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(see the figure, panel A). For a squeezed 

state, the peak is still Gaussian but now has 

two-fold symmetry. One variance, say along 

P, is smaller than the vacuum noise, while 

the other one is larger (see the fi gure, panel 

B). For all optics experiments done during 

the last century, W(Q, P) was some kind of 

Gaussian and therefore looked like a “real” 

(positive) probability distribution.

More surprisingly, the number state, 

where the number of photons in a light pulse 

is well defi ned, has a W(Q, P) function that 

is negative at the origin (see the fi gure, panel 

C). Negative values are allowed because 

true probabilities are obtained by integrat-

ing these distributions—the integral over P 

gives the true probability distribution of Q. 
The integral of W(Q, P) over any component 

of the electric fi eld is the probability distri-

bution of its orthogonal component (these 

appear as “shadows” in the fi gure panels).

This shadow idea is behind the method 

used to obtain W(Q, P) experimentally. 

Many projections are measured so that 

W(Q, P) can be reconstructed by a pro-

cess called quantum tomography. All of 

the states with negative Wigner functions 

are called “nonclassical,” because their dis-

crete or continuous properties (or both) are 

now mixed and are purely quantum features. 

Many states with negative Wigner functions 

have recently been realized experimentally, 

including number states with one ( 7) or two 

photons ( 8), photon-added states ( 9), and 

entangled states with negative Wigner func-

tions ( 10). Of particular interest here are 

superpositions of coherent states with oppo-

site phases, which are called Schrödinger’s 

kittens ( 11– 13) or Schrödinger’s cats ( 14, 

 15), depending on their size (see the fi gure, 

panel D).

Such highly quantum states are desirable 

for effi cient quantum information process-

ing tasks, such as entanglement distillation 

in quantum communication, or as logical 

gates for quantum computing. These tasks 

involve many operations and are quite vul-

nerable to decoherence—the degradation of 

entanglement by unwanted coupling to the 

environment. A natural question is how well 

highly quantum states can be controlled in a 

basic processing operation.

The quantum teleportation of a 

Schrödinger’s-cat state by Lee et al. suc-

cessfully combined many operations. They 

generated a highly entangled state—the 

resource for teleportation—and indepen-

dently a Schrödinger’s-kitten state, the one 

to be teleported. Then, after the appropri-

ate steps including the destruction of the 

initial kitten, they “recreated” this kitten in 

another place, still with negative features 

in its Wigner function. These fi nal negative 

features can only be observed if the qual-

ity of the teleportation is high enough. This 

quality is measured by a number, called the 

fi delity, which must be greater than 2/3 for 

the operation to be successful. This 2/3 value 

is the so-called no-cloning limit, which also 

ensures that no other copy of the initial state 

can remain at the end ( 16,  17): The cat state 

must really be “erased” somewhere in order 

to be able to “reappear” elsewhere.

Overall, such an achievement is certainly 

very impressive, and it goes beyond pure 

experimental virtuosity. It shows that the 

controlled manipulation of quantum objects 

has progressed steadily and achieved objec-

tives that seemed impossible just a few years 

ago, and that tools are now available to 

tackle more ambitious goals. 
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Negative values and positive 

results. The Wigner function is a way 
to describe how “quantum” a light 
pulse is. Progressing from most clas-
sical to most quantum, the Wigner 
functions are shown for (A) the 
coherent state, (B) a squeezed state, 
(C) the single-photon state, and (D) 
a Schrödinger’s-cat state. The pro-
jections or “shadows” of the Wigner 
function (shown on the sides) are the 
measured probability distributions of 
the quantum continuous variables Q 
or P. The Wigner function is a Gauss-
ian function for (A) and (B), but it 
takes negative values for the strongly 
quantum states (C) and (D). These 
negative features vanish very quickly 
in the presence of decoherence. In 
the experiment by Lee et al., a quan-
tum state similar to (C) and (D) was 
teleported and kept the negative 
values of the Wigner function. This 
result demonstrates an extraordinary 
degree of experimental control over 
such fragile quantum objects.
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Quantization with different quantum 
variables 

•  Phase	  ?	  
does not satisfy uncertainty principle  

is not Hermitian 

do not commute 

commute ! 

commute, orthogonal 



vacuum	  

vacuum	  

Input1	  

Input2	  

BS	  

D3	  

D4	  

D5	  

D6	  

J.W. Noh, A. Fougeres, L. Mandel, Phys. Rev. Lett. 67, 1467 (1991). 
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vacuum	  

vacuum	  

Input1	  

Input2	  

BS	  

D3	  

D4	  

D5	  

D6	  

Phase	  difference	  ill	  defined	  

In	  the	  regime,	  
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Lamb Shift 
•  “Experimental Result” 

•  Vacuum Fluctuation Theory  
     (by Welton, 1957) 
 

 

 W E. Lamb, JR., and R C. Rutherford, Phys. Rev. Lett. 72,241 (1947)  
W E. Lamb, JR. Nobel Lecture, (1955) 

�	  �	  

Energy	  difference	  between	  
by	  level	  shiS	  
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Lamb Shift 
•  “Experimental Result” 

•  Vacuum Fluctuation Theory  
     (by Welton, 1957) 
 

 

 

Energy	  difference	  between	  
by	  level	  shiS	   �	  �	  

perturbation 

Non-relativistic eqn. of motion for electron  

~1GHz in good agreement with Lamb shift 
measurement  

Electron orbit perturbed by vacuum fluctuation 



Quantum beat 

•  Semiclassical	  Theory	  (SCT)	  

configuration configuration 

Interference	  term	  



•  Quantum	  mechanics	  
	  

configuration configuration 

Quantum beat 
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Casimir effect manifested over different scales.  

Casimir effect 
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2. Fields (phase-amplitude) Continuous quantum variables 

In Fock-state representation 

4 Representations of the Electromagnetic Field

4.1 Basics

A quantum mechanical state is completely described by its density matrix Ω. The
density matrix Ω can be expanded in diÆerent basises {|√i}:

Ω =
X

i,j

Dij |√ii
≠

√j

Ø

Ø for a discrete set of basis states (158)

The c-number matrix Dij = h√i| Ω
Ø

Ø√j

Æ

is a representation of the density operator.

One example is the number state or Fock state representation of the density ma-
trix.

Ωnm =
X

n,m

Pnm |ni hm| (159)

The diagonal elements in the Fock representation give the probability to find exactly
n photons in the field!

A trivial example is the density matrix of a Fock State |ki:
Ω = |ki hk| and Ωnm = ±nk±km (160)

Another example is the density matrix of a thermal state of a free single mode field:

Ω =
exp[°~!a+a/kbT ]

Tr{exp[°~!a+a/kbT ]} (161)

In the Fock representation the matrix is:

Ω =
X

n

exp[°~!n/kbT ][1 ° exp(°~!/kbT )] |ni hn| (162)

=
X

n

hnin
(1 + hni)n+1

|ni hn| (163)

with
hni = Tr(a+aΩ) = [exp(~!/kbT ) ° 1]°1 (164)

37

1. Energy Discrete quantum variables                           photon counting 

4.2. FOCK STATES 31

Problem 4.4 The annihilation operator is defined as follows:

â =
1√
2

(
X̂ + iP̂

)
; (4.11)

The operator â† is called the creation operator. Show that:

a) the creation operator is

â† =
1√
2

(
X̂ − iP̂

)
; (4.12)

b) the creation and annihilation operators are not Hermitian;

c) their commutator is

[â, â†] = 1; (4.13)

d) position and momentum can be expressed as

X̂ =
1√
2

(
â+ â†

)
; P̂ =

1

i
√
2

(
â− â†

)
; (4.14)

e) the Hamiltonian can be written as

Ĥ = !ω
(
â†â+

1

2

)
; (4.15)

f) the following commutator relations hold:

[â, â†â] = â; [â†, â†â] = −â†. (4.16)

4.2 Fock states

Our next goal is to find the eigenvalues and eigenstates of the Hamiltonian. Because of Eq. (4.15)
the latter are also eigenstates of â†â.

Problem 4.5 Suppose some state |n⟩ is an eigenstate of the operator n̂ = â†â [called the (photon)
number operator ] with eigenvalue n. Then

a) the state â |n⟩ is also an eigenstate of â†â with eigenvalue n− 1;

b) the state â† |n⟩ is also an eigenstate of â†â with eigenvalue n+ 1.

Hint: Use Eq. (4.16).

Note 4.1 The above exercise shows that the states â |n⟩ and â† |n⟩ are proportional to normalized
states |n− 1⟩ and |n+ 1⟩, respectively. In the following, we find the proportionality coefficient.

Problem 4.6 Using ⟨n| â†â |n⟩ = n, show that

a)

â |n⟩ =
√
n |n− 1⟩ ; (4.17)

b)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ ; (4.18)

34 A. I. Lvovsky. Nonlinear and Quantum Optics

Based on the data obtained in this measurement, we can construct a histogram of the experimental
results, a.k.a. marginal distribution pr(Xθ). This marginal distribution is the integral projection
of the phase-space probability density on the vertical plane oriented at angle θ with respect to the
vertical axis (Fig. 4.2):

pr(Xθ) =

∫ +∞

−∞
W (X cos θ − P sin θ, X sin θ + P cos θ)dP. (4.27)

W X,P( )

!

X
P

pr( )X
!

Figure 4.2: The phase-space probability density and the marginal distribution.

Now let us suppose the same measurement of X̂θ is performed on a quantum particle in state
with density matrix ρ̂ that is prepared anew after each measurement. Again, we can construct the
histogram, which is related to the state according to

pr(Xθ) = Tr(ρ̂X̂θ). (4.28)

In the quantum domain, there can exist no phase-space probability density because, according to
the uncertainty principle, the particle cannot have certain values of position and momentum at the
same time. However, for every quantum state there exists a phase-space quasiprobability density —
a function Wρ̂(X,P ) for which Eq. (4.27) holds for all θ’s. Without derivation, the expression for
this quasiprobability density (now known as the Wigner function) is as follows:

Wρ̂(X,P ) =
1

2π

∫ +∞

−∞
eiPQ

〈
X − Q

2

∣∣∣∣ ρ̂
∣∣∣∣ X +

Q

2

〉
dQ. (4.29)

This equation is called the Wigner formula.

Problem 4.18 Prove Eq. (4.27) for the classical case.

Problem 4.19 Use a mathematical software package to calculate the Wigner function and verify
that Eq. (4.27) holds for θ = 0 and θ = π/2 for the following states:

a) vacuum state;

b) coherent state with α = 2;

c) coherent state with α = 2eiπ/6;

d) the single-photon state;

e) the ten-photon state;

f) (|0⟩+ |1⟩)/
√
2;

g) (|0⟩+ i |1⟩)/
√
2;

h) state with the density matrix (|0⟩⟨0|+ |1⟩⟨1|)/2;

e.g., Wigner function for 
squeezed states 

Two flavors of quantum 
variables 

quadratures	   with  

 
L. Mandel., and E. Wolf, “Optical Coherence and Quantum Optics” 
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in the "diagonal" form
n+n'

p = p(n, n')
' "~ exp[r'+i(n'-n)&jire'~)(re'

)
This form is particularly interesting since if
0 = (a~)"aP' be any normal ordered operator (i. e. ,
all creation operators to the left of all annihilation
operators), its expectation value in the statistical
state represented by the density matrix in the
"diagonal" form

p = Jd'z4 (z) iz) (z I

is given by

tr{po}= tr{p(aT)"a&& = fd'zy(z)(z*)"z P. (5)

This is the same as the expectation value of the
complex classical function (z*)"zP for a probabi-
lity distribution q(z) over the complex plane. The
demonstration above shows that any statistical
state of the quantum mechanical system may be
described by a classical probability distribution
over a complex plane, provided all operators are
written in the normal ordered form. In other
words, the classical complex representations'
can be put in one-to-one correspondence with

p({n},{n'})(n !n '!)"'
~({})=n z z=On ~ =O (n +n ')!(2vr )

quantum mechanical density matrices. Hermitic-
ity of p implies that p(z) is a "real" function in
the sense that p*(z*)= P(z), but not necessarily
positive def inite.
These considerations generalize in a straight-

forward manner to an arbitrary (countable) num-
ber of degrees of freedom, finite or infinite.
The states are now represented by a sequence of
complex numbers {z}; and the Fock representa-
tion basis is labeled by a sequence of non-negative
integers {n}and density matrices by functions
of two such sequences p({n},{n'}). Any such
state can be put into one-to-one correspondence
with classical probability distributions in a se-
quence of complex variables P({z})such that the
expectation value of any normal ordered operator
0({at},{a})is given by

trOa, a p = d'z 0 z*, z P z

where the "real" function p({z})is given by

iE ~A.
exp[r '+i(n '-n )0 ] &(r )

Consequently the description of statistical states
of a quantum mechanical system with an arbitrary
(countably infinite) number of degrees of freedom
is completely equivalent to the description in terms
of ela, ssical probability distributions in the same
(countably infinite) number of complex variables.
In particular, the statistical states of the quantized
electromagnetic field may be described uniquely
by classical complex linear functions on the clas-
sical electromagnetic field. This functional will
be "real" reflecting the Hermiticity of the density
matrix; and leads in either version to real ex-
pectation values for Hermitian (real) dynamical
variables.
Several additional remarks are in order. First-

ly, since the states i{z})are eigenfunctions of
the a,nnihilation operators, the analogous states
for a quantized field are eigenfunctions of the
positive-frequency (annihilation) part of the field.
The corresponding classical theory should then
work with positive-frequency parts of the elassi-
ca.l field; but this is precisely what is involved
in the concept of the (classical) analytic signal. '
Secondly, while therma, l beams are usually rep-
resented by Gaussian classical probability func-

tions corresponding to a density matrix diagonal
in the occupation numbers {n}given by the grand
canonical ensemble for the blackbody radiation,
there are other probability functions! A particu-
lar one may not be diagonal in the occupation
number sequence {n}and this implies, in accord-
ance with Eq. (6), that not all phase-angle se-
quences {8}have equal weight. In such a case
the expectation values of operators with unequal
number of creation and destruction operators
need not all vanish. %e note in passing, that
Eq (6) for.P({z})in terms of p({n},{n'})ean be
inverted to yield

i)3/2
A.

If we do this for the Gaussian functions, we ob-
tain the Bose-Einstein distribution, diagonal in
the occupation number sequences corresponding
to the equal weightage of all phase angles. It is
worth pointing out that this result reproduces the
Purcell-Mandel derivation' for photoelectric
counting statistics. The method of inverting the
expectation values to obtain the probability dis-
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EQUIVALENCE OF SEMICLASSICAL AND QUANTUM MECHANICAL DESCRlPTjONS
OF STATISTICAL LIGHT BEAMS
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(Received 1 March 1963)

With the advent of the laser, attention has been
focused on the problem of the complete descrip-
tion of the electromagnetic field associated with
arbitrary light beams. The classical theory of
optical coherence' works almost exclusively with
two-point correlations; and this theory is adequate
for the description of the classical optical phenom-
ena of interference and diffraction in general.
More sophisticated experiments on intensity in-
terferometry and photoelectric counting statistics
necessitated special higher order correlations.
Most of this work' was done using a classical or
a semiclassical formulation of the problem. On
the other hand, statistical states of a quantized
(electromagnetic) field have been considered re-
cently, ' and a quantum mechanical definition of
coherence functions of arbitrary order presented.
It is the aim of this note to elaborate on this defi-
nition and to demonstrate its complete equivalence
to the classical description as long as no non-
linear effects are considered.
We begin with an outline of the analytic function

representation~ of canonical creation and destruc-
tion operators. If a and a~ satisfy the relations

[a, a t] = 1,
every irreducible representation is equivalent to
the Fock representation in terms of the states
g(n), satisfying

a'tap(n) =ng(n); (y(rn), g(n)) = 5mn

The matrix elements of a and af in this represen-

tation are

(y(m), aq(n)) = In5

(q(m), a~y(n)) = (n+ 1)"'5
myel + ~

One could, however, introduce an overcomplete
set of eigenstates of the destruction operator
given by

Ire ) =— Iz) =exp(- iz I') Q, »g(n),n=O

satisfying

a iz) =z I z); (z lat =z*(z I; (z Iz) = l,

for every complex number z. These states are
all normalized but not orthogonal', they are corn-
plete in the sense that they furnish a resolution
of the identity

l = (l/w) jfrdrd& I re ) (re'
More generally,

d8 y—Ire' )(re' I=e g, g(n)gt(n).~ 2n ~ OPg!

We can make use of the overcompleteness' of the
states to represent every density matrix,

Q p(n, n')jc(n)y~(n'),
n =On~ =0

277
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in the "diagonal" form
n+n'

p = p(n, n')
' "~ exp[r'+i(n'-n)&jire'~)(re'

)
This form is particularly interesting since if
0 = (a~)"aP' be any normal ordered operator (i. e. ,
all creation operators to the left of all annihilation
operators), its expectation value in the statistical
state represented by the density matrix in the
"diagonal" form

p = Jd'z4 (z) iz) (z I

is given by

tr{po}= tr{p(aT)"a&& = fd'zy(z)(z*)"z P. (5)

This is the same as the expectation value of the
complex classical function (z*)"zP for a probabi-
lity distribution q(z) over the complex plane. The
demonstration above shows that any statistical
state of the quantum mechanical system may be
described by a classical probability distribution
over a complex plane, provided all operators are
written in the normal ordered form. In other
words, the classical complex representations'
can be put in one-to-one correspondence with

p({n},{n'})(n !n '!)"'
~({})=n z z=On ~ =O (n +n ')!(2vr )

quantum mechanical density matrices. Hermitic-
ity of p implies that p(z) is a "real" function in
the sense that p*(z*)= P(z), but not necessarily
positive def inite.
These considerations generalize in a straight-

forward manner to an arbitrary (countable) num-
ber of degrees of freedom, finite or infinite.
The states are now represented by a sequence of
complex numbers {z}; and the Fock representa-
tion basis is labeled by a sequence of non-negative
integers {n}and density matrices by functions
of two such sequences p({n},{n'}). Any such
state can be put into one-to-one correspondence
with classical probability distributions in a se-
quence of complex variables P({z})such that the
expectation value of any normal ordered operator
0({at},{a})is given by

trOa, a p = d'z 0 z*, z P z

where the "real" function p({z})is given by

iE ~A.
exp[r '+i(n '-n )0 ] &(r )

Consequently the description of statistical states
of a quantum mechanical system with an arbitrary
(countably infinite) number of degrees of freedom
is completely equivalent to the description in terms
of ela, ssical probability distributions in the same
(countably infinite) number of complex variables.
In particular, the statistical states of the quantized
electromagnetic field may be described uniquely
by classical complex linear functions on the clas-
sical electromagnetic field. This functional will
be "real" reflecting the Hermiticity of the density
matrix; and leads in either version to real ex-
pectation values for Hermitian (real) dynamical
variables.
Several additional remarks are in order. First-

ly, since the states i{z})are eigenfunctions of
the a,nnihilation operators, the analogous states
for a quantized field are eigenfunctions of the
positive-frequency (annihilation) part of the field.
The corresponding classical theory should then
work with positive-frequency parts of the elassi-
ca.l field; but this is precisely what is involved
in the concept of the (classical) analytic signal. '
Secondly, while therma, l beams are usually rep-
resented by Gaussian classical probability func-

tions corresponding to a density matrix diagonal
in the occupation numbers {n}given by the grand
canonical ensemble for the blackbody radiation,
there are other probability functions! A particu-
lar one may not be diagonal in the occupation
number sequence {n}and this implies, in accord-
ance with Eq. (6), that not all phase-angle se-
quences {8}have equal weight. In such a case
the expectation values of operators with unequal
number of creation and destruction operators
need not all vanish. %e note in passing, that
Eq (6) for.P({z})in terms of p({n},{n'})ean be
inverted to yield

i)3/2
A.

If we do this for the Gaussian functions, we ob-
tain the Bose-Einstein distribution, diagonal in
the occupation number sequences corresponding
to the equal weightage of all phase angles. It is
worth pointing out that this result reproduces the
Purcell-Mandel derivation' for photoelectric
counting statistics. The method of inverting the
expectation values to obtain the probability dis-
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Optical equivalence theorem 
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With the advent of the laser, attention has been
focused on the problem of the complete descrip-
tion of the electromagnetic field associated with
arbitrary light beams. The classical theory of
optical coherence' works almost exclusively with
two-point correlations; and this theory is adequate
for the description of the classical optical phenom-
ena of interference and diffraction in general.
More sophisticated experiments on intensity in-
terferometry and photoelectric counting statistics
necessitated special higher order correlations.
Most of this work' was done using a classical or
a semiclassical formulation of the problem. On
the other hand, statistical states of a quantized
(electromagnetic) field have been considered re-
cently, ' and a quantum mechanical definition of
coherence functions of arbitrary order presented.
It is the aim of this note to elaborate on this defi-
nition and to demonstrate its complete equivalence
to the classical description as long as no non-
linear effects are considered.
We begin with an outline of the analytic function

representation~ of canonical creation and destruc-
tion operators. If a and a~ satisfy the relations

[a, a t] = 1,
every irreducible representation is equivalent to
the Fock representation in terms of the states
g(n), satisfying

a'tap(n) =ng(n); (y(rn), g(n)) = 5mn

The matrix elements of a and af in this represen-

tation are

(y(m), aq(n)) = In5

(q(m), a~y(n)) = (n+ 1)"'5
myel + ~

One could, however, introduce an overcomplete
set of eigenstates of the destruction operator
given by
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satisfying
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for every complex number z. These states are
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plete in the sense that they furnish a resolution
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More generally,
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quantum mechanical density matrices. Hermitic-
ity of p implies that p(z) is a "real" function in
the sense that p*(z*)= P(z), but not necessarily
positive def inite.
These considerations generalize in a straight-

forward manner to an arbitrary (countable) num-
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electromagnetic field may be described uniquely
by classical complex linear functions on the clas-
sical electromagnetic field. This functional will
be "real" reflecting the Hermiticity of the density
matrix; and leads in either version to real ex-
pectation values for Hermitian (real) dynamical
variables.
Several additional remarks are in order. First-
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the a,nnihilation operators, the analogous states
for a quantized field are eigenfunctions of the
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The corresponding classical theory should then
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expectation values to obtain the probability dis-
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electromagnetic field can be expressed in the form [3] 
2

ˆ ( ) .d z z z z" #= !  

Here, the function ( )z!  is, in modern terms, called the Glauber-Sudarshan phase-space function 

[6]. The aspect of this function that George emphasized (and formally established) is its universal 
character for all states of the electromagnetic field, ranging from blackbody radiation, for which 

( )z!  is a Gaussian distribution, to more pathological examples, such as a number (Fock) state |n> 

of the field, for which 
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Figure 1. The Optical Equivalence Theorem provides a definitive line of demarcation between 

classical and quantum worlds [3, 5]. 

 
As you can see and as Professor Mehta discussed, this is not an ordinary function. As Dorothy in 
the Wizard of Oz expressed so appropriately, we’re certainly not in Kansas anymore! For an 
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Based on the data obtained in this measurement, we can construct a histogram of the experimental
results, a.k.a. marginal distribution pr(Xθ). This marginal distribution is the integral projection
of the phase-space probability density on the vertical plane oriented at angle θ with respect to the
vertical axis (Fig. 4.2):

pr(Xθ) =

∫ +∞

−∞
W (X cos θ − P sin θ, X sin θ + P cos θ)dP. (4.27)

W X,P( )

!

X
P

pr( )X
!

Figure 4.2: The phase-space probability density and the marginal distribution.

Now let us suppose the same measurement of X̂θ is performed on a quantum particle in state
with density matrix ρ̂ that is prepared anew after each measurement. Again, we can construct the
histogram, which is related to the state according to

pr(Xθ) = Tr(ρ̂X̂θ). (4.28)

In the quantum domain, there can exist no phase-space probability density because, according to
the uncertainty principle, the particle cannot have certain values of position and momentum at the
same time. However, for every quantum state there exists a phase-space quasiprobability density —
a function Wρ̂(X,P ) for which Eq. (4.27) holds for all θ’s. Without derivation, the expression for
this quasiprobability density (now known as the Wigner function) is as follows:

Wρ̂(X,P ) =
1

2π

∫ +∞

−∞
eiPQ

〈
X − Q

2

∣∣∣∣ ρ̂
∣∣∣∣ X +

Q

2

〉
dQ. (4.29)

This equation is called the Wigner formula.

Problem 4.18 Prove Eq. (4.27) for the classical case.

Problem 4.19 Use a mathematical software package to calculate the Wigner function and verify
that Eq. (4.27) holds for θ = 0 and θ = π/2 for the following states:

a) vacuum state;

b) coherent state with α = 2;

c) coherent state with α = 2eiπ/6;

d) the single-photon state;

e) the ten-photon state;

f) (|0⟩+ |1⟩)/
√
2;

g) (|0⟩+ i |1⟩)/
√
2;

h) state with the density matrix (|0⟩⟨0|+ |1⟩⟨1|)/2;

Wigner representation 
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(see the figure, panel A). For a squeezed 

state, the peak is still Gaussian but now has 

two-fold symmetry. One variance, say along 

P, is smaller than the vacuum noise, while 

the other one is larger (see the fi gure, panel 

B). For all optics experiments done during 

the last century, W(Q, P) was some kind of 

Gaussian and therefore looked like a “real” 

(positive) probability distribution.

More surprisingly, the number state, 

where the number of photons in a light pulse 

is well defi ned, has a W(Q, P) function that 

is negative at the origin (see the fi gure, panel 

C). Negative values are allowed because 

true probabilities are obtained by integrat-

ing these distributions—the integral over P 

gives the true probability distribution of Q. 
The integral of W(Q, P) over any component 

of the electric fi eld is the probability distri-

bution of its orthogonal component (these 

appear as “shadows” in the fi gure panels).

This shadow idea is behind the method 

used to obtain W(Q, P) experimentally. 

Many projections are measured so that 

W(Q, P) can be reconstructed by a pro-

cess called quantum tomography. All of 

the states with negative Wigner functions 

are called “nonclassical,” because their dis-

crete or continuous properties (or both) are 

now mixed and are purely quantum features. 

Many states with negative Wigner functions 

have recently been realized experimentally, 

including number states with one ( 7) or two 

photons ( 8), photon-added states ( 9), and 

entangled states with negative Wigner func-

tions ( 10). Of particular interest here are 

superpositions of coherent states with oppo-

site phases, which are called Schrödinger’s 

kittens ( 11– 13) or Schrödinger’s cats ( 14, 

 15), depending on their size (see the fi gure, 

panel D).

Such highly quantum states are desirable 

for effi cient quantum information process-

ing tasks, such as entanglement distillation 

in quantum communication, or as logical 

gates for quantum computing. These tasks 

involve many operations and are quite vul-

nerable to decoherence—the degradation of 

entanglement by unwanted coupling to the 

environment. A natural question is how well 

highly quantum states can be controlled in a 

basic processing operation.

The quantum teleportation of a 

Schrödinger’s-cat state by Lee et al. suc-

cessfully combined many operations. They 

generated a highly entangled state—the 

resource for teleportation—and indepen-

dently a Schrödinger’s-kitten state, the one 

to be teleported. Then, after the appropri-

ate steps including the destruction of the 

initial kitten, they “recreated” this kitten in 

another place, still with negative features 

in its Wigner function. These fi nal negative 

features can only be observed if the qual-

ity of the teleportation is high enough. This 

quality is measured by a number, called the 

fi delity, which must be greater than 2/3 for 

the operation to be successful. This 2/3 value 

is the so-called no-cloning limit, which also 

ensures that no other copy of the initial state 

can remain at the end ( 16,  17): The cat state 

must really be “erased” somewhere in order 

to be able to “reappear” elsewhere.

Overall, such an achievement is certainly 

very impressive, and it goes beyond pure 

experimental virtuosity. It shows that the 

controlled manipulation of quantum objects 

has progressed steadily and achieved objec-

tives that seemed impossible just a few years 

ago, and that tools are now available to 

tackle more ambitious goals. 
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Negative values and positive 

results. The Wigner function is a way 
to describe how “quantum” a light 
pulse is. Progressing from most clas-
sical to most quantum, the Wigner 
functions are shown for (A) the 
coherent state, (B) a squeezed state, 
(C) the single-photon state, and (D) 
a Schrödinger’s-cat state. The pro-
jections or “shadows” of the Wigner 
function (shown on the sides) are the 
measured probability distributions of 
the quantum continuous variables Q 
or P. The Wigner function is a Gauss-
ian function for (A) and (B), but it 
takes negative values for the strongly 
quantum states (C) and (D). These 
negative features vanish very quickly 
in the presence of decoherence. In 
the experiment by Lee et al., a quan-
tum state similar to (C) and (D) was 
teleported and kept the negative 
values of the Wigner function. This 
result demonstrates an extraordinary 
degree of experimental control over 
such fragile quantum objects.
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mean photon number 

sharper than delta function 
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(see the figure, panel A). For a squeezed 

state, the peak is still Gaussian but now has 

two-fold symmetry. One variance, say along 

P, is smaller than the vacuum noise, while 

the other one is larger (see the fi gure, panel 

B). For all optics experiments done during 

the last century, W(Q, P) was some kind of 

Gaussian and therefore looked like a “real” 

(positive) probability distribution.

More surprisingly, the number state, 

where the number of photons in a light pulse 

is well defi ned, has a W(Q, P) function that 

is negative at the origin (see the fi gure, panel 
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true probabilities are obtained by integrat-

ing these distributions—the integral over P 
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bution of its orthogonal component (these 
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W(Q, P) can be reconstructed by a pro-

cess called quantum tomography. All of 

the states with negative Wigner functions 

are called “nonclassical,” because their dis-

crete or continuous properties (or both) are 

now mixed and are purely quantum features. 

Many states with negative Wigner functions 

have recently been realized experimentally, 

including number states with one ( 7) or two 

photons ( 8), photon-added states ( 9), and 

entangled states with negative Wigner func-

tions ( 10). Of particular interest here are 

superpositions of coherent states with oppo-

site phases, which are called Schrödinger’s 

kittens ( 11– 13) or Schrödinger’s cats ( 14, 

 15), depending on their size (see the fi gure, 

panel D).

Such highly quantum states are desirable 

for effi cient quantum information process-

ing tasks, such as entanglement distillation 

in quantum communication, or as logical 

gates for quantum computing. These tasks 

involve many operations and are quite vul-

nerable to decoherence—the degradation of 

entanglement by unwanted coupling to the 

environment. A natural question is how well 

highly quantum states can be controlled in a 

basic processing operation.

The quantum teleportation of a 

Schrödinger’s-cat state by Lee et al. suc-

cessfully combined many operations. They 

generated a highly entangled state—the 

resource for teleportation—and indepen-

dently a Schrödinger’s-kitten state, the one 

to be teleported. Then, after the appropri-

ate steps including the destruction of the 

initial kitten, they “recreated” this kitten in 

another place, still with negative features 

in its Wigner function. These fi nal negative 

features can only be observed if the qual-

ity of the teleportation is high enough. This 

quality is measured by a number, called the 

fi delity, which must be greater than 2/3 for 

the operation to be successful. This 2/3 value 

is the so-called no-cloning limit, which also 

ensures that no other copy of the initial state 

can remain at the end ( 16,  17): The cat state 

must really be “erased” somewhere in order 

to be able to “reappear” elsewhere.

Overall, such an achievement is certainly 

very impressive, and it goes beyond pure 

experimental virtuosity. It shows that the 

controlled manipulation of quantum objects 

has progressed steadily and achieved objec-

tives that seemed impossible just a few years 

ago, and that tools are now available to 

tackle more ambitious goals. 
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