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Semi-classical L-M Interactions

Semi-classically, an electron in an EM field evolves as

i~
∂ψ

∂t
=
[
− ~2

2m

(
∇− ie

~
~A(~r, t)

)2

+ V̂ (r)
]
ψ

I ~A is the magnetic potential in the Coulomb (radiation) gauge

I V is the atomic binding potential

In the dipole approximation, we define ϕ(~r, t) = exp(ie ~A · ~r/~)ψ(~r, t) and find

i~
∂ϕ

∂t
=
[ p̂2

2m
+ V̂ (r)︸ ︷︷ ︸
HA

−e~̂r · ~E(~r0, t)︸ ︷︷ ︸
Hint

]
ϕ

where ~r0 is the location of the nucleus.
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Quantum L-M Interactions

We’d like to treat the EM field quantum mechanically. This will require two
changes:

1. |ψ〉 will need to represent the joint atom-field state

2. We’ll need a Hamiltonian that acts on HA ⊗HF

Generically, we want H = HA +HF +Hint:

I We know HF =
∑
k ~νk

(
a†kak + 1

2

)
I Let’s use semi-classical Hint = −e~r · ~E and promote ~E → ~̂E

For an atom at the origin:

~̂E(t) =
∑
k

~εkEkâke−iνkt + h.c.

In the Schrödinger picture we’ll use ~̂E := ~̂E(0) in place of ~̂E(t).
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Quantum L-M Interactions (2)

In analogy to our semi-classical analysis, we’ll focus on an electron transition that
is (nearly) resonant with some mode:

I Consider two electron energy eigenstates |g〉 and |e〉 with energy gap ~ω

I In the {|g〉, |e〉} subspace

HA =
~ω
2
|e〉〈e| − ~ω

2
|g〉〈g| = ~ω

2
σz

up to a multiple of I.

I As in the semi-classical picture, we take the dipole operator

e~̂r ∝ |e〉〈g|︸ ︷︷ ︸
σ+

+ |g〉〈e|︸ ︷︷ ︸
σ−

= σx
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Quantum L-M Interactions (3)

Putting it all together, we get the multi-mode Rabi Hamiltonian:

H =
∑
k

~νka†kak︸ ︷︷ ︸
HF

+
~ω
2
σz︸ ︷︷ ︸

HA

+ ~
∑
k

gk(σ+ + σ−)(ak + a†k)︸ ︷︷ ︸
Hint=−e~̂r· ~̂E

From here we’re going to make two more approximations:

1. Single-mode approximation

2. Rotating wave approximation

These will get us to the well-known Jaynes-Cummings model.
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Interaction Picture Refresher

If the Schrödinger Hamiltonian has the form H0 +H1 then:

I States transform as
|ψI(t)〉 = eiH0t/~|ψS(t)〉

I Operators transform as

AI(t) = eiH0t/~ASe
−iH0t/~

N.b. Both states and operators have time dependence in this picture!

States evolve according to

i~
d

dt
|ψI(t)〉 = H1,I(t)|ψI(t)〉
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Rotating Wave Approximation

If we move into the interaction picture (rotating frame) with H0 = HA +HF we
find:

Hint,I = ~g
(
aσ−e

−i(ω+ν)t + a†σ+e
i(ω+ν)t︸ ︷︷ ︸

High Frequency

+ aσ+e
i(ω−ν)t + a†σ−e

−i(ω−ν)t︸ ︷︷ ︸
Low Frequency

)

I Low freq. terms: |g〉|n〉 → |e〉|n− 1〉 “conserve energy”
|e〉|n〉 → |g〉|n+ 1〉

I High freq. terms: |g〉|n〉 → |e〉|n+ 1〉 no classical analogue
|e〉|n〉 → |g〉|n− 1〉
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Rotating Wave Approximation (2)

The solution to the interaction picture SE will involve
∫ t

0
Hint,I(τ)dτ .

This will give terms of the form
∫ t

0
ei(ω±ν)τdτ . In general:∫ t

0

eiξτdτ = − i
ξ

(
eiξt − 1

)
I Low freq. terms (ξ = ω − ν small):∫ t

0

ei(ω−ν)τdτ = − i
ξ

(
1 + iξt+O(ξ2)− 1

)
= t+O(ξ)

I High freq. terms (ξ = ω + ν big):∫ t

0

ei(ω+ν)τ = − i

ω + ν︸ ︷︷ ︸
small

(
ei(ω+ν)t − 1

)︸ ︷︷ ︸
bounded
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Jaynes-Cummings Model

Discarding the high frequency (counter-rotating) terms and returning to the
Schrödinger picture we find

H = ~νa†a+
~ω
2
σz + ~g

(
aσ+ + a†σ−

)

This Hamiltonian can be diagonalized exactly:

E±,n = ~ν
(
n+

1

2

)
± ~

2

√
∆2 + 4g2(n+ 1)

|n,±〉 = an,±|e〉|n〉+ bn,±|g〉|n+ 1〉

where ∆ := ν − ω is the detuning.
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Jaynes-Cummings Model (2)

Scully writes a general state in the uncoupled energy eigenbasis:

|ψ(t)〉 =
∑
n

(
αn(t)|g〉|n〉+ βn(t)|e〉|n〉

)

Plugging into the Schrödinger equation, we get

β̇n(t) = −ig
√
n+ 1ei∆tαn+1(t)

α̇n+1(t) = −ig
√
n+ 1e−i∆tβn(t)

The probability of finding n photons in the cavity is P (n) = |αn(t)|2 + |βn(t)|2,
which depends non-trivially on t (see animation).
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Vacuum Rabi Oscillations

Consider W (t) = −
〈
σz
〉
, the “atomic inversion”.

I Semi-classically, when an EM wave is incident on an atom, W (t) oscillates
(Rabi oscillations)

I This does not happen in the classical vacuum (when ~E = ~B = ~0)

I With a quantized field W (t) =
∑
n

[
|βn(t)|2 − |αn(t)|2

]

For an initial state |e〉|0〉:

W (t) =
1

∆2 + 4g2

[
∆2 + 4g2 cos

(
t
√

∆2 + 4g2
)]

Key feature of quantum L-M interactions: Rabi oscillations occur even in the
vacuum.
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Collapse and Revival

Semi-classically, an EM wave induces Rabi oscillations at a single frequency

(a) Semi-classical Rabi oscillations (b) Fully quantum Rabi oscillations

A fully quantum description predicts that the oscillations will vanish and then
re-appear.
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Collapse and Revival (2)
If the atom and field mode are initially uncorrelated with ∆ = 0:

W (t) =

∞∑
n=0

|αn|2 cos
(
gt
√
n+ 1

)
where

∑
n αn|n〉 is the initial field state.

I Notice that a single mode can produce oscillations at many frequencies

I These different contributions interfere to create complex collapse/revival
behaviour (observed experimentally)
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Collapse and Revival (3)

Scully argues that if n were continuous there would be collapse, but no revival.

Let’s estimate the timescale of revival (with ∆ = 0):

I Each n contributes with frequency Ωn := g
√
n+ 1

I For a mode with photon number sharply peaked around n̄, the frequencies
near Ωn̄ = g

√
n̄+ 1 will dominate

I How quickly do Ωn̄ and Ωn̄−1 move in and out of phase?(
Ωn̄ − Ωn̄−1

)
tr = 2πm m ∈ N

=⇒ tr ∼
2πm
√
n̄

g

I Revivals keep occurring periodically.
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Spontaneous Emission

I Collapse/revival observed experimentally, but only in certain settings (e.g.,
reflective cavities)

I A more common phenomenon is for an atom to relax (irreversibly) by
emitting a photon

I To analyse this scenario, we’ll need to consider multiple modes again:

H =
∑
k

~νka†kak +
~ω
2
σz︸ ︷︷ ︸

H0

+ ~
∑
k

gk(σ+ + σ−)(ak + a†k)︸ ︷︷ ︸
Hint

I In the interaction picture, under the RWA:

Hint,I = ~
∑
k

gk

(
akσ+e

i(ω−νk)t + a†kσ−e
−i(ω−νk)t

)

18 / 30



Spontaneous Emission (2)

If, initially, the atom is excited and the field is in the vacuum state, the general
solution has the form

|ψ(t)〉 = α(t)|e〉|0〉+
∑
k

βk(t)|g〉|1k〉

under the RWA. Here |0〉 is the total field vacuum, and |1k〉 = a†k|0〉.

The Schrödinger equation yields

α̇(t) = −i
∑
k

gke
i(ω−νk)tβk(t) (1)

β̇k(t) = −igke−i(ω−νk)tα(t) (2)

Substituting (2) into (1), we find

α̇(t) = −
∑
k

|gk|2
∫ t

0

dt′ e−i(ω−νk)(t′−t)α(t′)
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Spontaneous Emission (3)

Approximation 1 The modes form a continuum:∑
k

→
∫
d3k ρ(k) where ρ(k)d3k = 2

(
L

2π

)3

k2dk dφ sin θdθ

Substituting in the value of gk and integrating over (φ, θ) we get

α̇(t) ∝
∫ ∞

0

dνk ν
3
k

∫ t

0

dt′ e−i(ω−νk)(t′−t)α(t′)

Approximation 2 The integral is only important when ω ≈ νk (resonance), so we
can replace ν3

k with ω3, and integrate over νk ∈ R.
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Spontaneous Emission (4)

Changing the order of integration, we have

α̇(t) ∝ −ω3

∫ t

0

dt′ α(t′)

∫ ∞
−∞

dνk e
−i(ω−νk)(t′−t)

= −ω3

∫ t

0

dt′ α(t′) 2πδ(t− t′)

= −2πω3α(t)

In other words, dα
dt = −Γ

2α(t) for some constant Γ, or∣∣〈e|a〉∣∣2 = exp(−Γt)

This is a good description of energy relaxation, where Γ = 1/T1. It is called the
Weisskopf-Wigner approximation.

21 / 30



Spontaneous Emission (5)

What about the “emitted photon”? We can plug in α(t) to our ODE for βk(t) to
get

βk(t) = −i
∫ t

0

dt′gke
−i(ω−νk)t′−Γt′/2

The frequency spectrum of the resulting radiation is given by

P (νk) = ρ(νk)
∑
λ=1,2

∫
dΩ |βk(t)|2

Once the transients have vanished, we find

lim
t→∞

P (νk) ∝ 1

Γ2/4 + (ω − νk)2

i.e., a Lorentzian centred around ω of width Γ (see plot).
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Fermi’s Golden Rule Refresher

System evolves according to free Hamiltonian H0, subject to perturbation λH ′(t).

We’ll be interested in the case where

H ′(t) = V eiΩt + V †e−iΩt

What is the probability of λH ′ inducing a transition between unperturbed energy
eigenstates |i〉 and |f〉?

P|i〉→|f〉 =
∣∣∣〈f | T e−iλ ∫ t

0
dτ H′I(τ)|i〉

∣∣∣2
=
∣∣〈f |i〉∣∣2 + λ2

∣∣∣ ∫ t

0

dτ〈f |eiH0τH ′(τ)e−iH0τ |i〉
∣∣∣2 +O(λ3)
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Fermi’s Golden Rule Refresher (2)

For long times t, the transitions probability |i〉 → |f〉 for a perturbation of the
form

H ′(t) = V eiΩt + V †e−iΩt

is approximately

P|i〉→|f〉 =

{
λ2 2πt

~
∣∣〈f |V |i〉∣∣2 ρ(Ei + ~Ω) (absorption)

λ2 2πt
~
∣∣〈f |V †|i〉∣∣2 ρ(Ei − ~Ω) (emission)

where ρ(E) is the density of final states.

I Notice that both cases grow unbounded with t!

I Instead of P we’re going to work with Ṗ , which is bounded.
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Photoelectric Effect (Semi-Classically)

Consider a hydrogenic atom with an electron initially in the |n〉 energy eigenstate.
Suppose it is subject to a classical EM wave

~A(~r, t) = A0~ε
(
ei(
~k·~r−ωt) + e−i(

~k·~r−ωt)
)

which ejects it from the atom to a free state |~p 〉.

The electron’s evolution is generated by

H =
~̂p 2

2m
− e

m
~̂p · ~A+

e2

2m
~A2 + eφ̂(~r)

The ~A2 term is suppressed by the e2

2m factor and will not contribute to our first
order transition rate. Therefore, we’ll take the perturbation to be

λH ′(t) = − e

m
~̂p · ~A = −eA0

m︸ ︷︷ ︸
λ

(~̂p · ~ε) ei~k·~r︸ ︷︷ ︸
V †

e−iωt + h.c.
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Photoelectric Effect (Semi-Classically, 2)

Let’s look at the rate of transitions for photoabsorption |n〉 → |~p 〉:

Ṗ|n〉→|~p 〉 = λ2 2π

~

∣∣∣〈~p |(~̂p · ~ε)ei~k·~r|n〉∣∣∣2ρ(En + ~ω)

For a free electron in a box of side length L, the density of states is

ρ(E) =

(
L

2π~

)3

m ||~p || dΩ

where E = ~p 2

2m .

I From here we could compute various cross-sections, average over final
electron states etc.

I Instead though, let’s set up an equivalent scenario with quantized radiation.
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Photoelectric Effect (Quantized EM field)

The electron-field system evolves according to

H =
1

2m

(
~̂p− e ~̂A

c

)2

+
∑
~k,~ε

~ω(a†~k,~ε
a~k,~ε +

1

2
) + eφ̂(~r)

where

~̂A =
∑
~k,~ε

√
2π~
L3ωk

[
a~k,~ε e

−i~k·~r + h.c.
]
~ε~k

I Consider the initial state |n〉|1~k,~ε〉 := |n〉 a~k,~ε|0〉 and the final state |~p 〉|0〉.

I As before, we’ll omit the A2 term as it won’t contribute to our first-order
transition rate.
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Photoelectric Effect (Quantized EM field, 2)

After some work, Fermi’s Golden Rule gives

Ṗ|i〉→|f〉 = λ2 2π

~

∣∣∣〈f |(~̂p · ~ε)ei~k·~r|i〉∣∣∣2ρ(Ef )

with the same λ as before.

The density of final states ρ(E) is the same as in the semi-classical case.

I Ṗ|i〉→|f〉 here is the same as in the semi-classical analysis.

I To first order in λ, semi-classical and fully quantum descriptions give the
same transition rates, cross sections etc. for the photoelectric effect!
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Summary

Present in semi-classical description:

I Rabi oscillations

I Photoelectric effect (!)

Require quantized EM field:

I Vacuum Rabi oscillations

I Periodic collapse and revival of Rabi oscillations

I Spontaneous emission
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