck scale is approached
from low energies. To this end, recall that in the path integral
formulation of QFT, the path integral is normally assumed to
run over all field configurations. This includes on-shell
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fields, i.e., fields that extremize the action, as well as fields
that are arbitrarily far off shell. In order to ensure the
preservation of covariance, wewill here consider UV cutoffs
that remove or suppress field configurations—and therefore
field fluctuations—that are off shell by an amount that is on
the order of or past the Planck scale. Technically, the
eigenfunctions of the d’Alembertian to eigenvalues beyond
the Planck scale will be considered too far off shell and will
therefore be modeled as being suppressed or eliminated
entirely from thepath integration. Such cutoffs aremanifestly
covariant and diffeomorphism invariant since the spectra of
covariant differential operators such as the d’Alembertian,
and the corresponding operators for fields other than scalars,
are independent of the choice of coordinates.
Concretely, let□ denote a self-adjoint d’Alembertian on

a Lorentzian manifold M. Its eigenfunctions form an
orthonormal basis for L2ðMÞ and can be taken to span
the space of functions in the quantum field theoretic path
integral. A cutoff on the spectrum of □ is operationally
defined via (real linear combinations of) spectral projectors,

fð□Þ ¼
X

λ∈specð□Þ
fðλÞhψλ; ·iψλ; ð1Þ

where f is the non-negative function that defines the cutoff,
ψλ is an eigenfunction of □, and h·; ·i denotes the inner
product on L2ðMÞ.
Choosing fðλÞ ¼ θðΩ2 − jλjÞ produces a sharp cutoff on

the spectrum of □ at jλj ¼ Ω2. We will focus on this most
extreme case of anUV cutoff. It is straightforward to smooth
out the step function so that the spectral cutoff is not as
sharp and the positive operator fð□Þ describes models of
smoother UV cutoffs. These covariant cutoffs amount to
suppressing far off-shell field fluctuations from the path
integral. (We remark that, since proton decay is mediated by
far off-shell processes, such a covariant ultraviolet cutoff
may help explain the exceedingly large proton lifetime.)
The class of cutoffs that we consider is the most general

type of kinematic covariant cutoff within the framework of
QFT. We are not going beyond the framework of QFT
because inflation appears to have happened well within the
range of validity of QFT. Among these cutoffs, we focus on
themost extreme case, the sharp cutoff, to obtain a prediction
for the maximal impact on the fluctuation spectrum.
As an aside, we also note that with the above choice of a

sharp cutoff f the quantity Ω can be interpreted as a
covariant bandlimit: a conventional bandlimit, i.e., a mini-
mum wavelength imposed on functions in Rn, can be
thought of as a cutoff on the spectrum of the Laplacian △

on Rn. The eigenfunctions of △ are the plane waves
expðik · xÞ and cutting off the spectrum of△ is to impose a
limit on the length of the wave vector k2. As a consequence,
Shannon’s sampling theorem applies: any function that isΩ
bandlimited is determined everywhere if known on any
regular discrete lattice fxng with a spacing smaller than
1=ð2ΩÞ [29–31], in each direction. The d’Alembertian
generalizes the Laplacian to Lorentzian spacetimes, leading

to a covariant generalization of sampling theory [32,33]:
each mode of a particular spatial wavelength possesses a
corresponding bandwidth and therefore obeys a sampling
theorem in time. Those modes whose wavelengths are
smaller than the Planck length possess an exceedingly
small bandwidth, which effectively freezes them out. This
ultraviolet behavior is beautifully covariant, as the notions
of spatial wavelength and temporal bandwidth Lorentz
transform appropriately.
Returning to our main program, we express the space of

covariantly bandlimited scalar fields on M in terms of
eigenfunctions of the d’Alembertian as

BMðΩÞ ¼ spanfψ j□ψ ¼ λψ ; λ ∈ ½−Ω2;Ω2�g: ð2Þ
Here, Ω sets the ultraviolet scale. In general, the spectrum
of a self-adjoint d’Alembertian is not bounded below for
Lorentzian-signature manifolds, and so the spectrum must
be cut off from above and below.
In the path integral formulation of QFT, we implement

the covariant bandlimitation by only integrating over
covariantly bandlimited fields instead of all field configu-
rations. For example, the covariantly bandlimited Feynman
propagator of a quantized scalar field, which we denote by
GΩ

F , is given by

iGΩ
Fðx; x0Þ ¼

R
BMðΩÞDϕϕðxÞϕðx0ÞeiS½ϕ�R

BMðΩÞ Dϕ eiS½ϕ�
: ð3Þ

Covariant bandlimitation here amounts to excluding themost
extreme off-shell fluctuations from the quantum field theo-
retic path integral. Concretely,GΩ

F canbe computedby acting
on the conventional propagator GF to the left and right with
the spectral projectors θðΩ2−□Þ≡PΩ, where GFðx; x0Þ is
understood to be the kernel of an integral operator.
Application to inflation.—Let M be an inflating

Friedmann-Robertson-Walker (FRW) spacetime with the
line element ds2 ¼ a2ðηÞ½−dη2 þ dx2�, where the con-
formal time η takes values in an interval I ⊆ ð−∞; 0Þ.
Consider a massless scalar field ϕ on this background. Such
a field is a proxy for quantities such as the Mukhanov-
Sasaki variable, which describes combined quantized
perturbations of the inflaton and scalar metric degrees of
freedom, or tensor perturbations of the metric, which
describe primordial gravitational waves.
The strength of the field’s quantum fluctuations is

quantified by its fluctuation spectrum:

δϕkðηÞ ¼
1

2π
k3=2jvkðηÞj

¼
ffiffiffiffiffiffi
4π

p
k3=2jGFðη ¼ η0; kÞj1=2: ð4Þ

Here, vkðηÞ is the field’s mode function and k is
the comoving wavelength. We define the covariantly
bandlimited fluctuation spectrum by replacing GF in the
equation above with GΩ

F ¼ PΩGFPΩ. Note that the spec-
trum of the d’Alembertian in a FRW spacetime is preserved
(up to degeneracy) under spatial Fourier transforms; i.e., if
□uðη;xÞ ¼ λuðη;xÞ, then □kukðηÞ ¼ λukðηÞ. This allows
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us to calculate the bandlimited propagator comoving mode
by comoving mode.
We now consider the flat slicing of de Sitter spacetime in

1þ 3 dimensions, which is the most computationally
tractable model for an inflating FRW spacetime. The scale
factor is aðηÞ ¼ −1=Hη with −∞ < η < 0, and H is the
Hubble parameter. We take the state of the field to be the
Bunch-Davies vacuum [34] so that the Feynman propaga-
tor without cutoff reads, as usual,

GFðη;η0;kÞ¼−
iπ
4

ffiffiffiffiffiffi
ηη0

p
aðηÞaðη0Þ ½θðη−η0ÞHð1Þ

3=2ðkjηjÞHð2Þ
3=2ðkjη0jÞ

þθðη0−ηÞHð2Þ
3=2ðkjηjÞHð1Þ

3=2ðkjη0jÞ�: ð5Þ
Here, Hð1Þ

3=2 and Hð2Þ
3=2 denote Hankel functions of the first

and second kind, respectively.
Our strategy is as follows: for each comoving mode k,

construct the spectral projectors PΩ from the eigenfunc-
tions and eigenvalues of□k, and then apply these to the left
and right of GFðη; η0; kÞ to obtain GΩ

F . Equivalently, we can
write PΩ ¼ I − P⊥

Ω, where P⊥
Ω projects onto eigenspaces

corresponding to jλj > Ω2, so that

GΩ
F ¼ GF − ðP⊥

ΩGF þGFP⊥
Ω − P⊥

ΩGFP⊥
ΩÞ ð6Þ

and the quantity in parentheses gives the correction to the
full propagator.
We notice first that each k d’Alembertian on

L2(ð−∞; 0Þ; a4ðηÞdη) is not uniquely self-adjoint. In func-
tional analytic language [35–37], the minimal symmetric
operator generated by each□k has deficiency indices (1,1),
which implies the existence of a one-parameter family of
self-adjoint extensions of □k, each corresponding to a
generalized boundary condition. We identify the correct
self-adjoint extension by matching the generalized boun-
dary condition to the boundary condition implied by GF as
given in Eq. (5). The fact that GF is a right inverse of the
d’Alembertian, i.e., that □kGFðη; η0; kÞ ¼ a−4ðηÞδðη − η0Þ,
means that GF is diagonal in the same basis as□k and so it
shares the same boundary condition.
For each λ ∈ R, the eigenfunction equation □kuðηÞ ¼

λuðηÞ yields a Sturm-Liouville differential equation,

ða2u0Þ0 þ k2a2uþ λa4u ¼ 0: ð7Þ
This can be solved to obtain two linearly independent
solutions [35]. For λ < 9H2=4, Eq. (7) admits one normal-
izable solution and so the self-adjoint extensions of□k will
have a point spectrum in this range. For λ ≥ 9H2=4, both
solutions are non-normalizable, and so this range can only
contain a continuous spectrum. The possible normalizable
solutions for λ < 9H2=4 are

ψnðηÞ ¼ H2
ffiffiffiffiffiffiffiffi
2pn

p
jηj3=2Jpn

ðkjηjÞ; ð8Þ
where pn ¼ p0 þ 2n with n ∈ N ensures orthonormality
and the value of p0 ∈ ð0; 2� fixes the self-adjoint extension.
(Here, Jp denotes the Bessel J function of order p.) The

corresponding eigenvalues are λn ¼ H2ð9
4
− p2

nÞ. We deter-
mined the correct choice of self-adjoint extension by
examining the action of Gh

F − λ−1n I on test eigenfunctions
as a function of p0, whereGh

F denotes the Hermitian part of
GF. When p0 takes the value that is implied byGF as given
in Eq. (5), then ðGh

F − λ−1n IÞψnðη;p0Þ must be in the kernel
of□k. By varying p0 and checking when this last condition
is satisfied, we found that p0 ¼ 3=2 (so that λ0 ¼ 0) is the
self-adjoint extension that is implied by Eq. (5).
Orthonormality then implies that all λ ≥ 9H2=4 are in

the continuous spectrum, and that the corresponding
eigenfunctions are

ψqðλÞðηÞ ¼ H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
q tanhðπqÞ

r h
sech

�π
2
q
�
ReJiqðkjηjÞ

−csch
�π
2
q
�
ImJiqðkjηjÞ

i
ð9Þ

with qðλÞ ¼ ½ðλ=H2Þ − 9
4
�1=2. The eigenfunctions of the

continuous spectrum have been normalized so thatZ
0

−∞
ψqðηÞψq0 ðηÞa4ðηÞdη ¼ δðq − q0Þ: ð10Þ

We deduced this normalization numerically by requiring
that

R
qþϵ
q−ϵ

R
0
−∞ ψqðηÞψq0 ðηÞa4ðηÞdη ¼ 1. Upon exchanging

the order of integration, the double integral becomes
Riemann integrable and thus calculable numerically.
Assembling the results, the projectors P⊥

Ω are given by

P⊥
Ωðη; η0Þ ¼

X
n>N

ψnðηÞψnðη0Þ þ
Z

∞

Q
ψqðηÞψqðη0Þdq; ð11Þ

where Q ¼ qðΩ2Þ and N ¼ maxfn∶jλnj < Ω2g. The full
correction to the propagator in Eq. (6) can then be
calculated using a combination of exact antiderivatives
when possible and numerical integration otherwise. The
contribution from the point spectrum is several tens of
orders of magnitude smaller than the contribution from the
continuous spectrum, and is therefore negligible in
Eq. (11). A plot of ΔðδϕkÞ=δϕk is shown in Fig. 1, where

Δ(δϕkðηÞ) ¼
ffiffiffiffiffiffi
4π

p
k3=2½jGΩ

Fðη ¼ η0; kÞj1=2
−jGFðη ¼ η0; kÞj1=2�: ð12Þ

The quantity ΔðδϕkÞ=δϕk characterizes the magnitude of
the impact of the covariant UV cutoff on inflationary
predictions for the CMB.
Figure 1 shows that the impact of the covariant bandlimit

on inflationary perturbations is sensitive to when the
perturbations were in effect measured and became classical.
As is well known, after horizon crossing, comoving modes
quickly become highly squeezed. This squeezing makes the
quantum statistics of field fluctuations indistinguishable
from those of a classical stochastic ensemble, which leads
to an “apparent” quantum-to-classical transition [25]. If the
comoving modes had continued to evolve as a closed
system until reheating, then our calculations, which hold as
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long as the modes are independent closed systems, would
be valid up until reheating. At this point the reheating
interactions will decohere the inflationary perturbations,
which would then be described according to open system
dynamics. In this scenario, the imprint that Planck-scale
physics could have left in the CMB would, in effect, be
measured and fixed as late as reheating. The imprint would
therefore be exponentially suppressed.
However, the modes’ squeezing at horizon crossing is

generally expected to have also led to a quantum-to-classical
transition through environmental decoherence already
shortly after horizon crossing, therefore requiring an open
system description at that stage. For our calculation, this
means that the imprint of Planck-scale physics in the CMB
was in effect measured soon after horizon crossing. We
therefore predict that this imprint is not suppressed.
For completeness, let us briefly discuss why decoherence

is expected to have occurred soon after horizon crossing (for
a more extensive review, see Ref. [25]). During inflation,
there are several environmental sources of decoherence for
the comoving modes. These include nonlinear gravitational
interactions among the modes as well as interactions with
the fields of other species. (There is also the effect of
decoherence from tracing over degrees of freedom beyond
the cosmological horizon.) The weakness of these environ-
mental interactions is offset by the well-known [28] extreme
sensitivity of highly squeezed states, such as the comoving
modes after horizon crossing, to environmental decoherence.
We remark that these decoherence mechanisms are indeed
such that the pointer basis is approximately the field
eigenbasis and that the modes’ standing wave behavior
can account for the acoustic oscillations in the CMB, as
required by phenomenology [25].
Within this standard scenario for the quantum-to-

classical transition in inflation, we can then conclude that

the cutoff-induced modulation of the primordial quantum
fluctuations’ amplitudes that we calculate was effectively
fixed by measurement through environmental decoherence
near horizon crossing. The imprint in the CMB scales as σα

with α ¼ 1, and here, σ ¼ LPlanck=LHubble ∼H=Ω could be
as large as 10−5 for realistic values of H and Ω. While still
far from being measurable, it is conceivable that such an
effect might eventually become observable, thereby pro-
viding some access to Planck-scale physics.
We determined the order α by holding kjηj fixed and

plotting ΔðδϕkÞ=δϕk as a function of H=Ω. This is shown
in Fig. 2, where the scaling behavior can be read off: the
effect scales almost exactly linearly, i.e., α ≈ 1, when kjηj is
fixed close to horizon crossing.
We now consider the realistic case of inflationary

spacetimes with a slowly varying Hubble parameter. The
exact calculations would be challenging since the corre-
sponding d’Alembertian would be computationally even
more difficult to diagonalize. We therefore model this case
with an “adiabatic” approximation in which the spacetime
is instantaneously de Sitter at every conformal time η, but in
which we let H slowly vary as a function of η. Figure 3
shows a plot of ΔðδϕkÞ=δϕk for this model. At each k, jηj is
set to 1=k and the Hubble parameter is set to the value taken
at the mode’s horizon crossing by the time-varying Hubble
parameter HðηÞ of a power law spacetime. As the magni-
tude of ΔðδϕkÞ=δϕk tracks the effective time-varying
Hubble parameter, an interesting characteristic pattern of
oscillations appears. Intuitively, these oscillations may be
thought of as arising from the time-varying number of
Planckian wavelengths that fit into a Hubble length. If
observed, such oscillations in the CMB spectra may serve
as an experimental signature of a covariant natural UV
cutoff that could not easily be alternatively explained
through a plausible inflaton potential. Our results are
consistent with prior literature [7,12,13] in that we also
predict superimposed oscillations. However, our new

FIG. 1. Relative change in δϕk as a function of comoving mode
numberwith jηj¼1 fixed.Horizoncrossing(kjηj¼1) ismarkedwith
a solid line.The ratio ofPlanck toHubble scales is set toH=Ω¼10−2

so that the numerical computation remains tractable. The oscillations
are due to an oscillatory integrand that appears in GΩ

F , which
dominates at small k. Roughly, the oscillations may be understood
as an interference effect,with dips occurringwhen an integer number
of wavelengths fit between the Planck and Hubble scales.

FIG. 2. Relative change in δϕk as a function of the ratio of
Planck to Hubble scales. The upper series of points is at horizon
crossing (kjηj ¼ 1), and the lower series is well past horizon
crossing (kjηj ¼ 1=20). The inset shows a sliver of the lower
series at higher resolution, where the apparent scatter in the data
is resolved as rapid oscillations.
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predictions for the type and magnitude of such oscillations
are obtained covariantly and our predictions, including the
prediction that the effect is of first order (α ¼ 1), are now
free of potential artifacts due to covariance breaking.
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