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Preface

This book is an expanded and reorganized version of the lecture notes for a course
taught (in German) at the Ludwig-Maximilians University, Munich, in the spring
semester of 2003. The course is an elementary introduction to the basic concepts of
quantum field theory in classical backgrounds. A certain level of familiarity with gen-
eral relativity and quantum mechanics is required, although many of the necessary
results are derived in the text.

The audience consisted of advanced undergraduates and beginning graduate stu-
dents. There were 11 three-hour lectures. Each lecture was accompanied by exercises
that are an integral part of the exposition and encapsulate longer but straightforward
calculations or illustrative numerical results. Detailed solutions were given for all
exercises. However, students could skip the solutions while still being able to follow
the lectures. Exercises marked by an asterisk * are more difficult or cumbersome.

The book covers limited but essential material: quantization of free scalar fields;
driven and time-dependent harmonic oscillators; mode expansions and Bogolyubov
transformations; particle creation by classical backgrounds; quantum scalar fields in
the de Sitter spacetime and growth of fluctuations; the Unruh effect; the Hawking
radiation; the Casimir effect; quantization by path integrals; energy-momentum ten-
sor for fields; effective action and backreaction; regularization of functional determi-
nants using zeta functions and heat kernels. Topics such as quantization of higher-
spin or interacting fields in curved spacetime, direct renormalization of the energy-
momentum tensor, and the theory of cosmological perturbations are left out.

The emphasis of this course is rather heavily on concepts and not on computational
results. Most of the required calculations have been simplified to the barest possi-
ble minimum that still contains all relevant physics. For instance, only free scalar
fields are considered for quantization; background spacetimes are always chosen to
be conformally flat; the Casimir effect, the Unruh effect and the Hawking radiation
are computed for massless scalar fields in suitable 1+1-dimensional spacetimes. Thus
a fairly modest computational effort suffices to explain important conceptual issues
such as the nature of vacuum and particles in curved spacetimes, thermal effects of
gravitation, and backreaction. This should prepare students for more advanced and
technically demanding treatments suggested below.

The selection of the material and the initial composition of the lectures are due to
Slava Mukhanov whose assistant I have been. I reworked the exposition and added
many explanations and examples that the limited timespan of the spring semester
did not allow us to present. The numerous remarks serve to complement and extend
the presentation of the main material and may be skipped at first reading.
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Part I

Canonical quantization





1 Overview. A taste of quantum fields

Summary: The vacuum state of classical and quantum oscillators. Particle
interpretation of field theory. Examples of particle creation by external
fields.

We start with a few elementary observations concerning the description of vacuum
in quantum theory.

1.1 The harmonic oscillator and its vacuum state

The vacuum is the physical state corresponding to the intuitive notions of “the ab-
sence of anything” or “an empty space.” Generally, the vacuum is defined as the
state with the lowest possible energy. However, the classical and the quantum de-
scriptions of the vacuum state are radically different. To get an idea of this difference,
let us compare a classical oscillator with a quantized one.

A classical harmonic oscillator is described by a coordinate q(t) satisfying

q̈ + ω2q = 0. (1.1)

The solution of this equation is unique if we specify initial conditions q (t0) and q̇ (t0).
We may identify the “vacuum state” of the oscillator as the state without motion,
i.e. q(t) ≡ 0. This lowest-energy state is the solution of Eq. (1.1) with the initial condi-
tions q(0) = q̇(0) = 0.

When the oscillator is quantized, the classical coordinate q and the momentum p =
q̇ (for simplicity, we assume a unit mass of the oscillator) are replaced by operators
q̂(t) and p̂(t) satisfying the Heisenberg commutation relation

[q̂(t), p̂(t)] = i~.

Now the solution q̂(t) ≡ 0 is impossible because the commutation relation is not
satisfied. The vacuum state of the quantum oscillator is described by the normalized
wave function

ψ(q) =
[ ω

π~

]
1
4

exp

(

−ωq
2

2~

)

.

Generally, the energy of the vacuum state is called the zero-point energy; for the
harmonic oscillator, it is E0 = 1

2~ω. In the vacuum state, the position q fluctuates

around q = 0 with a typical amplitude δq ∼
√

~/ω and the measured trajectories
q(t) resemble a random walk around q = 0. Thus a quantum oscillator has a more
complicated vacuum state than a classical one.

To simplify the formulae, we shall almost always use the units in which ~ = c = 1.
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1 Overview. A taste of quantum fields

1.2 Free quantum fields and vacuum

A classical field is described by a function of spacetime φ (x, t), where x is a three-
dimensional coordinate in space and t is the time (in some reference frame). The
function φ (x, t) takes values in some finite-dimensional vector space (with either real
or complex coordinates).

The simplest example of a field is a real scalar field φ (x, t); its values are real num-
bers. A free massive classical scalar field satisfies the Klein-Gordon equation

∂2φ

∂t2
−

3
∑

j=1

∂2φ

∂x2
j

+m2φ ≡ φ̈− ∆φ+m2φ = 0. (1.2)

If the initial conditions φ (x, t0) and φ̇ (x, t0) are specified, the solution φ (x, t) for
t > t0 is unique. The solution with zero initial conditions is φ (x, t) ≡ 0 which is the
classical vacuum state (“no field”).

To simplify the equations of motion, it is convenient to use the spatial Fourier de-
composition,

φ (x, t) =

∫

d3k

(2π)3/2
eik·xφk(t), (1.3)

where we integrate over all three-dimensional vectors k. After the Fourier decompo-
sition, the partial differential equation (1.2) is replaced by infinitely many ordinary
differential equations, with one equation for each k:

φ̈k +
(

k2 +m2
)

φk = 0.

In other words, each complex function φk(t) satisfies the harmonic oscillator equation
with the frequency

ωk ≡
√

k2 +m2,

where k ≡ |k|. The functions φk(t) are called the modes of the field φ (abbrevi-
ated from “Fourier modes”). Note that the replacement of the field φ by a collection
of oscillators φk is a formal mathematical procedure. The oscillators “move” in the
configuration space (i.e. in the space of values of the field φ), not in the real three-
dimensional space.

To quantize the field, each mode φk(t) is quantized as a separate harmonic oscilla-

tor. We replace the classical coordinates φk and momenta πk ≡ φ̇∗k by operators φ̂k,
π̂k and postulate the equal-time commutation relations

[

φ̂k(t), π̂k′(t)
]

= iδ (k + k′) . (1.4)

Quantization in a box

It is useful to begin by considering a field φ (x, t) not in the entire infinite space but
in a box of finite volume V , with some conditions imposed on the field φ at the box

4



1.2 Free quantum fields and vacuum

boundary. The volume V should be large enough so that the artificially introduced
box and the boundary conditions are physically irrelevant. For instance, we might
choose the box as a cube with side L and volume V = L3 and impose the periodic
boundary conditions,

φ (x = 0, y, z, t) = φ (x = L, y, z, t)

and similarly for y and z. The Fourier decomposition can be written as

φk(t) =
1√
V

∫

d3xφ (x, t) e−ik·x,

φ (x, t) =
1√
V

∑

k

φk(t)eik·x, (1.5)

where the sum goes over three-dimensional wave numbers k with components of the
form

kx =
2πnx

L
, nx = 0,±1,±2, ...

and similarly for ky and kz . The normalization factor
√
V in Eq. (1.5) is a mathematical

convention chosen to simplify some formulae (we could rescale the modes φk by
any constant). Indeed, the Dirac δ function in Eq. (1.4) is replaced by the Kronecker
symbol δk+k′,0 without any normalization factors, and the total energy of the field φ
in the box is simply the sum of energies of all oscillators φk,

E =
∑

k

[

1

2

∣

∣

∣φ̇k

∣

∣

∣

2

+
1

2
ω2

k |φk|2
]

.

Vacuum wave functional

Since all modes φk of a free field φ are decoupled, the vacuum state of the field can
be characterized by a wave functional which is the product of the ground state wave
functions of all modes,

Ψ [φ] ∝
∏

k

exp

(

−ωk |φk|2
2

)

= exp

[

−1

2

∑

k

ωk |φk|2
]

. (1.6)

Strictly speaking, Eq. (1.6) is valid only for a field quantized in a box as described
above. (Incidentally, if the modes φk were normalized differently than shown in
Eq. (1.5), there would be a volume factor in front of ωk.)

The wave functional (1.6) gives the quantum-mechanical amplitude for measuring
a certain field configuration φ (x, t) at some fixed time t. This amplitude is time-
independent, so the vacuum is a stationary state. The field fluctuates in the vacuum
state and the field configuration can be visualized as a random small deviation from
zero (see Fig. 1.1).
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1 Overview. A taste of quantum fields

φ

x

0

Figure 1.1: A field configuration φ(x) that could be measured in the vacuum state.

In the limit of very large volume of the box, we replace sums by integrals,

∑

k

→ V

(2π)3

∫

d3k, φk →
√

(2π)3

V
φk, (1.7)

and the wave functional (1.6) becomes

Ψ [φ] ∝ exp

[

−1

2

∫

d3k |φk|2 ωk

]

. (1.8)

Exercise 1.1
The vacuum wave functional (1.8) contains the integral

I ≡
Z

d3
k |φk|2

p

k2 +m2, (1.9)

where φk are the field modes defined by Eq. (1.3). The integral (1.9) can be expressed
directly through the function φ (x),

I =

Z

d3
x d3

y φ (x)K (x,y)φ (y) .

Determine the required kernel K(x,y).

1.3 The zero-point energy

We now compute the energy of the vacuum (the zero-point energy) of a free quantum
field quantized in a box. Each oscillator φk is in the ground state and has the energy
1
2ωk, so the total zero-point energy of the field is

E0 =
∑

k

1

2
ωk.
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1.4 Quantum fluctuations in the vacuum state

Replacing the sum by an integral according to Eq. (1.7), we obtain the following ex-
pression for the zero-point energy density,

E0

V
=

∫

d3k

(2π)3
1

2
ωk. (1.10)

This integral diverges at the upper bound as ∼ k4. Taken at face value, this would
indicate an infinite energy density of the vacuum state. If we impose a cutoff at the
Planck scale (there is surely some new physics at higher energies), then the vacuum
energy density will be of order 1 in Planck units, which corresponds to a mass den-
sity of about 1094g/cm3. This is much more per 1cm3 than the mass of the entire
observable Universe (∼ 1055g)! Such a huge energy density would lead to strong
gravitational effects which are not actually observed.

The standard way to avoid this problem is to postulate that the infinite energy den-
sity given by Eq. (1.10) does not contribute to gravitation. In effect this constant in-
finite energy is subtracted from the energy of the system (“renormalization” of zero-
point energy).

1.4 Quantum fluctuations in the vacuum state

1.4.1 Amplitude of fluctuations

From the above consideration of harmonic oscillators we know that the typical am-
plitude of fluctuations δφk in the mode φk is

δφk ≡
√

〈

|φk|2
〉

∼ ω
−1/2
k . (1.11)

Field values cannot be observed at a point; in a realistic experiment, only averages of
field values over a region of space can be measured. The next exercise shows that if
φL is the average of φ(x) over a volume L3, the typical fluctuation of φL is

δφL ∼
√

k3
L

ωkL

, kL ≡ L−1. (1.12)

Exercise 1.2
The average value of a field φ (x) over a volume L3 is defined by the integral over a

cube-shaped region,

φL ≡ 1

L3

Z L/2

−L/2

dx

Z L/2

−L/2

dy

Z L/2

−L/2

dz φ (x) .

Justify the following order-of-magnitude estimate of the typical amplitude of fluctuations
δφL,

δφL ∼
ˆ

(δφk)2 k3
˜1/2

, k = L−1,
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1 Overview. A taste of quantum fields

where k ≡ |k| and δφk is the typical amplitude of vacuum fluctuations in the mode φk.
Hint: The “typical amplitude” δx of a quantity x fluctuating around 0 is δx =

p

〈x2〉.
The wave number kL ∼ L−1 characterizes the scale L. As a function of L, the

amplitude of fluctuations given by Eq. (1.12) diverges as L−1 for small L≪ m−1 and
decays as L−3/2 for large L≫ m−1.

1.4.2 Observable effects of vacuum fluctuations

Quantum fluctuations are present in the vacuum state and have observable conse-
quences that cannot be explained by any other known physics. The three well-known
effects are the spontaneous emission of radiation by hydrogen atoms, the Lamb shift,
and the Casimir effect. All these effects have been observed experimentally.

The spontaneous emission by a hydrogen atom is the transition between the elec-
tron states 2p→ 1swith the production of a photon. This effect can be explained only
by an interaction of electrons with vacuum fluctuations of the electromagnetic field.
Without these fluctuations, the hydrogen atom would have remained forever in the
stable 2p state.

The Lamb shift is a small difference between the energies of the 2p and 2s states
of the hydrogen atom. This shift occurs because the electron clouds in these states
have different geometries and interact differently with vacuum fluctuations of the
electromagnetic field. The measured energy difference corresponds to the frequency
≈ 1057MHz which is in a good agreement with the theoretical prediction.

The Casimir effect is manifested by a force of attraction between two parallel un-
charged conducting plates. The force decays with the distance L between the plates as
F ∼ L−4. This effect can be explained only by considering the shift of the zero-point
energy of the electromagnetic field due to the presence of the conductors.

1.5 Particle interpretation of quantum fields

The classical concept of particles involves point-like objects moving along certain tra-
jectories. Experiments show that this concept does not actually apply to subatomic
particles. For an adequate description of photons and electrons and other elemen-
tary particles, one needs to use a relativistic quantum field theory (QFT) in which
the basic objects are not particles but quantum fields. For instance, the quantum the-
ory of photons and electrons (quantum electrodynamics) describes the interaction of
the electromagnetic field with the electron field. Quantum states of the fields are
interpreted in terms of corresponding particles. Experiments are then described by
computing probabilities for specific field configurations.

A quantized mode φ̂k has excited states with energies En,k =
(

1
2 + n

)

ωk, where
n = 0, 1,... The energy En,k is greater than the zero-point energy by ∆E = nωk =
n
√
k2 +m2 which is equal to the energy of n relativistic particles of mass m and mo-

mentum k. Therefore the excited state with the energy En,k is interpreted as describ-
ing n particles of momentum k. We also refer to such states as having the occupation
number n.

8



1.6 Quantum field theory in classical backgrounds

A classical field corresponds to states with large occupation numbers n ≫ 1. In
that case, quantum fluctuations can be very small compared with expectation values
of the field.

A free, noninteracting field in a state with certain occupation numbers will forever
remain in the same state. On the other hand, occupation numbers for interacting
fields can change with time. An increase in the occupation number in a mode φk is
interpreted as production of particles with momentum k.

1.6 Quantum field theory in classical backgrounds

“Traditional” QFT deals with problems of finding cross-sections for transitions be-
tween different particle states, such as scattering of one particle on another. For in-
stance, typical problems of quantum electrodynamics are:

1. Given the initial state (at time t → −∞) of an electron with momentum k1 and
a photon with momentum k2, find the cross-section for the scattering into the
final state (at t → +∞) where the electron has momentum k3 and the photon
has momentum k4.
This problem is formulated in terms of quantum fields in the following man-
ner. Suppose that ψ is the field representing electrons. The initial configuration
is translated into a state of the mode ψk1 with the occupation number 1 and all
other modes of the field ψ having zero occupation numbers. The initial configu-
ration of “oscillators” of the electromagnetic field is analogous—only the mode
with momentum k2 is occupied. The final configuration is similarly translated
into the language of field modes.

2. Initially there is an electron and a positron with momenta k1,2. Find the cross-
section for their annihilation with the emission of two photons with momenta
k3,4.

These problems are solved by applying perturbation theory to a system of infinitely
many coupled quantum oscillators. The required calculations are usually quite te-
dious.

In this book we study quantum fields interacting with a strong external field called
the background. It is assumed that the background field is adequately described by
a classical theory and does not need to be quantized. In other words, our subject is
quantum fields in classical backgrounds. A significant simplification comes from consid-
ering quantum fields that interact only with classical backgrounds but not with other
quantum fields. Such quantum fields are also called free fields, even though they are
coupled to the background.

Typical problems of interest to us are:

1. To compute probabilities for transitions between various states of a harmonic
oscillator in a background field. A transition between oscillator states can de-
scribe, for instance, the process of particle creation by a classical field.

9



1 Overview. A taste of quantum fields

2. To determine the shift of the energy levels of an oscillator due to the presence of
the background. The energy shift cannot be ignored since the zero-point energy
of the oscillator is already subtracted. It is likely that the additional energy shift
can contribute to gravity via the Einstein equation.

3. To calculate the backreaction of a quantum field on the classical background.
For example, quantum effects in a gravitational field induce corrections to the
energy-momentum tensor of a matter field. The corrections are of order R2,
where R is the Riemann curvature scalar, and contribute to the Einstein equa-
tion.

1.7 Examples of particle creation

1.7.1 Time-dependent oscillator

A nonstationary gravitational background influences quantum fields in such a way
that the frequenciesωk of the modes become time-dependent, ωk(t). We shall examine
this situation in detail in chapter 6. For now, let us consider a harmonic oscillator with
a time-dependent frequency ω(t). Such oscillators usually exhibit transitions between
energy levels. As a simple example, we study an oscillator q(t) which satisfies the
following equations of motion,

q̈(t) + ω2
0q(t) = 0, t < 0 or t > T ;

q̈(t) − Ω2
0q(t) = 0, 0 < t < T,

where ω0 and Ω0 are real constants.

Exercise 1.3
For the above equations of motion, take the solution q(t) = q1 sinω0t for t < 0 and

show that for t > T the solution is of the form

q(t) = q2 sin (ω0t+ α) ,

where α is a constant and, assuming that Ω0T ≫ 1,

q2 ≈ 1

2
q1

s

1 +
ω2

0

Ω2
0

exp (Ω0T ) .

The exercise shows that for Ω0T ≫ 1 the oscillator has a large amplitude q2 ≫ q1
at late times t > T . The state of the oscillator is then interpreted as a state with many
particles. Thus there is a prolific particle production if Ω0T ≫ 1.

Exercise 1.4
Estimate the number of particles at t > T in the problem considered in Exercise 1.3,

assuming that the oscillator is in the ground state at t < 0.
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1.7 Examples of particle creation

1.7.2 The Schwinger effect

A static electric field in empty space can create electron-positron (e+e−) pairs. This
effect, called the Schwinger effect, is currently on the verge of being experimentally
verified.

To understand the Schwinger effect qualitatively, we may imagine a virtual e+e−

pair in a constant electric field of strength E. If the particles move apart from each
other to a distance l, they will receive the energy leE from the electric field. If this
energy exceeds the rest mass of the two particles, leE ≥ 2me, the pair will become
real and the particles will continue to move apart. The typical separation of the virtual
pair is of order of the Compton wavelength 2π/me. More precisely, the probability of
separation by a distance l turns out to be P ∼ exp (−πmel). Therefore the probability
of creating an e+e− pair is

P ∼ exp

(

−m
2
e

eE

)

. (1.13)

The exact formula for the probabilityP can be obtained from a full (but rather lengthy)
consideration using quantum electrodynamics.

Exercise 1.5
Suppose that the probability for a pair production in an electric field of intensity E is

given by Eq. (1.13), where me and e are the mass and the charge of an electron. Consider
strongest electric fields available in a laboratory today and compute the corresponding
probability for producing an e+e− pair.

Hint: Rewrite Eq. (1.13) in the SI units.

1.7.3 Production of particles by gravity

Generally, a static gravitational field does not produce particles (black holes pro-
vide an important exception). We can visualize this by picturing a virtual particle-
antiparticle pair in a static field of gravity: both virtual particles fall together and
never separate sufficiently far to become real particles. However, a time-dependent
gravitational field (a nonstationary spacetime) generally leads to some particle pro-
duction. A nonstationary gravitational field exists, for example, in expanding uni-
verses, or during the formation of a black hole through gravitational collapse.

One would expect that a nonrotating black hole cannot produce any particles since
its gravitational field is static. It came as a surprise when Hawking in 1973 discov-
ered that static black holes nevertheless create particles with the blackbody thermal
distribution at temperature

T =
~c3

8πGM
,

where M is the mass of the black hole and G is Newton’s constant.
We can outline a qualitative picture of the Hawking radiation using a consideration

with virtual particle-antiparticle pairs. One particle of the pair may happen to be just
outside of the black hole horizon while the other particle is inside it. The particle
inside the horizon inevitably falls onto the black hole center, while the other particle

11



1 Overview. A taste of quantum fields

can escape and may be detected by stationary observers far from the black hole. The
existence of the horizon is crucial for particle production; without horizons, a static
gravitational field does not create particles.

1.7.4 The Unruh effect

This effect concerns an accelerated particle detector in empty space. Although all
fields are in their vacuum states, the accelerated detector will nevertheless find a dis-
tribution of particles with a thermal spectrum (a heat bath). The temperature of this
heat bath is called the Unruh temperature and is expressed as T = a/(2π), where a is
the acceleration of the detector (both the temperature and the acceleration are given
in Planck units).

In principle, the Unruh effect can be used to heat water in an accelerated container.
The energy for heating the water comes from the agent that accelerates the container.

Exercise 1.6
A glass of water is moving with a constant acceleration. Determine the smallest accel-

eration that makes the water boil due to the Unruh effect.
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2 Reminder: Classical and quantum
mechanics

Summary: Action in classical mechanics. Functional derivatives. Lagrangian
and Hamiltonian mechanics. Canonical quantization in Heisenberg pic-
ture. Operators and vectors in Hilbert space. Dirac notation. Schrödinger
equation.

2.1 Lagrangian formalism

Quantum theories are built by applying a quantization procedure to classical theories.
The starting point of a classical theory is the action principle.

2.1.1 The action principle

The evolution of a classical physical system is described by a function q(t), where q
is a generalized coordinate (which may be a vector) and t is the time. The trajectory
q(t) is determined by the requirement that an action functional1

S [q(t)] =

∫ t2

t1

L (t, q(t), q̇(t), q̈(t), ...) dt (2.1)

is extremized. Here t1,2 are two fixed moments of time at which one specifies bound-
ary conditions, e.g. q(t1) = q1 and q(t2) = q2. The function L (t, q, q̇, ...) is called
the Lagrangian of the system; different Lagrangians describe different systems. For
example, the Lagrangian of a harmonic oscillator with unit mass and a constant fre-
quency ω is

L (q, q̇) =
1

2

(

q̇2 − ω2q2
)

. (2.2)

This Lagrangian does not depend explicitly on the time t.

2.1.2 Equations of motion

The requirement that the function q(t) extremizes the action usually leads to a differ-
ential equation for q(t). We shall now derive this equation for the action

S [q] =

∫ t2

t1

L (t, q, q̇) dt. (2.3)

1See Appendix A.1 for more details concerning functionals.
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2 Reminder: Classical and quantum mechanics

Remark: Our derivation does not apply to Lagrangians involving higher derivatives such
as q̈. Note that in those cases one would need to impose more boundary conditions than
merely q(t1) = q1 and q(t2) = q2.

If the function q(t) is an extremum of the action functional (2.3), then a small per-
turbation δq(t) will change the value of S [q] by terms which are quadratic in δq(t). In
other words, the variation

δS [q, δq] ≡ S [q + δq] − S [q]

should have no first-order terms in δq. To obtain the resulting equation for q(t), we
compute the variation of the functional S:

δS [q; δq] = S [q(t) + δq(t)] − S [q(t)]

=

∫ t2

t1

[

∂L (t, q, q̇)

∂q
δq(t) +

∂L (t, q, q̇)

∂q̇
δq̇(t)

]

dt+O
(

δq2
)

= δq(t)
∂L

∂q̇

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

[

∂L

∂q
− d

dt

∂L

∂q̇

]

δq(t)dt+O
(

δq2
)

. (2.4)

To satisfy the boundary conditions q (t1,2) = q1,2, we must choose the perturbation
δq(t) such that δq (t1,2) = 0. Therefore the boundary terms in Eq. (2.4) vanish and we
obtain the variation δS as the following functional of q(t) and δq(t),

δS =

∫ t2

t1

[

∂L (t, q, q̇)

∂q
− d

dt

∂L (t, q, q̇)

∂q̇

]

δq(t)dt+O
(

δq2
)

. (2.5)

The condition that the variation is second-order in δq means that the first-order
terms should vanish for any δq(t). This is possible only if the expression in the square
brackets in Eq. (2.5) vanishes. Thus we obtain the Euler-Lagrange equation

∂L (t, q, q̇)

∂q
− d

dt

∂L (t, q, q̇)

∂q̇
= 0. (2.6)

This is the classical equation of motion for a mechanical system described by the
Lagrangian L (t, q, q̇).

Example: For the harmonic oscillator with the Lagrangian (2.2), the Euler-Lagrange
equation reduces to

q̈ + ω2q = 0. (2.7)

Generally the path q(t) that extremizes the action and satisfies boundary conditions
is unique. However, there are cases when the extremum is not unique or even does
not exist.

Exercise 2.1
Find the trajectory q(t) satisfying Eq. (2.7) with the boundary conditions q(t1) = q1,

q(t2) = q2. Indicate the conditions for the existence and the uniqueness of the solution.
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2.1 Lagrangian formalism

2.1.3 Functional derivatives

The variation of a functional can always be written in the following form:

δS =

∫

δS

δq(t)
δq(t)dt+O

(

δq2
)

. (2.8)

The expression denoted by δS/δq(t) in Eq. (2.8) is called the functional derivative (or
the variational derivative) of S [q] with respect to q(t).

If the functional S [q] is given by Eq. (2.3), then we compute the functional deriva-
tive δS/δq(t0) at an intermediate time t0 from Eq. (2.5), disregarding the boundary
terms:

δS

δq (t0)
=

[

∂L (t, q, q̇)

∂q
− d

dt

∂L (t, q, q̇)

∂q̇

]

t=t0

.

Here the functions q(t) and q̇(t) must be evaluated at t = t0 after taking all derivatives.
For brevity, one usually writes the above expression as

δS

δq (t)
=
∂L (t, q, q̇)

∂q
− d

dt

∂L (t, q, q̇)

∂q̇
. (2.9)

Example: For a harmonic oscillator with the Lagrangian (2.2) we get

δS

δq (t)
= −ω2q (t) − q̈ (t) . (2.10)

It is important to keep track of the argument t in the functional derivative δS/δq(t).
A functional S [q] generally depends on all the values q(t) at all t = t1, t2, ..., and thus
may be visualized as a function of infinitely many variables,

S [q(t)] = “S (q1, q2, q3, ...) ”,

where qi ≡ q(ti). The partial derivative of this “function” with respect to one of its
arguments, say q1 ≡ q(t1), is analogous to the functional derivative δS/δq(t1). Clearly
the derivative δS/δq(t1) is not the same as δS/δq(t2), so we cannot define a derivative
“with respect to the function q” without specifying a particular value of t.

For a functional of S [φ] of a field φ(x, t), the functional derivative with respect to
φ(x, t) retains the arguments x and t and is written as δS/δφ(x, t).

Remark: boundary terms in functional derivatives. While deriving Eq. (2.9), we omitted
the boundary terms

δq(t)
∂L

∂q̇

˛

˛

˛

˛

t2

t1

.

However, the definition (2.8) of the functional derivative (if applied pedantically) requires
one to rewrite these boundary terms as integrals of δq(t), e.g.

δq
∂L

∂q̇

˛

˛

˛

˛

t=t1

=

Z

δ (t− t1) δq(t)
∂L (t, q, q̇)

∂q̇
dt,
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2 Reminder: Classical and quantum mechanics

and to compute the functional derivative as

δS

δq(t)
=
∂L (t, q, q̇)

∂q
− d

dt

∂L (t, q, q̇)

∂q̇

+ [δ (t− t2) − δ (t− t1)]
∂L (t, q, q̇)

∂q̇
.

The omission of the boundary terms is adequate for the derivation of the Euler-Lagrange
equation because the perturbation δq(t) vanishes at t = t1,2 and the functional derivatives
with respect to q(t1) or q(t2) are never required. For this reason we shall usually omit the
boundary terms in functional derivatives.

To evaluate functional derivatives, it is convenient to convert functionals to the
integral form. Sometimes the Dirac δ function must be used for this purpose. (See
Appendix A.1 to recall the definition and the properties of the δ function.)

Example 1: For the functional

A [q] ≡
∫

q3dt

the functional derivative is
δA [q]

δq (t1)
= 3q2 (t1) .

Example 2: The functional

B [q] ≡ 3
√

q(1) + sin [q(2)]

=

∫

[

3δ(t− 1)
√

q(t) + δ(t− 2) sin q(t)
]

dt

has the functional derivative

δB [q]

δq(t)
=

3δ(t− 1)

2
√

q(1)
+ δ(t− 2) cos [q(2)] .

Example 3: Field in three dimensions. For the following functional S [φ] depend-
ing on a field φ (x, t),

S [φ] =
1

2

∫

d3x dt(∇φ)2,

the functional derivative with respect to φ (x, t) is found after an integration by parts:

δS [φ]

δφ (x, t)
= −∆φ (x, t) .

The boundary terms have been omitted because the integration in S [φ] is performed
over the entire spacetime and the field φ is assumed to decay sufficiently rapidly at
infinity.
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2.2 Hamiltonian formalism

Remark: alternative definition. The functional derivative of a functional may be equiva-
lently defined using the δ function,

δA [q]

δq (t1)
=

d

ds

˛

˛

˛

˛

s=0

A [q(t) + sδ (t− t1)] .

As this formula shows, the functional derivative describes the infinitesimal change in the
functional A [q] under a perturbation which consists of changing the function q(t) at one
point t = t1. One can prove that the definition (2.8) of the functional derivative is equiva-
lent to the above formula.

The δ function is not really a function but a distribution, so if we wish to be more rigor-
ous, we have to reformulate the above definition:

δA [q]

δq (t1)
= lim

n→∞

d

ds

˛

˛

˛

˛

s=0

A [qn(t)] ,

where qn(t), n = 1, 2, ... is a sequence of functions that converges to q(t) + sδ (t− t1) in
the distributional sense. Most calculations, however, can be performed without regard for
these subtleties by formally manipulating the δ function under the functional A [q].

Second functional derivative

A derivative of a function with many arguments is still a function of many arguments.
Therefore the functional derivative is itself again a functional of q(t) and we may
define the second functional derivative,

δ2S

δq (t1) δq (t2)
≡ δ

δq (t2)

{

δS

δq (t1)

}

.

Exercise 2.2
The action S [q(t)] of a harmonic oscillator is the functional

S [q] =
1

2

Z

`

q̇2 − ω2q2
´

dt.

Compute the second functional derivative

δ2S [q]

δq (t1) δq (t2)
.

2.2 Hamiltonian formalism

The starting point of a canonical quantum theory is a classical theory in the Hamilto-
nian formulation. The Hamiltonian formalism is based on the Legendre transform of
the Lagrangian L (t, q, q̇) with respect to the velocity q̇.
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2 Reminder: Classical and quantum mechanics

Legendre transform

Given a function f(x), one can introduce a new variable p instead of x,

p ≡ df

dx
, (2.11)

and replace the function f(x) by a new function g(p) defined by

g(p) ≡ px(p) − f.

Here we imply that x has been expressed through p using Eq. (2.11); the function
f(x) must be such that p, which is the slope of f(x), is uniquely related to x. The
new function g(p) is called the Legendre transform of f(x). A nice property of the
Legendre transform is that the old variable x and the old function f(x) are recovered
by taking the Legendre transform of g(p). In other words, the Legendre transform is
its own inverse. This happens because x = dg(p)/dp.

The Hamiltonian

To define the Hamiltonian, one performs the Legendre transform of the Lagrangian
L (t, q, q̇) to replace q̇ by a new variable p (the canonical momentum). The variables
t and q do not participate in the Legendre transform and remain as parameters. The
relation between the velocity q̇ and the momentum p is

p =
∂L (t, q, q̇)

∂q̇
. (2.12)

The ubiquitously used notation ∂/∂q̇ means simply the partial derivative of L (t, q, q̇)
with respect to its third argument.

Remark: If the coordinate q is a multi-dimensional vector, q ≡ qj , the Legendre transform
is performed with respect to each velocity q̇j and the momentum vector pj is introduced.
In field theory there is a continuous set of “coordinates,” so we need to use a functional
derivative when defining the momenta.

Assuming that Eq. (2.12) can be solved for the velocity q̇ as a function of t, q and p,

q̇ = v (p; q, t) , (2.13)

one defines the Hamiltonian H(p, q, t) by

H(p, q, t) ≡ [pq̇ − L (t, q, q̇)]q̇=v(p;q,t) . (2.14)

In the above expression, q̇ is replaced by the function v (p; q, t).

Remark: the existence of the Legendre transform. The possibility of performing the Leg-
endre transform hinges on the invertibility of Eq. (2.12) which requires that the Lagrangian
L (t, q, q̇) should be a suitably nondegenerate function of the velocity q̇. Many physically
important theories, such as the Dirac theory of the electron or Einstein’s general relativity,
are described by Lagrangians that do not admit a Legendre transform in the velocities.
In those cases (not considered in this book) a more complicated formalism is needed to
obtain an adequate Hamiltonian description of the theory.
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2.2 Hamiltonian formalism

2.2.1 The Hamilton equations of motion

The Euler-Lagrange equations of motion are second-order differential equations for
q(t). We shall now derive the Hamilton equations which are first-order equations for
the variables q(t) and p(t).

Rewriting Eq. (2.6) with the help of Eq. (2.12), we get

dp

dt
=
∂L (t, q, q̇)

∂q

∣

∣

∣

∣

q̇=v(p;q,t)

, (2.15)

where the substitution q̇ = v must be carried out after the differentiation ∂L/∂q. The
other equation is (2.13),

dq

dt
= v (p; q, t) . (2.16)

The equations (2.15)-(2.16) can be rewritten in terms of the Hamiltonian H(p, q, t)
defined by Eq. (2.14). After some straightforward algebra, one obtains

∂H

∂q
=

∂

∂q
(pv − L) = p

∂v

∂q
− ∂L

∂q
− ∂L

∂q̇

∂v

∂q
= −∂L

∂q
, (2.17)

∂H

∂p
=

∂

∂p
(pv − L) = v + p

∂v

∂p
− ∂L

∂q̇

∂v

∂p
= v. (2.18)

Therefore Eqs. (2.15)-(2.16) become

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (2.19)

These are the Hamilton equations of motion.

Example: For a harmonic oscillator described by the Lagrangian (2.2), we obtain
the canonical momentum p = q̇ and the Hamiltonian

H(p, q) = pq̇ − L =
1

2
p2 +

1

2
ω2q2. (2.20)

The Hamilton equations are
q̇ = p, ṗ = −ω2q.

Derivation using differential forms. The calculation leading from Eq. (2.14) to Eq. (2.17)
is more elegant in the language of 1-forms in the two-dimensional phase space (q, p). The
time dependence of L and H is not essential for this derivation and we omit it here. The
Lagrangian is expressed through p using Eq. (2.13), and its differential is the 1-form

dL =
∂L

∂q
dq +

∂L

∂v
dv =

∂L

∂q
dq + pdv.

Here dv is the 1-form obtained by differentiating the function v (p; q, t); here we do not
need to expand v (p; q, t) in dq and dp, although such expansion would pose no technical
difficulty. The differential of the Hamiltonian is

dH = d(pv − L) = vdp− ∂L

∂q
dq, (2.21)
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2 Reminder: Classical and quantum mechanics

which is equivalent to Eqs. (2.17)-(2.18).
It would be incorrect to say that H is a function of p and q and not of the velocity v

because the differential dv does not appear in Eq. (2.21). In fact, any function of v, e.g. the
Lagrangian L(t, q, v), would become a function of (p, q, t) once v is expressed through
p and q. The Hamilton equations can be obtained using the Lagrangian L, as Eq. (2.17)
shows, but the Hamiltonian H(p, q, t) is more convenient.

2.2.2 The action principle

The Hamilton equations can be derived from the action principle

SH [q(t), p(t)] =

∫

[pq̇ −H(p, q, t)]dt. (2.22)

In this formulation, the Hamiltonian action SH is a functional of two functions q(t)
and p(t) which are varied independently to extremize SH .

Exercise 2.3
a) Derive Eqs. (2.19) by extremizing the action (2.22). Find the appropriate boundary

conditions for p(t) and q(t).
b) Show that the Hamilton equations imply dH/dt = 0 when H(p, q) does not depend

explicitly on the time t.
c) Show that the expression pq̇ −H evaluated on the classical trajectories p(t), q(t) sat-

isfying Eqs. (2.19) is equal to the Lagrangian L (q, q̇, t) .

2.3 Quantization of Hamiltonian systems

To quantize a classical system, one replaces the canonical variables q(t), p(t) by non-
commuting operators q̂(t), p̂(t) for which one postulates the commutation relation

[q̂(t), p̂(t)] = i~ 1̂. (2.23)

(We shall frequently omit the identity operator 1̂ in such formulae.) The operators q̂, p̂
may be represented by linear transformations (“matrices”) acting in a suitable vector
space (the space of quantum states). Since Eq. (2.23) cannot be satisfied by any finite-
dimensional matrices,2 the space of quantum states needs to be infinite-dimensional.

It is a standard result in quantum mechanics that the relation (2.23) expresses the
physical impossibility to measure the coordinate and the momentum simultaneously
(Heisenberg’s uncertainty principle). Note that commutation relations for unequal
times, for instance [q̂ (t1) , p̂ (t2)], are not postulated but derived for each particular
physical system from its equations of motion.

2This is easy to prove by considering the trace of a commutator. If Â and B̂ are arbitrary finite-

dimensional matrices, then Tr [Â, B̂] = TrÂB̂ − TrB̂Â = 0 which contradicts Eq. (2.23). In an infinite-
dimensional space, this argument does not hold because the trace is not defined for all operators and

thus we cannot assume that TrÂB̂ = TrB̂Â.
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2.3 Quantization of Hamiltonian systems

It is not always necessary to specify a representation of q̂ and p̂ as particular oper-
ators in a certain vector space. For many calculations these symbols can be manipu-
lated purely algebraically, using only the commutation relation.

Exercise 2.4
Simplify the expression q̂p̂2q̂ − p̂2q̂2 using Eq. (2.23).

Heisenberg equations of motion

Having replaced the classical quantities q(t) and p(t) by operators, we may look for
equations of motion analogous to Eqs. (2.19),

dq̂

dt
= ...,

dp̂

dt
= ...

The classical equations must be recovered in the limit of ~ → 0. Therefore the quan-
tum equations of motion should have the same form, perhaps with some additional
terms of order ~ or higher,

dq̂

dt
=
∂H

∂p
(p̂, q̂, t) +O(~),

dp̂

dt
= −∂H

∂q
(p̂, q̂, t) +O(~). (2.24)

In these equations, the operators p̂, q̂ are substituted into ∂H/∂q, ∂H/∂p after taking
the derivatives.

To make the theory simpler, one usually does not add any extra terms of order ~ to
Eqs. (2.24) and writes them as

dq̂

dt
=
∂H

∂p
(p̂, q̂, t) ,

dp̂

dt
= −∂H

∂q
(p̂, q̂, t) . (2.25)

Of course, ultimately the correct form of the quantum equations of motion is decided
by their agreement with experimental data. Presently, the theory based on Eqs. (2.25)
is in excellent agreement with experiments.

By using the identity

[q̂, f (p̂, q̂)] = i~
∂f

∂p
(p̂, q̂)

and the analogous identity for p̂ (see Exercise 2.5), we can rewrite Eqs. (2.24) in the
following purely algebraic form,

dq̂

dt
= − i

~

[

q̂, Ĥ
]

,
dp̂

dt
= − i

~

[

p̂, Ĥ
]

. (2.26)

These are the Heisenberg equations of motion for the operators q̂(t) and p̂(t).

Exercise 2.5
a) Using the canonical commutation relation, prove that

[q̂, q̂mp̂n] = i~nq̂mp̂n−1.

21



2 Reminder: Classical and quantum mechanics

Symbolically this relation can be written as

[q̂, q̂mp̂n] = i~
∂

∂p̂
(q̂mp̂n) .

Derive the similar relation for p̂,

[p̂, p̂mq̂n] = −i~ ∂

∂q̂
(p̂mq̂n) .

b) Suppose that f(p, q) is an analytic function with a series expansion in p, q that con-
verges for all p and q. The operator f (p̂, q̂) is defined by substituting the operators p̂, q̂
into that expansion (here the ordering of q̂ and p̂ is arbitrary but fixed). Show that

[q̂, f (p̂, q̂)] = i~
∂

∂p̂
f (p̂, q̂) . (2.27)

Here it is implied that the derivative ∂/∂p̂ acts on each p̂ with no change to the operator
ordering, e.g.

∂

∂p̂

`

p̂3q̂p̂2q̂
´

= 3p̂2q̂p̂2q̂ + 2p̂3q̂p̂q̂.

Exercise 2.6
Show that an observable Â ≡ f (p̂, q̂), where f (p, q) is an analytic function, satisfies the

equation
d

dt
Â = − i

~

h

Â, Ĥ
i

. (2.28)

The operator ordering problem

The classical Hamiltonian may happen to be a function of p and q of the form (e.g.)
H(p, q) = 2p2q. Since p̂q̂ 6= q̂p̂, it is not a priori clear whether the corresponding quan-
tum Hamiltonian should be p̂2q̂ + q̂p̂2, or 2p̂q̂p̂, or perhaps some other combination
of the noncommuting operators p̂ and q̂. The difference between the possible quan-
tum Hamiltonians is of order ~ or higher, so the classical limit ~ → 0 is the same
for any choice of the operator ordering. The ambiguity of the choice of the quantum
Hamiltonian is called the operator ordering problem.

The choice of the operator ordering needs to be physically motivated in each case
when it is not unique. In principle, only a precise measurement of quantum effects
could unambiguously determine the correct operator ordering in such cases.

All examples considered in this book admit a unique and natural choice of operator
ordering. For example, frequently used Hamiltonians of the form

H(p̂, q̂) =
1

2m
p̂2 + U(q̂),

which describe a nonrelativistic particle in a potential U , obviously do not exhibit the
operator ordering problem.
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2.4 Dirac notation and Hilbert spaces

2.4 Dirac notation and Hilbert spaces

Quantum operators such as p̂ and q̂ can be represented by linear transformations in
suitable infinite-dimensional Hilbert spaces. In this section we summarize the proper-
ties of Hilbert spaces and also introduce the Dirac notation. We shall always consider
vector spaces over the field C of complex numbers.

Infinite-dimensional vector spaces

A vector in a finite-dimensional space can be visualized as a collection of components,
e.g. ~a ≡ (a1, a2, a3, a4), where each ak is a (complex) number. To describe vectors in
infinite-dimensional spaces, one must use infinitely many components. An important
example of an infinite-dimensional complex vector space is the space L2 of square-
integrable functions, i.e. the set of all complex-valued functions ψ(q) such that the
integral

∫ +∞

−∞
|ψ(q)|2 dq

converges. One can check that a linear combination of two such functions, λ1ψ1(q) +
λ2ψ2(q), with constant coefficients λ1,2 ∈ C, is again an element of the same vector
space. A function ψ ∈ L2 can be thought of as a set of infinitely many “components”
ψq ≡ ψ(q) with a continuous “index” q.

It turns out that the space of quantum states of a point mass is exactly the space
L2 of square-integrable functions ψ(q), where q is the spatial coordinate of the par-
ticle. In that case the function ψ(q) is called the wave function. Quantum states of
a two-particle system belong to the space of functions ψ (q1, q2), where q1,2 are the
coordinates of each particle. In quantum field theory, the “coordinates” are field con-
figurations φ(x) and the wave function is a functional, ψ [φ(x)].

The Dirac notation

Linear algebra is used in many areas of physics, and the Dirac notation is a convenient
shorthand for calculations with vectors and linear operators. This notation is used for
both finite- and infinite-dimensional vector spaces.

To denote a vector, Dirac proposed to write a symbol such as |a〉, |x〉, |λ〉, that is,
a label inside the special brackets |〉. Linear combinations of vectors are written as
2 |v〉 − 3i |w〉.

A linear operator Â : V → V acting in the space V transforms a vector |v〉 into the

vector Â |v〉. (An operator Â is linear if

Â (|v〉 + λ |w〉) = Â |v〉 + λÂ |w〉

for any |v〉 , |w〉 ∈ V and λ ∈ C.) For example, the identity operator 1̂ that does not
change any vectors, 1̂ |v〉 = |v〉, is obviously a linear operator.
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2 Reminder: Classical and quantum mechanics

Linear forms acting on vectors, f : V → C, are covectors (vectors from the dual
space) and are denoted by 〈f |. A linear form 〈f | acts on a vector |v〉 and yields the
number written as 〈f |v〉.

Usually a scalar product is defined in the space V . The scalar product of vectors
|v〉 and |w〉 can be written as (|v〉 , |w〉) and is a complex number. The scalar product
establishes a correspondence between vectors and covectors: each vector |v〉 defines
a covector 〈v| which is the linear map |w〉 → (|v〉 , |w〉). So the Dirac notation allows
us to write scalar products somewhat more concisely as (|v〉 , |w〉) = 〈v|w〉.

If Â is a linear operator, the notation 〈v| Â |w〉 means the scalar product of the vec-

tors |v〉 and Â |w〉. The quantity 〈v| Â |w〉 is also called the matrix element of the

operator Â with respect to the states |v〉 and |w〉.
The Dirac notation is convenient because the labels inside the brackets |...〉 are ty-

pographically separated from other symbols in a formula. So for instance one might
denote specific vectors by |0〉, |1〉 (eigenvectors with integer eigenvalues), or by |ψ〉,
|aibj〉, or even by

∣

∣

(out)n1, n2, ...
〉

, without risk of confusion. Note that the symbol |0〉
is the commonly used designation for the vacuum state, rather than the zero vector;
the latter is denoted simply by 0.

If |v〉 is an eigenvector of an operator Â with eigenvalue v, one writes

Â |v〉 = v |v〉 .

There is no confusion between the eigenvalue v (which is a number) and the vector
|v〉 labeled by its eigenvalue.

Hermiticity

The scalar product in a complex vector space is Hermitian if (〈v|w〉)∗ = 〈w|v〉 for all
vectors |v〉 and |w〉 (the asterisk ∗ denotes the complex conjugation). In that case the
norm 〈v|v〉 of a vector |v〉 is a real number.

A Hermitian scalar product allows one to define the Hermitian conjugate Â† of an

operator Â via the identity

〈v| Â† |w〉 =
(

〈w| Â |v〉
)∗
,

which should hold for all vectors |v〉 and |w〉. Note that an operator Â† is uniquely

specified if its matrix elements 〈v| Â† |w〉 with respect to all vectors |v〉, |w〉 are known.
For example, it is easy to prove that 1̂† = 1̂.

The operation of Hermitian conjugation has the properties

(Â+ B̂)† = Â† + B̂†; (λÂ)† = λ∗Â†; (ÂB̂)† = B̂†Â†.

An operator Â is called Hermitian if Â† = Â, anti-Hermitian if Â† = −Â, and unitary

if Â†Â = ÂÂ† = 1̂.
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2.4 Dirac notation and Hilbert spaces

According to a postulate of quantum mechanics, the result of a measurement of

some quantity is always an eigenvalue of the operator Â corresponding to that quan-
tity. Eigenvalues of a Hermitian operator are always real. This motivates an im-
portant assumption made in quantum mechanics: the operators corresponding to all
observables are Hermitian.

Example: The operators of position q̂ and momentum p̂ are Hermitian, q̂† = q̂ and p̂† = p̂.

The commutator of two Hermitian operators Â, B̂ is anti-Hermitian: [Â, B̂]† = −[Â, B̂].
Accordingly, the commutation relation for q̂ and p̂ contains the imaginary unit i. The
operator p̂q̂ is neither Hermitian nor anti-Hermitian: (p̂q̂)† = q̂p̂ = p̂q̂ + i~1̂ 6= ±p̂q̂.

Eigenvectors of a Hermitian operator corresponding to different eigenvalues are
always orthogonal. This is easy to prove: if |v1〉 and |v2〉 are eigenvectors of a Hermi-

tian operator Â with eigenvalues v1 and v2, then v1,2 are real, so 〈v1| Â = v1 〈v1|, and

〈v1| Â |v2〉 = v2 〈v1|v2〉 = v1 〈v1|v2〉. Therefore 〈v1|v2〉 = 0 if v1 6= v2.

Hilbert spaces

In anN -dimensional vector space one can find a finite set of basis vectors |e1〉, ..., |eN〉
such that any vector |v〉 is uniquely expressed as a linear combination

|v〉 =

N
∑

n=1

vn |en〉 .

The coefficients vn are called components of the vector |v〉 in the basis {|en〉}. In an
orthonormal basis satisfying 〈em|en〉 = δmn, the scalar product of two vectors |v〉, |w〉
is expressed through their components vn, wn as

〈v|w〉 =

N
∑

n=1

v∗nwn.

By definition, a vector space is infinite-dimensional if no finite set of vectors can
serve as a basis. In that case, one might expect to have an infinite basis |e1〉, |e2〉, ...,
such that any vector |v〉 is uniquely expressible as an infinite linear combination

|v〉 =

∞
∑

n=1

vn |en〉 . (2.29)

However, the convergence of this infinite series is a nontrivial issue. For instance, if
the basis vectors |en〉 are orthonormal, then the norm of the vector |v〉 is

〈v|v〉 =

( ∞
∑

m=1

v∗m 〈en|
)( ∞

∑

n=1

vn |en〉
)

=

∞
∑

n=1

|vn|2 . (2.30)

This series must converge if the vector |v〉 has a finite norm, so the numbers vn can-
not be arbitrary. We cannot expect that e.g. the sum

∑∞
n=1 n

2 |en〉 represents a well-
defined vector. Now, if the coefficients vn do fall off sufficiently rapidly so that the
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2 Reminder: Classical and quantum mechanics

series (2.30) is finite, it may seem plausible that the infinite linear combination (2.29)
converges and uniquely specifies the vector |v〉. However, this statement does not
hold in all infinite-dimensional spaces. The required properties of the vector space
are known in functional analysis as completeness and separability.3

A Hilbert space is a complete vector space with a Hermitian scalar product. When
defining a quantum theory, one always chooses a separable Hilbert space as the space
of quantum states. In that case, there exists a countable basis {|en〉} and all vectors can
be expanded as in Eq. (2.29). Once an orthonormal basis is chosen, all vectors |v〉 are
unambiguously represented by collections (v1, v2, ...) of their components. Therefore
a separable Hilbert space can be visualized as the space of infinite rows of complex

numbers, |v〉 ≡ (v1, v2, ...), such that the sum
∑∞

n=1 |vn|2 converges. The convergence
requirement guarantees that all scalar products 〈v|w〉 =

∑∞
n=1 v

∗
nwn are finite.

Example: The space L2 [a, b] of square-integrable wave functions ψ(q) defined on
an interval a < q < b is a separable Hilbert space, although it may appear to be
“much larger” than the space of infinite rows of numbers. The scalar product of two
wave functions ψ1,2(q) is defined by

〈ψ1|ψ2〉 =

∫ b

a

ψ∗
1(q)ψ2(q)dq.

The canonical operators p̂, q̂ can be represented as linear operators in the space L2

that act on functions ψ(q) as

p̂ : ψ(q) → −i~∂ψ
∂q
, q̂ : ψ(q) → qψ(q). (2.31)

It is straightforward to verify the commutation relation (2.23).

Remark: When one wishes to quantize a field φ(x) defined in infinite space, there are
certain mathematical problems with the definition of a separable Hilbert space of quantum
states. To obtain a mathematically consistent definition, one needs to enclose the field in a
finite box and impose boundary conditions.

Decomposition of unity

If {|en〉} is an orthonormal basis in a separable Hilbert space, the identity operator
has the decomposition

1̂ =

∞
∑

n=1

|en〉 〈en| .

3A normed vector space is complete if all Cauchy sequences in it converge to a limit; then all norm-
convergent infinite sums always have an unique vector as their limit. The space is separable if there
exists a countable set of vectors {|en〉} which is everywhere dense in the space. Separability ensures
that that all vectors can be approximated arbitrarily well by finite combinations of the basis vectors.
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2.4 Dirac notation and Hilbert spaces

This formula is called the decomposition of unity and is derived for Hilbert spaces
in essentially the same way as in standard linear algebra. The combination |en〉 〈en|
denotes the operator which acts on vectors |v〉 as

|v〉 → (|en〉 〈en|) |v〉 ≡ 〈en|v〉 |en〉 .

This operator describes a projection onto the one-dimensional subspace spanned by
|en〉. The decomposition of unity shows that the identity operator 1̂ is a sum of pro-
jectors onto all basis vectors.

Generalized eigenvectors

We can build an eigenbasis in a Hilbert space if we take all eigenvectors of a suitable
Hermitian operator. The operator must have a purely discrete spectrum so that its
eigenbasis is countable.

In calculations it is often convenient to use the eigenbasis of an operator with a
continuous spectrum, for example the position operator q̂. The eigenvalues of this
operator are all possible positions q of a particle. However, it turns out that the oper-
ator q̂ cannot have any eigenvectors in a separable Hilbert space. Nevertheless, it is
possible to consider the basis of “generalized vectors” |q〉 that are the eigenvectors of
q̂ in a larger vector space. A vector |ψ〉 is expressed through the basis {|q〉} as

|ψ〉 =

∫

dq ψ(q) |q〉 .

Note that |ψ〉 belongs to the Hilbert space while the generalized vectors |q〉 do not.
This situation is quite similar to distributions (generalized functions) such as δ(x− y)
that give well-defined values only after an integration with some function f(x).

We define the basis state |q1〉 as an eigenvector of the operator q̂ with the eigenvalue
q1 (here q1 goes over all possible positions of the particle). In other words, the basis
states satisfy

q̂ |q1〉 = q1 |q1〉 .
The conjugate basis consists of the covectors 〈q1| such that 〈q1| q̂ = q1 〈q1|.

Now we consider the normalization of the basis {|q〉}. Since the operator q̂ is Her-
mitian, its eigenvectors are orthogonal:

〈q1|q2〉 = 0 for q1 6= q2.

If the basis |q〉 plays the role of an orthonormal basis, the decomposition of unity
should look like this,

1̂ =

∫

dq |q〉 〈q| .

Hence for an arbitrary state |ψ〉 we find

∫

dq ψ(q) |q〉 = |ψ〉 = 1̂ |ψ〉 =

[∫

dq |q〉 〈q|
]

|ψ〉 =

∫

dq 〈q|ψ〉 |q〉 ,
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2 Reminder: Classical and quantum mechanics

therefore ψ(q) = 〈q|ψ〉. Further, we compute

〈q|ψ〉 = 〈q|
∫

dq′ |q′〉ψ(q′) =

∫

dq′ψ(q′) 〈q|q′〉 .

The identity ψ(q) =
∫

dq′ψ(q′) 〈q|q′〉 can be satisfied for all functions ψ(q) only if

〈q|q′〉 = δ(q − q′).

Thus we have derived the delta-function normalization of the basis |q〉. It is clear
that the vectors |q〉 cannot be normalized in the usual way because 〈q|q〉 = δ(0) is

undefined. Generally, we should expect that matrix elements such as 〈q| Â |q′〉 are
distributions and not simply functions of q and q′.

The basis |p〉 of generalized eigenvectors of the momentum operator p̂ has similar
properties. Let us now perform some calculations with generalized eigenbases {|p〉}
and {|q〉}.

The matrix element 〈q1| p̂ |q2〉

The first example is a computation of 〈q1| p̂ |q2〉. At this point we only need to know
that |q〉 are eigenvectors of the operator q̂ which is related to p̂ through the commuta-
tion relation (2.23). We consider the following matrix element,

〈q1| [q̂, p̂] |q2〉 = i~δ (q1 − q2) = (q1 − q2) 〈q1| p̂ |q2〉 .

It follows that 〈q1| p̂ |q2〉 = F (q1, q2) where F is a distribution that satisfies the equa-
tion

i~δ (q1 − q2) = (q1 − q2)F (q1, q2) . (2.32)

To solve Eq. (2.32), we cannot simply divide by q1 − q2 because both sides are dis-
tributions and x−1δ(x) is undefined. So we use the Fourier representation of the δ
function,

δ(q) =
1

2π

∫

eipqdp,

denote q ≡ q1 − q2, and apply the Fourier transform to Eq. (2.32),

i~ =

∫

qF (q1, q1 − q) e−ipqdq = i
∂

∂p

∫

F (q1, q1 − q) e−ipqdq.

Integrating over p, we find

~p+ C (q1) =

∫

F (q1, q1 − q) e−ipqdq,

where C(q1) is an undetermined function. The inverse Fourier transform yields

F (q1, q2) =
1

2π

∫

(~p+ C)eipqdp =

[

−i~ ∂

∂q1
+ C (q1)

]

δ (q1 − q2) ,
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2.4 Dirac notation and Hilbert spaces

so the result is

〈q1| p̂ |q2〉 = −i~δ′ (q1 − q2) + C (q1) δ (q1 − q2) . (2.33)

The function C(q1) cannot be found from the commutation relations alone. The
reason is that we may replace the operator p̂ by p̂ + c(q̂), where c is an arbitrary
function, without changing the commutation relations. This transformation would
change the matrix element 〈q1| p̂ |q2〉 by the term c(q1)δ(q1 − q2). So we could redefine
the operator p̂ to remove the term proportional to δ(q1 − q2) in the matrix element
〈q1| p̂ |q2〉, so as to obtain

〈q1| p̂ |q2〉 = −i~δ′ (q1 − q2) . (2.34)

Remark: If the operators p̂, q̂ are specified as particular linear operators in some Hilbert
space, such that Eq. (2.33) holds with C(q) 6= 0, we can remove the term C(q1)δ(q1 −
q2) and obtain the standard result (2.34) by redefining the basis vectors |q〉 themselves.
Multiplying each vector |q〉 by a q-dependent phase,

˜|q〉 ≡ e−ic(q) |q〉 ,

we obtain

˜〈q1|p̂ ˜|q2〉 = ~c′(q)δ (q1 − q2) − i~δ′ (q1 − q2) + C (q1) δ (q1 − q2) .

Now the function c(q) can be chosen to cancel the term C(q1)δ(q1 − q2).

The matrix element 〈p|q〉

To compute 〈p|q〉, we consider the matrix element 〈p| p̂ |q〉 and use the decomposition
of unity,

〈p| p̂ |q〉 = p 〈p|q〉 = 〈p|
[∫

dq1 |q1〉 〈q1|
]

p̂ |q〉 =

∫

dq1 〈p|q1〉 〈q1| p̂ |q〉 .

It follows from Eq. (2.34) that

p 〈p|q〉 = i~
∂

∂q
〈p|q〉 .

Similarly, by considering 〈p| q̂ |q〉 we find

q 〈p|q〉 = i~
∂

∂p
〈p|q〉 .

Integrating these identities over q and p respectively, we obtain

〈p|q〉 = C1(p) exp

[

ipq

~

]

, 〈p|q〉 = C2(q) exp

[

ipq

~

]

,
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2 Reminder: Classical and quantum mechanics

where C1(p) and C2(q) are arbitrary functions. The last two equations are compatible
only if C1(p) = C2(q) = const, therefore

〈p|q〉 = C exp

[

ipq

~

]

. (2.35)

The constant C is determined (up to an irrelevant phase factor) by the normalization
condition to be C = (2π~)−1/2. (See Exercise 2.7.) Thus

(〈q|p〉)∗ = 〈p|q〉 =
1√
2π~

exp

(

ipq

~

)

. (2.36)

Exercise 2.7
Let |q〉, |p〉 be the δ-normalized eigenvectors of the position and the momentum opera-

tors in a one-dimensional space, i.e.

p̂ |p1〉 = p1 |p1〉 , 〈p1|p2〉 = δ (p1 − p2) ,

and the same for q̂. Show that the coefficient C in Eq. (2.35) satisfies |C| = (2π~)−1/2.

2.5 Evolution in quantum theory

So far we considered time-dependent operators q̂(t), p̂(t) that act on fixed state vectors
|ψ〉; this description of quantized systems is called the Heisenberg picture. For an

observable Â = f (p̂, q̂), we can write the general solution of Eq. (2.28) as

Â(t) = exp

[

i

~
(t− t0) Ĥ

]

Â (t0) exp

[

− i

~
(t− t0) Ĥ

]

. (2.37)

If we set t0 = 0 in Eq. (2.37), the expectation value of Â(t) in a state |ψ0〉 is

〈A(t)〉 ≡ 〈ψ0| Â(t) |ψ0〉 = 〈ψ0| e
i
~

ĤtÂ0e
− i

~
Ĥt |ψ0〉 .

This relation can be rewritten using a time-dependent state

|ψ(t)〉 ≡ e−
i
~

Ĥt |ψ0〉 (2.38)

and the time-independent operator Â0 as

〈A(t)〉 = 〈ψ(t)| Â0 |ψ(t)〉 .

This approach to quantum theory (where the operators are time-independent but
quantum states are time-dependent) is called the Schrödinger picture. It is clear that
the state vector (2.38) satisfies the Schrödinger equation,

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 . (2.39)
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2.5 Evolution in quantum theory

Example: the harmonic oscillator. The space of quantum states of a harmonic os-
cillator is the Hilbert space L2 in which the operators p̂, q̂ are defined by Eqs. (2.31).
Since the Hamiltonian of the harmonic oscillator is given by Eq. (2.20), the Schrödinger
equation becomes

i~
∂

∂t
ψ(q) = −~2

2

∂2

∂q2
ψ(q) +

1

2
ω2q2ψ(q).

The procedure of quantization is formally similar in nonrelativistic mechanics (a
small number of particles), in solid state physics (a very large but finite number of
nonrelativistic particles), and in relativistic field theory (infinitely many degrees of
freedom).

Remark: Schrödinger equations. The use of a Schrödinger equation does not imply non-
relativistic physics. There is a widespread confusion about the role of the Schrödinger
equation vs. that of the basic relativistic field equations (the Klein-Gordon equation, the
Dirac equation, or the Maxwell equations). It would be a mistake to think that the Dirac
equation and the Klein-Gordon equation are “relativistic forms” of the Schrödinger equa-
tion (although some textbooks say that). This was how the Dirac and the Klein-Gordon
equations were discovered, but their actual place in quantum theory is quite different. The
three named field equations describe classical relativistic fields of spin 0, 1/2 and 1 respec-
tively. These equations need to be quantized to obtain a quantum field theory. Their role is
quite analogous to that of the harmonic oscillator equation: they provide a classical Hamil-
tonian for quantization. The Schrödinger equations corresponding to the Klein-Gordon,
the Dirac and the Maxwell equations describe quantum theories of these classical fields.
(In practice, Schrödinger equations are very rarely used in quantum field theory because
in most cases it is much easier to work in the Heisenberg picture.)

Remark: second quantization. The term “second quantization” is frequently used to refer
to quantum field theory, whereas “first quantization” means ordinary quantum mechan-
ics. However, this is an obsolete terminology originating from the historical development
of QFT as a relativistic extension of quantum mechanics. In fact, a quantization procedure
can only be applied to a classical theory and yields the corresponding quantum theory.
One does not quantize a quantum theory for a second time. It is more logical to say “quan-
tization of fields” instead of “second quantization.”

Historically it was not immediately realized that relativistic particles can be described
only by quantized fields and not by quantum mechanics of points. At first, fields were re-
garded as wave functions of point particles. Old QFT textbooks present the picture of (1)
quantizing a point particle to obtain a wave function that satisfies the Schrödinger equa-
tion, (2) “generalizing” the Schrödinger equation to the Klein-Gordon or the Dirac equa-
tion, and (3) “second-quantizing” the “relativistic wave function” to obtain a quantum
field theory. The confusion between Schrödinger equations and relativistic wave equa-
tions has been cleared, but the old illogical terminology of “first” and “second” quantiza-
tion persists. It is unnecessary to talk about a “second-quantized Dirac equation” if the
Dirac equation is actually quantized only once.

The modern view is that one must describe relativistic particles by fields. Therefore
one starts right away with a classical relativistic field equation, such as the Dirac equation
(for the electron field) and the Maxwell equations (for the photon field), and applies the
quantization procedure (only once) to obtain the relativistic quantum theory of photons
and electrons.
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3 Quantizing a driven harmonic
oscillator

Summary: Driven harmonic oscillator. Quantization in the Heisenberg pic-
ture. “In” and “out” states. Calculations of matrix elements. Green’s func-
tions.

The quantum-mechanical description of a harmonic oscillator driven by an external
force is a computationally simple problem that allows us to introduce important con-
cepts such as Green’s functions, “in” and “out” states, and particle production.

3.1 Classical oscillator under force

We consider a unit-mass harmonic oscillator driven by a force J(t) which is assumed
to be a known function of time. The classical equation of motion

q̈ = −ω2q + J(t)

can be derived from the Lagrangian

L (t, q, q̇) =
1

2
q̇2 − 1

2
ω2q2 + J(t)q.

The corresponding Hamiltonian is

H(p, q) =
p2

2
+
ω2q2

2
− J(t)q, (3.1)

and the Hamilton equations are

q̇ = p, ṗ = −ω2q + J(t).

Note that the Hamiltonian depends explicitly on the time t.
Before quantizing the oscillator, it is convenient to introduce two new (complex-

valued) dynamical variables a±(t) instead of p(t), q(t):

a−(t) ≡
√

ω

2

[

q(t) +
i

ω
p(t)

]

, a+(t) ≡
[

a−(t)
]∗

=

√

ω

2

[

q(t) − i

ω
p(t)

]

.

The inverse relations then are

p =

√
ω

i
√

2

(

a− − a+
)

, q =
1√
2ω

(

a− + a+
)

. (3.2)
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3 Quantizing a driven harmonic oscillator

The equation of motion for the variable a−(t) is straightforward to derive,

d

dt
a− = −iωa− +

i√
2ω
J(t). (3.3)

(The conjugate variable a+(t) satisfies the complex conjugate equation.) The solution
of Eq. (3.3) with the initial condition a−|t=0 = a−in can be readily found,

a−(t) = a−ine
−iωt +

i√
2ω

∫ t

0

J(t′)eiω(t′−t)dt′. (3.4)

Exercise 3.1
Derive Eq. (3.4).

3.2 Quantization

We quantize the oscillator in the Heisenberg picture by introducing operators p̂, q̂
with the commutation relation [q̂, p̂] = i. (From now on, we use the units where ~ =
1.) The variables a± are also replaced by operators â− and â+ called the annihilation
and creation operators respectively. These operators satisfy the commutation relation
[â−, â+] = 1 (see Exercise 3.2) and are not Hermitian since (â−)† = â+ and (â+)† = â−.

Exercise 3.2
The creation and annihilation operators â+(t), â−(t) are defined by

â±(t) =

r

ω

2

»

q̂(t) ∓ i

ω
p̂(t)

–

.

Using the commutation relation [q̂, p̂] = i, show that
ˆ

â−(t), â+(t)
˜

= 1 for all t.

The classical Hamiltonian (3.1) is replaced by the operator Ĥ = H (p̂, q̂, t). Using

the relations (3.2), the operator Ĥ can be expressed through the creation and annihi-
lation operators â± as

Ĥ =
ω

2

(

â+â− + â−â+
)

− â+ + â−√
2ω

J(t) =
ω

2

(

2â+â− + 1
)

− â+ + â−√
2ω

J(t).

3.2.1 The “in” and “out” regions

To simplify the calculations, we consider a special case when the force J(t) is nonzero
only for a certain time interval 0 < t < T . Thus the oscillator is unperturbed in
the remaining two intervals which are called the “in” region, t ≤ 0, and the “out”
region, t ≥ T (see Fig. 3.1). It is interesting to find the relation between the states of
the oscillator in the “in” and the “out” regions (the evolution of the oscillator in the
intermediate region 0 < t < T is less important for our present purposes).

The solution for the “in” region with the initial condition â−(0) = â−in is

â−(t) = â−ine
−iωt.
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3.2 Quantization

0

J  t( )

in out

tT

Figure 3.1: The external force J(t) and the “in”/“out” regions.

For consistency, the operator â−in must satisfy the commutation relation
[

â−in, â
+
in

]

= 1.
The solution for the “out” region is found from Eq. (3.4) and can be written as

â−(t) = â−oute
−iωt,

where â−out is the time-independent operator defined by

â−out ≡ â−in +
i√
2ω

∫ T

0

eiωt′J(t′)dt′ ≡ â−in + J0. (3.5)

Substituting the operators â±(t) into the Hamiltonian, we obtain

Ĥ =

{

ω
(

â+
inâ

−
in + 1

2

)

, t ≤ 0,
ω
(

â+
outâ

−
out + 1

2

)

, t ≥ T.
(3.6)

It is clear that the Hamiltonian is time-independent in the “in” and “out” regions.

3.2.2 Excited states

Quantum states of the oscillator correspond to vectors in an appropriate Hilbert space.
The construction of this Hilbert space for a free (unforced) oscillator is well-known:
the vacuum state |0〉 is postulated as the eigenstate of the annihilation operator â−

with eigenvalue 0, and the excited states |n〉, where n = 1, 2, ..., are defined by

|n〉 =
1√
n!

(â+)n |0〉 . (3.7)

(The factors
√
n! are needed for normalization, namely 〈m|n〉 = δmn.) The Hilbert

space is spanned by the orthonormal basis {|n〉}, where n = 0, 1, ...; in other words,
all states of the oscillator are of the form

|ψ〉 =

∞
∑

n=0

ψn |n〉 ,
∞
∑

n=0

|ψn|2 <∞. (3.8)
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3 Quantizing a driven harmonic oscillator

Remark: why is {|n〉} a complete basis? A description of a quantum system must in-
clude not only the algebra of quantum operators but also a specification of a Hilbert space
in which these operators act. For instance, the Hilbert space (3.8) cannot be derived from
the commutation relation [q̂, p̂] = i~ without additional assumptions. In fact, if one as-
sumes the existence of a unique normalized eigenvector |0〉 such that â− |0〉 = 0, as well as
the diagonalizability of the Hamiltonian, then one can prove that the vectors {|n〉} form
a complete basis in the Hilbert space. This is a standard result and we omit the proof.
Details can be found e.g. in the book by P. A. M. DIRAC, Principles of quantum mechanics
(Oxford, 1948). Ultimately, it is the agreement of the resulting theory with experiments
that determines whether a particular Hilbert space is suitable for describing a particular
physical system; for a harmonic oscillator, the space (3.8) is adequate.

In the present case, there are two free regions (the “in” and the “out” regions) where
the driving force is absent, and thus there are two annihilation operators, â−in and â−out.
Therefore we can define two vacuum states, the “in” vacuum |0in〉 and the “out”
vacuum |0out〉, by the eigenvalue equations

â−in |0in〉 = 0, â−out |0out〉 = 0.

It follows from Eq. (3.6) that the vectors |0in〉 and |0out〉 are the lowest-energy states
for t ≤ 0 and for t ≥ T respectively. We can easily check that the states |0in〉 and |0out〉
are different:

â−out |0in〉 =
(

â−in + J0

)

|0in〉 = J0 |0in〉 .

The state |0in〉 is an eigenstate of the operator â−out with eigenvalue J0. Conversely,
â−in |0out〉 = −J0 |0out〉.

Remark: coherent states. Eigenstates of the annihilation operator with nonzero eigenval-
ues are called coherent states. One can show that coherent states minimize the uncertainty
in both the coordinate and the momentum.

Using the creation operators â+
in and â+

out, we build two sets of excited states,

|nin〉 =
1√
n!

(

â+
in

)n |0in〉 , |nout〉 =
1√
n!

(

â+
out

)n |0out〉 , n = 0, 1, 2, ...

The factors
√
n! are needed for normalization, namely 〈nin|nin〉 = 1 and 〈nout|nout〉 =

1 for all n. It can be easily verified that the vectors |nin〉 are eigenstates of the Hamil-
tonian (3.6) for t ≤ 0 (but not for t ≥ T ), and similarly for |nout〉:

Ĥ(t) |nin〉 = ω

(

n+
1

2

)

|nin〉 , t ≤ 0;

Ĥ(t) |nout〉 = ω

(

n+
1

2

)

|nout〉 , t ≥ T.

Therefore the vectors |nin〉 are interpreted as n-particle states of the oscillator for t ≤
0, while for t ≥ T the n-particle states are |nout〉.

Remark: interpretation of the “in” and “out” states. We are presently working in the
Heisenberg picture where quantum states are time-independent and operators depend on
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3.2 Quantization

time. One may prepare the oscillator in a state |ψ〉, and the state of the oscillator remains
the same throughout all time t. However, the physical interpretation of this state changes
with time because the state |ψ〉 is interpreted with help of the time-dependent operators

Ĥ(t), â−(t), etc. For instance, we found that at late times (t ≥ T ) the vector |0in〉 is not the
lowest-energy state any more, and the vectors |nin〉 are not eigenstates of energy which
they were at early times (t ≤ 0). This happens because the energy of the system changes
with time due to the external force J(t). Without this force, we would have â−in = â−out

and the state |0in〉 would describe the vacuum at all times.

3.2.3 Relation between “in” and “out” states

The states |nout〉, where n = 0, 1, 2, ..., form a complete basis in the Hilbert space of
the harmonic oscillator. However, the set of states |nin〉 is another complete basis.
Therefore the vector |0in〉 must be expressible as a linear combination of the “out”
states,

|0in〉 =

∞
∑

n=0

Λn |nout〉 , (3.9)

where Λn are suitable coefficients. One can show that these coefficients Λn satisfy the
recurrence relation

Λn+1 =
J0√
n+ 1

Λn. (3.10)

Exercise 3.3
Derive Eq. (3.10) for all n ≥ 0 using Eq. (3.5).

The solution of the recurrence relation (3.10) is easily found,

Λn =
Jn

0√
n!

Λ0.

The constant Λ0 is fixed by the requirement 〈0in| 0in〉 = 1. Using Eq. (3.9), we get

〈0in| 0in〉 =
∞
∑

n=0

|Λn|2 = 1 ⇒ |Λ0| = exp

[

−1

2
|J0|2

]

.

The only remaining freedom is the choice of the phase of Λ0.
We found that the vacuum state |0in〉 is expressed as the linear combination

|0in〉 = exp

[

−1

2
|J0|2

] ∞
∑

n=0

Jn
0√
n!

|nout〉 , (3.11)

or equivalently

|0in〉 = exp

[

−1

2
|J0|2 + J0â

+
out

]

|0out〉 .

This formula is similar to the definition of a coherent state of the harmonic oscillator.
Indeed, one can verify that |0in〉 is an eigenstate of â−out with eigenvalue J0.
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3 Quantizing a driven harmonic oscillator

The relation (3.11) shows that the state describing the early-time vacuum is a super-

position of excited states at late times, having the probability |Λn|2 for the occupation
number n. We thus conclude that the presence of the external force J(t) leads to
particle production.

3.3 Calculations of matrix elements

An expectation value of an operator, such as 〈0in| Â(t) |0in〉, is an experimentally mea-
surable quantity. As before, we are interested only in describing measurements per-
formed either for times t ≤ 0 (the “in” region) or for t ≥ T (the “out” region).

Unlike expectation values, an “in-out” matrix element 〈0out| Â(t) |0in〉 is not a di-
rectly measurable quantity (and is generally a complex number). As we shall see in
Chapter 12, such matrix elements are nevertheless useful as intermediate results in
some calculations. Therefore we shall now compute various expectation values and
matrix elements using explicit formulae for the operators â±in,out.

Example 1: Consider the expectation value of the Hamiltonian Ĥ(t) in the “in” vac-

uum state |0in〉. For t ≤ 0, the state |0in〉 is an eigenstate of Ĥ(t) with the eigenvalue
1
2ω, hence

〈0in| Ĥ(t) |0in〉 =
ω

2
, t ≤ 0.

For t ≥ T , we use Eqs. (3.5) and (3.6) to find

〈0in| Ĥ(t) |0in〉 = 〈0in|ω
(

1

2
+ â+

outâ
−
out

)

|0in〉 =

(

1

2
+ |J0|2

)

ω, t ≥ T.

It is apparent from this expression that the energy of the oscillator after applying

the force J(t) becomes larger than the zero-point energy 1
2ω. The constant |J0|2 is

expressed through J(t) as

|J0|2 =
1

2ω

∫ T

0

dt1

∫ T

0

dt2e
iω(t1−t2)J (t1)J (t2) .

Example 2. The occupation number operator

N̂(t) ≡ â+(t)â−(t)

has the expectation value

〈0in| N̂(t) |0in〉 =

{

0, t ≤ 0;

|J0|2 , t ≥ T.
(3.12)

Example 3. The in-out matrix element of N̂(t) is

〈0out| N̂(t) |0in〉 = 0, t ≤ 0 or t ≥ T.
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3.3 Calculations of matrix elements

Example 4. Let us calculate the expectation value of the position operator,

q̂(t) =
1√
2ω

(

â−(t) + â+(t)
)

, (3.13)

in the “in” vacuum state. For t ≤ 0 this expectation value is zero,

〈0in| q̂(t ≤ 0) |0in〉 = 0.

For t ≥ T , we use Eq. (3.5) together with

â−(t ≥ T ) = â−oute
−iωt

and obtain

〈0in| q̂(t) |0in〉 =
1√
2ω

(

J0e
−iωt + J∗

0 e
iωt
)

=

∫ T

0

sinω(t− t′)

ω
J(t′)dt′. (3.14)

Green’s functions

It follows from Eq. (3.14) that the expectation value of q̂(t) is the solution of the driven
oscillator equation

q̈ + ω2q = J(t)

with initial conditions q(0) = q̇(0) = 0. Introducing the retarded Green’s function of
the harmonic oscillator,

Gret(t, t
′) ≡ sinω(t− t′)

ω
θ(t− t′), (3.15)

the solution (3.14) can be rewritten as

q(t) =

∫ +∞

−∞
J(t′)Gret(t, t

′)dt′. (3.16)

Example 5: The in-out matrix element of the position operator q̂ is

〈0out| q̂(t ≤ 0) |0in〉
〈0out|0in〉

=
e−iωt

√
2ω

〈0out| â+
in |0in〉

〈0out|0in〉
= −J0

e−iωt

√
2ω

,

〈0out| q̂(t ≥ T ) |0in〉
〈0out|0in〉

=
e−iωt

√
2ω

〈0out| â−out |0in〉
〈0out|0in〉

= J0
e−iωt

√
2ω

.

In general, these matrix elements are complex numbers since

1√
2ω
J0e

−iωt =
i

2ω

∫ T

0

e−iω(t−t′)J(t′)dt′.
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3 Quantizing a driven harmonic oscillator

This expression can be rewritten in the form (3.16) if we use the Feynman Green’s
function

GF (t, t′) ≡ ie−iω|t−t′|
2ω

(3.17)

instead of the retarded Green’s function Gret.
Other matrix elements such as 〈0in| q̂ (t1) q̂ (t2) |0in〉 can be computed in a similar

way. In Chapter 12 we shall study Green’s functions of the harmonic oscillator in
more detail.

Exercise 3.4
Consider a harmonic oscillator driven by an external force J(t). The Green’s functions

Gret(t, t
′) and GF (t, t′) are defined by Eqs. (3.15) and (3.17). For t1,2 ≥ T , show that:

(a) The expectation value of q̂ (t1) q̂ (t2) in the “in” state is

〈0in| q̂ (t1) q̂ (t2) |0in〉

=
1

2ω
eiω(t2−t1) +

Z T

0

dt′1

Z T

0

dt′2J
`

t′1
´

J
`

t′2
´

Gret

`

t1, t
′
1

´

Gret

`

t2, t
′
2

´

.

(b) The in-out matrix element of q̂ (t1) q̂ (t2) is

〈0out| q̂ (t1) q̂ (t2) |0in〉
〈0out| 0in〉

=
1

2ω
eiω(t2−t1) +

Z T

0

dt′1

Z T

0

dt′2J
`

t′1
´

J
`

t′2
´

GF

`

t1, t
′
1

´

GF

`

t2, t
′
2

´

.
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4 From harmonic oscillators to fields

Summary: Collections of quantum oscillators. Field quantization. Mode
expansion of a quantum field. Zero-point energy. Schrödinger equation
for quantum fields.

4.1 Quantization of free fields

A free field can be treated as a collection of infinitely many harmonic oscillators. To
quantize a scalar field, we shall generalize the method used in quantum mechanics
for describing a finite set of oscillators.

The classical action describing N harmonic oscillators with coordinates q1, ..., qN is

S [qi] =
1

2

∫





N
∑

i=1

q̇2i −
N
∑

i,j=1

Mijqiqj



 dt, (4.1)

where the symmetric and positive-definite matrix Mij describes the coupling be-
tween the oscillators.

By choosing an appropriate set of normal coordinates q̃α that are linear combina-
tions of qi, the oscillators can be decoupled (see Exercise 4.1). The matrix M is diago-
nal in the new coordinates, Mαβ = δαβω

2
α (here no summation over α is implied).

Exercise 4.1
Find a linear transformation

q̃α =

N
X

i=1

Cαiqi

leading to the new decoupled coordinates q̃α and reducing the action (4.1) to the form

S [q̃α] =
1

2

Z N
X

α=1

`

˙̃q2α − ω2
αq̃

2
α

´

dt,

where ωα are the eigenfrequencies.

The variables q̃α are called the normal modes. For brevity, we shall omit the tilde
and write qα instead of q̃α.

The modes qα are quantized (in the Heisenberg picture) by introducing the opera-
tors q̂α(t), p̂α(t) and imposing the standard commutation relations

[q̂α, p̂β] = iδαβ, [q̂α, q̂β ] = [p̂α, p̂β ] = 0.
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4 From harmonic oscillators to fields

The creation and annihilation operators â±α (t) are defined by

â±α (t) =

√

ωα

2

(

q̂α(t) ∓ i

ωα
p̂α(t)

)

and obey the equations of motion similar to Eq. (3.3),

d

dt
â±α (t) = ±iωαâ

±
α (t).

Their general solutions are

â±α (t) = (0)â±α e
±iωαt,

where (0)â±α are operator-valued integration constants satisfying the commutation
relation

[

(0)â−α ,
(0)â+

β

]

= δαβ .

Below we shall never need the time-dependent operators â±α (t). Therefore we drop
the cumbersome superscript (0) and denote the time-independent creation and annihi-
lation operators simply by â±α .

Using these operators â±α , we can define the Hilbert space of states for the oscillator
system by the usual procedure. The vacuum state |0, ..., 0〉 is the unique common
eigenvector of all annihilation operators â−α with eigenvalue 0,

â−α |0, ..., 0〉 = 0 for α = 1, ..., N.

The state |n1, n2, ..., nN 〉 having the occupation number nα in the oscillator qα is de-
fined by

|n1, ..., nN 〉 =

[

N
∏

α=1

(â+
α )

nα

√
nα!

]

|0, 0, ..., 0〉 . (4.2)

The Hilbert space is spanned by the states |n1, ..., nN 〉 with all possible choices of
occupation numbers nα.

4.1.1 From oscillators to fields

A classical field is described by a function of spacetime, φ (x, t), characterizing the
local strength or intensity of the field. To visualize a field as a physical system anal-
ogous to a collection of oscillators qi, we might imagine that a separate harmonic
oscillator φx(t) is attached to each point x in space. (Note that the oscillators φx(t)
“move” in the configuration space, i.e. in the space of values of the field φ.) The spa-
tial coordinate x is an index labeling the oscillators φx(t), similarly to the discrete
index i for the oscillators qi. In this way one may interpret the field φ (x, t) ≡ φx(t) as
the coordinate of the oscillator corresponding to the point x.

Using this analogy, we treat the field φ (x, t) as an infinite collection of oscillators.
In the action (4.1), sums over i must be replaced by integrals over x, so that the action
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4.1 Quantization of free fields

for φ is of the form

S [φ] =
1

2

∫

dt

[∫

d3x φ̇2 (x, t) −
∫

d3x d3yφ (x, t)φ (y, t)M (x,y)

]

. (4.3)

Here the function M is yet to be determined.
A relativistic theory must be invariant under transformations of the Poincaré group

describing the time and space shifts (translations), spatial rotations, and Lorentz trans-
formations (boosts). The simplest Poincaré-invariant action for a real scalar field
φ (x, t) is

S [φ] =
1

2

∫

d4x
[

ηµν (∂µφ) (∂νφ) −m2φ2
]

=
1

2

∫

d3x dt
[

φ̇2 − (∇φ)2 −m2φ2
]

, (4.4)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric (in this chapter we consider
only the flat spacetime) and the Greek indices label four-dimensional coordinates:
x0 ≡ t and (x1, x2, x3) ≡ x. The action (4.4) has the form (4.3) if we set

M (x,y) =
[

−∆x +m2
]

δ (x − y) . (4.5)

The invariance of the action (4.4) under translations is obvious; its Lorentz invari-
ance is the subject of the following exercise.

Exercise 4.2
Show that the scalar field action (4.4) remains unchanged under a Lorentz transforma-

tion
xµ → x̃µ = Λµ

νx
ν , φ (x, t) → φ̃ (x, t) = φ

`

x̃, t̃
´

, (4.6)

where the transformation matrix Λµ
ν satisfies ηµνΛµ

αΛν
β = ηαβ .

To derive the equation of motion for φ, we calculate the functional derivative of the
action with respect to φ (x, t),

δS

δφ (x, t)
= φ̈ (x, t) − ∆φ (x, t) +m2φ (x, t) = 0. (4.7)

Exercise 4.3
Derive Eq. (4.7) from the action (4.4).

The equation of motion (4.7) shows that the “oscillators” φ (x, t) ≡ φx(t) are cou-
pled. This can be intuitively understood as follows: The Laplacian ∆φ contains sec-
ond derivatives of φ that may be visualized as

d2φx

dx2
≈ φx+δx − 2φx + φx−δx

(δx)2
,

so the evolution of the oscillator φx depends on the oscillators at adjacent points x ±
δx.
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4 From harmonic oscillators to fields

To decouple the oscillators φx, we apply the Fourier transform,

φk(t) ≡
∫

d3x

(2π)3/2
e−ik·xφ (x, t) , (4.8)

φ (x, t) ≡
∫

d3k

(2π)3/2
eik·xφk(t). (4.9)

As in Chapter 1, the complex functions φk(t) are called the modes of the field φ. From
Eqs. (4.7)-(4.9) it is straightforward to derive the following equations for the modes:

d2

dt2
φk(t) +

(

k2 +m2
)

φk(t) = 0. (4.10)

These equations describe an infinite set of decoupled harmonic oscillators with fre-
quencies

ωk ≡
√

k2 +m2.

Using Eq. (4.9), one can also express the action (4.4) through the modes φk,

S =
1

2

∫

dt d3k
(

φ̇kφ̇−k − ω2
kφkφ−k

)

. (4.11)

Exercise 4.4
Show that the modes φk(t) of a real field φ (x, t) satisfy the relation (φk)∗ = φ−k.

4.1.2 Quantizing fields in flat spacetime

To prepare for quantization, we need to introduce the canonical momenta and to
obtain the classical Hamiltonian for the field φ. Note that the action (4.4) is an integral
of the Lagrangian over time (but not over space), S[φ] =

∫

L[φ] dt, so the Lagrangian
L[φ] is

L[φ] =

∫

Ld3x; L ≡ 1

2
ηµνφ,µφ,ν − 1

2
m2φ2,

where L is the Lagrangian density. To define the canonical momenta and the Hamil-
tonian, one must use the Lagrangian L[φ], not the Lagrangian density L. Hence the
momenta π (x, t) are computed as the functional derivatives

π (x, t) ≡ δL [φ]

δφ̇ (x, t)
= φ̇ (x, t) ,

and then the classical Hamiltonian is

H =

∫

π (x, t) φ̇ (x, t) d3x − L =
1

2

∫

d3x
[

π2 + (∇φ)2 +m2φ2
]

. (4.12)
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4.1 Quantization of free fields

Remark: Lorentz invariance. To quantize a field theory, we use the Hamiltonian formal-
ism which explicitly separates the time coordinate t from the spatial coordinate x. How-
ever, if the classical theory is relativistic (Lorentz-invariant), the resulting quantum theory
is also relativistic.

To quantize the field, we introduce the operators φ̂ (x, t) and π̂ (x, t) with the stan-
dard commutation relations

[φ̂ (x, t) , π̂ (y, t)] = iδ (x − y) ; [φ̂ (x, t) , φ̂ (y, t)] = [π̂ (x, t) , π̂ (y, t)] = 0. (4.13)

The modes φk(t) also become operators φ̂k(t). The commutation relation for the
modes can be derived from Eq. (4.13) by performing Fourier transforms in x and
y. After some algebra, we find

[φ̂k1(t), π̂k2(t)] = iδ (k1 + k2) .

Note the plus sign in δ(k1 +k2): it shows that the variable which is conjugate to φk is
not πk but π−k = π∗

k. This is also evident from the action (4.11).
Quite similarly to Sec. 4.1, we first introduce the time-dependent creation and an-

nihilation operators:

â−k (t) ≡
√

ωk

2

(

φ̂k +
iπ̂k

ωk

)

; â+
k (t) ≡

√

ωk

2

(

φ̂−k − iπ̂−k

ωk

)

.

The equations of motion for the operators â±k (t),

d

dt
â±
k

(t) = ±iωkâ
±
k
(t),

have the general solution â±k (t) = (0)â±k e
±iωkt, where the time-independent operators

(0)â±k satisfy the relations (note the signs of k and k′)
[

â−k , â
+
k′

]

= δ (k − k′) ;
[

â−k , â
−
k′

]

=
[

â+
k , â

+
k′

]

= 0. (4.14)

In Eq. (4.14) we omitted the superscript (0) for brevity; below we shall always use the
time-independent creation and annihilation operators and denote them by â±k .

Remark: complex oscillators. The modes φk(t) are complex variables; each φk may be

thought of as a pair of real-valued oscillators, φk = φ
(1)
k

+iφ
(2)
k

. Accordingly, the operators

φ̂k are not Hermitian and (φ̂k)† = φ̂−k. In principle, one could rewrite the theory in terms
of Hermitian variables, but it is mathematically more convenient to keep the complex
modes φk.

The Hilbert space of field states is built in the standard fashion. We postulate the
vacuum state |0〉 such that â−k |0〉 = 0 for all k. The state with occupation numbers ns

in each mode with momentum ks (where s = 1, 2, ... is an index that enumerates the
excited modes) is defined similarly to Eq. (4.2),

|n1, n2, ...〉 =

[

∏

s

(

â+
ks

)ns

√
ns!

]

|0〉 . (4.15)
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4 From harmonic oscillators to fields

We write |0〉 instead of |0, 0, ...〉 for brevity. The vector (4.15) describes a state with
ns particles having momentum ks (where s = 1, 2, ...). The Hilbert space of quantum
states is spanned by the vectors |n1, n2, ...〉 with all possible choices of the numbers
ns.

The quantum Hamiltonian of the free scalar field can be written as

Ĥ =
1

2

∫

d3k

[

π̂kπ̂−k + ω2
kφ̂kφ̂−k

]

,

which yields

Ĥ =

∫

d3k
ωk

2

(

â−k â
+
k + â+

k â
−
k

)

=

∫

d3k
ωk

2

[

2â+
k â

−
k + δ(3)(0)

]

. (4.16)

Exercise 4.5
Derive this relation.

Thus we have quantized the scalar field φ (x, t) in the Heisenberg picture. Quantum

observables such as φ̂ (x, t) and Ĥ are represented by linear operators in the Hilbert
space, and the quantum states of the field φ are interpreted in terms of particles.

4.1.3 A first look at mode expansions

We now give a brief introduction to mode expansions which offer a shorter and com-
putationally more convenient way to quantize fields. A more detailed treatment is
given in Chapter 6.

The mode operator φ̂k(t) can be expressed through the creation and annihilation
operators,

φ̂k(t) =
1√
2ωk

(

â−k e
−iωkt + â+

−ke
iωkt
)

.

Substituting this into Eq. (4.9), we obtain the following expansion of the field operator

φ̂ (x, t),

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2ωk

[

â−k e
−iωkt+ik·x + â+

−ke
iωkt+ik·x] ,

which we then rewrite by changing k → −k in the second term to make the integrand
manifestly Hermitian:

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2ωk

[

â−k e
−iωkt+ik·x + â+

k e
iωkt−ik·x] . (4.17)

This relation is called the mode expansion of the quantum field φ̂.

It is easy to see that the commutation relations (4.13) between φ̂ and π̂ are equiva-
lent to the relations (4.14), while the equations of motion (4.7) are identically satisfied
by the ansatz (4.17) with time-independent operators â±k . Therefore we may quantize
the field φ (x, t) by simply postulating the commutation relations (4.14) and the mode

expansion (4.17), without introducing the operators φ̂k and π̂k explicitly. The Hilbert
space of quantum states is constructed and interpreted as above.
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4.2 Zero-point energy

Mode functions

Note the occurrence of the functions e−iωkt in the time dependence of the modes

φ̂k. These functions are complex-valued solutions of the harmonic oscillator equation
with frequency ωk. In chapter 6 we shall show that for quantum fields in gravitational
backgrounds the “oscillator frequency” ωk becomes time-dependent. In that case, we
need to replace e−iωkt by mode functions vk(t) which are certain complex-valued
solutions of the equation

v̈k + ω2
k(t)vk = 0.

The mode expansion is written more generally as

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2

[

â−k v
∗
k(t)eik·x + â+

k vk(t)e−ik·x] . (4.18)

(The commutation relation for the operators â±k remains unchanged.) From Eq. (4.17)
we can read off the mode functions of a free field in flat space,

vk(t) =
1√
ωk
eiωkt, ωk =

√

k2 +m2. (4.19)

In this case the mode functions depend only on the magnitude of the wave number
k, so we write vk and not vk.

Remark: quantitative meaning of mode functions. Equation (4.18) relates φ̂ to â±
k

and vk.
Since the operators â±

k
are dimensionless and normalized to 1 through the commutation

relation, the order of magnitude of φ is the same as that of vk . We shall show in chapter 7
(Sec. 7.1.2) that |vk| characterizes the typical amplitude of vacuum fluctuations of the field
φ. For instance, the mode functions (4.19) indicate that the typical fluctuation in the mode
φk is of order 1/

√
ωk. This result is already familiar from Eq. (1.11) of Sec. 1.4.

4.2 Zero-point energy

It is easy to see from Eq. (4.16) that the vacuum state |0〉 is an eigenstate of the Hamil-
tonian with the eigenvalue

E0 = 〈0| Ĥ |0〉 =
1

2
δ(3)(0)

∫

d3kωk. (4.20)

This expression, which we expect to describe the total energy of the field in the vac-
uum state, is obviously divergent: the factor δ(3)(0) is infinite, and also the integral

∫

d3kωk =

∫ ∞

0

4πk2
√

m2 + k2dk

diverges at the upper limit.
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4 From harmonic oscillators to fields

Explaining the presence of δ(3)(0)

The origin of the divergent factor δ(3)(0) is relatively easy to understand: it is the
infinite volume of all space. Indeed, the factor δ(3)(0) arises from the commutation
relation (4.14) when we evaluate δ(3) (k− k′) at k = k′; note that δ(3) (k) has the
dimension of 3-volume. For a field quantized in a finite box of volume V (see Sec. 1.2),
the vacuum energy is given by Eq. (1.10),

E0 =
1

2

∑

k

ωk ≈ 1

2

V

(2π)3

∫

d3kωk.

Comparing this with Eq. (4.20), we find that the formally infinite factor δ(3)(0) arises
when the box volume V grows to infinity. Dividing the energy E0 by the volume V
and taking the limit V → ∞, we obtain the zero-point energy density

lim
V →∞

E0

V
=

1

2

∫

d3k

(2π)3
ωk. (4.21)

Renormalizing the zero-point energy

The energy density (4.21) is infinite because the integral
∫

d3kωk diverges at |k| → ∞.
This is called an ultraviolet divergence because large values of k correspond to large
energies. The formal reason for this divergence is the presence of infinitely many
oscillators φk(t), each having the zero-point energy 1

2ωk.
This is the first of several divergences encountered in quantum field theory. In

the case of a free scalar field in the flat spacetime, there is a simple recipe to circum-
vent this problem. The energy of an excited state |n1, n2, ...〉 can be computed using
Eqs. (4.14)-(4.16). Since

[â−k , (â
+
k′)

n] = n(â+
k )n−1δ (k− k′) ,

we obtain

E (n1, n2, ...) = E0 +

∫

d3k

(

∑

s

nsδ (k − ks)

)

ωk = E0 +
∑

s

nsωks
.

Thus the energy of a state is always a sum of the divergent quantity E0 and a fi-
nite state-dependent contribution. The presence of the zero-point energy E0 cannot
be detected by measuring transitions between the excited states of the field. So the
divergent term E0 can be simply subtracted away.

The subtraction is conveniently performed by modifying the Hamiltonian (4.16) so
that all annihilation operators â−

k
appear to the right of all creation operators â+

k
(this

form is called normal-ordered ). For the free field, we set

Ĥ ≡
∫

d3kωkâ
+
k â

−
k .
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4.3 The Schrödinger equation for a quantum field

After this redefinition, the vacuum state becomes an eigenstate of zero energy:

〈0| Ĥ |0〉 = 0.

The resulting quantum theory agrees with experiments.

4.3 The Schrödinger equation for a quantum field

So far we have been working in the Heisenberg picture, but fields can be quantized
also in the Schrödinger picture. Here we first consider the Schrödinger equation for
a collection of harmonic oscillators and then generalize that equation to quantum
fields.

The action describing a set of N harmonic oscillators is given by Eq. (4.1). In the
coordinates qi, pi ≡ q̇i, where i = 1, 2, ..., N , the Hamiltonian is

H =
1

2

∑

i

p2
i +

1

2

∑

i,j

Mijqiqj .

To quantize this system in the Schrödinger picture, we introduce time-independent op-
erators p̂i, q̂i which act on time-dependent states |ψ(t)〉. The Hamiltonian becomes an

operator Ĥ = H (p̂i, q̂i). The Hilbert space is spanned by the basis vectors |q1, ..., qN 〉
which are the generalized eigenvectors of the position operators qi. A state vector
|ψ(t)〉 can then be decomposed into a linear combination

|ψ(t)〉 =

∫

dq1...dqNψ (q1, ..., qN , t) |q1, ..., qN 〉 ,

where the wave function ψ (q1, ..., qN , t) is

ψ (q1, ..., qN , t) = 〈q1, ..., qN |ψ(t)〉 .

The momentum operators p̂i in this representation act on the wave function as deriva-
tives −i∂/∂qi, and the Schrödinger equation takes the form

i
∂ψ

∂t
= Ĥψ =

1

2

∑

i,j

(

−δij
∂2

∂qi∂qj
+Mijqiqj

)

ψ. (4.22)

To generalize the Schrödinger equation to quantum fields, we need to replace the
oscillator coordinates qi by field values φ (x) and the wave function ψ (q1, ..., qN , t)
by a wave functional Ψ [φ (x) , t]. Note that the spatial coordinate x plays the role of
the index i, so Ψ is a functional of φ (x) which is a function only of space; the time
dependence is contained in the functional Ψ. The probability for measuring a field

configuration φ (x) at time t is proportional to |Ψ [φ (x) , t]|2.
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4 From harmonic oscillators to fields

The partial derivative ∂/∂qi is replaced by the functional derivative δ/δφ (x) and
the sum over i by an integral over space,

∫

d3x. Thus we obtain the following equa-
tion as a direct generalization of Eq. (4.22):

i
∂

∂t
Ψ [φ, t] = − 1

2

∫

d3x
δ2Ψ [φ, t]

δφ (x) δφ (x)

+
1

2

∫

d3x d3yM (x,y)φ (x)φ (y) Ψ [φ, t] .

This is the Schrödinger equation for a scalar field φ; the kernel M (x,y) is given by
Eq. (4.5).

We wrote the Schrödinger equation for a relativistic quantum field rather as a proof
of concept than as a practical device for calculations. It is rather difficult to solve this
equation directly (a formal solution may be found as a path integral). Usually one
needs additional insight to extract information from this equation. The Schrödinger
picture is rarely used in quantum field theory.
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5 Overview of classical field theory

Summary: Action principle for classical fields. Minimal and conformal
coupling to gravity. Internal symmetries and gauge invariance. Action
for gauge fields. The energy-momentum tensor for fields. Conservation
of the EMT.

5.1 Choosing the action functional

Classical field theory is based on the action principle: the field equations are the con-
ditions of extremizing the action functional,

S [φ] =

∫

d4xL (φi, ∂µφi, ...) (5.1)

where the Lagrangian density L depends on the field and its derivatives. (For brevity,
spacetime derivatives are denoted by commas, e.g. ∂µφ ≡ φ,µ.) The main focus of this
section is the choice of an appropriate action functional for a classical field. The field
under consideration may be a scalar field with one or more components φi, a vector
field, a spinor field, and so on. For instance, the gravitational field is described by the
metric gαβ(x) which is a tensor of rank 2.

Remark: fermions. A classical theory of fermionic fields can be built by considering
spinor fieldsψµ(x) with values in an anticommutative (Grassmann) algebra, so thatψµψν =
−ψνψµ. The assumption of anticommutativity is necessary to obtain the correct anticom-
mutation relations in the quantum theory. Consideration of fermionic fields is beyond the
scope of this book.

5.1.1 Requirements for the action functional

To choose an action for a field, we use the following guiding principles:

1. The action is real-valued and has an extremum.
Without this condition, one cannot formulate the action principle as “the classi-
cal trajectory is an extremum of the action.”

2. The action is a local functional of the fields and their derivatives.
A local functional is one of the form (5.1) where the Lagrangian density L is
a function of all fields at one and the same point. An example of a nonlocal
functional is

∫

d4xd4x′φµ(x − x′)ψ,µ(x′).
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5 Overview of classical field theory

This functional directly couples the values of the fields φ and ψ at distant points
x and x′.
Local theories have so far been successful in describing experiments, so there
was no need to consider nonlocal theories which are much more complicated.

3. The equations of motion for the fields contain derivatives of at most second or-
der.
This requirement means that it is sufficient to specify initial values of the fields
and their first derivatives, or alternatively initial and final values, to fix the so-
lution uniquely. In the next section we shall show that this requirement is sat-
isfied when the Lagrangian contains only the fields and their first derivatives,
L = L

(

φi, φi
,µ

)

.

4. When the background spacetime is flat (i.e. if gravity is negligible), the action is
Poincaré-invariant.
The Poincaré group of transformations encompasses four shifts of the coor-
dinates xµ, three spatial rotations and three Lorentz transformations (boosts).
This requirement constrains possible Lagrangians quite strongly. The Poincaré
invariance enforces the Lorentz invariance, the rotational invariance, and addi-
tionally prohibits Lagrangian densities L that explicitly depend on x or t.

5. For an arbitrary curved background spacetime, the action has a generally co-
variant form (invariant under arbitrary coordinate transformations).
This requirement comes from general relativity: A field theory is compatible
with general relativity if it is formulated in a coordinate-independent manner.

6. If the fields have additional physical symmetries, the action should respect
them.
Fields can have internal symmetries such as gauge symmetries. For example,
the conservation of electric charge in electrodynamics can be viewed as a con-
sequence of an internal symmetry of the complex-valued spinor field ψµ which
describes the electrons. Namely, the Lagrangian of electrodynamics is invariant
under the gauge transformations

ψµ(x) → eiαψµ(x),

where α is a real constant. These transformations form the U(1) gauge group.
Another example is the theory of electroweak interactions where the action is
invariant under transformations of the SU(2)×U (1) gauge group. (See Sec. 5.2
for more details on gauge symmetry.)
Quantization of multicomponent fields with gauge symmetries is complicated,
and in this book we shall quantize only scalar fields.

5.1.2 Equations of motion for fields

The action principle states that a classical field φi(x) must be an extremum of the
action functional. The variation of the action under a small change δφi(x) of the field
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φi(x) is

δS =

∫

d4x
δS

δφi(x)
δφi(x) +O

(

[

δφi
]2
)

.

This yields the Euler-Lagrange equation of motion for the field,

δS

δφi(x)
= 0.

The currently established field theories (electrodynamics, gravitation, weak and
strong interactions) are described by Lagrangian densities which depend only on the
fields and their first derivatives, L = L

(

φi, φi
,µ

)

. For such Lagrangians, the variation
of the action is given by the formula

δS =

∫

d4x

(

∂L
(

φi, φi
,µ

)

∂φj
− ∂

∂xµ

∂L
(

φi, φi
,µ

)

∂φj
,µ

)

δφj(x) +O
(

[

δφi
]2
)

,

where the summations over µ and j are implied. The boundary terms vanish if

∂L
∂φj

,µ

δφj → 0 sufficiently rapidly as |x| → ∞, |t| → ∞,

which is the usual assumption. Thus we obtain the following equations of motion for
the fields φi,

δS [φ]

δφj(x)
=
∂L
(

φi, φi
,µ

)

∂φj
− ∂

∂xµ

∂L
(

φi, φi
,µ

)

∂φj
,µ

= 0. (5.2)

These equations conform to the third requirement section 5.1.1 because they contain
φi, φi

,µ, and φi
,µν , but no higher derivatives.

The formula (5.2) holds for all Lagrangians that depend on fields and their first
derivatives. If a Lagrangian for a field φ contains second-order derivatives such as
φ,µν , the corresponding equations of motion will generally contain derivatives of
third and fourth order.

5.1.3 Real scalar field

The Lagrangian density for a real-valued scalar field φ(x) in the Minkowski spacetime
is

L (φ, ∂µφ) =
1

2
ηµνφ,µφ,ν − V (φ), (5.3)

where ηµν ≡ diag(1,−1,−1,−1) is the Minkowski metric and V (φ) is a potential that
describes the self-interaction of the field. A free (i.e. noninteracting) field has the
potential

V (φ) =
1

2
m2φ2.

This is the simplest nontrivial potential; an additional linear term Aφ can be removed

by a field redefinition φ(x) = φ̃(x) + φ0. The parameter m is the rest mass of the
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5 Overview of classical field theory

particles described by the field φ. The Lagrangian density (5.3) satisfies all conditions
of Sec. 5.1.1 except the requirement of general covariance.

To make a Poincaré-invariant action generally covariant, we need to adjust it in
several ways:

1. Replace ηµν by the general spacetime metric gµν .

2. Replace spatial derivatives by covariant derivatives, e.g. φ,µ → φ;µ. (This makes
no difference for a scalar field since covariant derivatives of a scalar function are
the same as ordinary spacetime derivatives.)

3. Replace the Minkowski volume element d3x dt by the covariant volume element
d4x

√−g, where g ≡ det gµν is the determinant of the covariant metric tensor.

Covariant volume element

The expression d4x does not give the correct volume element if the coordinates x are
not Cartesian or if the spacetime is curved. Here is a simple calculation to motivate
the choice of d4x

√−g as the volume element.

We consider a two-dimensional Euclidean plane with Cartesian coordinates x, y
and introduce arbitrary curvilinear coordinates x̃, ỹ and a metric gij(x) (here i, j =
1, 2). Infinitesimal increments dx̃, dỹ of the coordinates define an area element cor-
responding to the infinitesimal parallelogram spanned by vectors (dx̃, 0) and (0, dỹ).
The lengths of the sides of this parallelogram are l1 =

√
g11 |dx̃| and l2 =

√
g22 |dỹ|,

while the angle θ between the vectors is found from the cosine theorem, l1l2 cos θ =
g12dx̃dỹ. Thus the infinitesimal area dA of the parallelogram is equal to

dA = l1l2 sin θ =

√

g11g22 − (g12)
2 |dx̃| |dỹ| =

√

det gij |dx̃| |dỹ| .

It is not difficult to show that the volume element in any number of dimensions is

given by the formula dV = dnx
√

|g(x)|. If u1, ..., un are some vectors in a Euclidean
space and let Gij ≡ ui · uj be the n × n matrix of their pairwise scalar products.
Then the volume of the n-dimensional parallelepiped spanned by the vectors ui is

V =
√

|detG|. To prove this statement, we consider the matrix U of coordinates of

the vectors ui in an orthonormal basis ei, i.e. ui =
∑

j U
j
i ej . A standard definition

of the determinant of a linear transformation is the volume of the image of a unit
parallelepiped after the transformation. This gives the volume V as detU . Then we

observe that G = UTU , therefore detG = (detU)2 = V 2 and V =
√

|detG|.
In general relativity, the spacetime has a metric with signature (+,−,−,−) and the

determinant det gµν is always negative (except at singular points where it may be
zero or infinite). Therefore we change the sign of g and write the volume element as
d4x

√−g.
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Minimal coupling to gravity

Above we listed the three modifications of the action which are necessary to enforce
general covariance. These modifications produce a generally covariant action out
of a Poincaré-invariant action. The new action explicitly depends on gµν and thus
describes a field coupled to gravity. For instance, a generally covariant action for a
scalar field is

S =

∫

d4x
√−g

[

1

2
gµνφ,µφ,ν − V (φ)

]

. (5.4)

This form of coupling is called the minimal coupling to gravity; it describes the min-
imal required interaction of a field with gravitation which necessarily follows from
the requirement of compatibility with general relativity. There are other forms of cou-
pling to gravity, for example, the conformal coupling (see below). These couplings
are called nonminimal and are usually expressed by additional terms in the action.
These additional terms couple fields to the curvature tensor Rµνρσ and violate the
strong equivalence principle (“all local effects of gravity are equivalent to accelerated
coordinate systems in a flat spacetime”) because the field is directly influenced by the
curvature which, if nonzero, cannot be imitated by an accelerated reference frame in
the flat spacetime. One needs a justification to introduce nonminimal terms into the
Lagrangian; nonminimally coupled field theories are usually more complicated.

Conformal coupling

A frequently used nonminimally coupled model is the conformally coupled scalar
field described by the action

S =

∫

d4x
√−g

[

1

2
gµνφ,µφ,ν − V (φ) − ξ

2
Rφ2

]

, (5.5)

where R is the Ricci curvature scalar and ξ is a constant parameter chosen as ξ = 1
6 .

In effect, the additional term describes a “mass” that depends on the curvature of the
spacetime. With ξ = 1

6 the theory has an additional symmetry, namely the action (5.5)
is invariant under conformal transformations of the metric,

gµν → g̃µν = Ω2(x)gµν , (5.6)

where the conformal factor Ω2(x) is an arbitrary nonvanishing function of spacetime.1

The importance of conformal transformations comes from the fact that several im-
portant spacetimes, such as spatially flat Friedmann-Robertson-Walker (FRW) space-
times used in cosmology, are conformally flat. A spacetime is conformally flat if in
some coordinates its metric is gµν = Ω2(x)ηµν , where ηµν is the flat Minkowski metric
and Ω2(x) 6= 0 is some function. These spacetimes can be mapped to the flat space-
time by a conformal transformation. If a field theory is conformally invariant, this

1Verifying the conformal invariance of the above action takes a fair amount of algebra. We omit the details
of this calculation which can be found in chapter 6 of the book Aspects of quantum field theory in curved
space-time by S. FULLING (Cambridge, 1989).
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5 Overview of classical field theory

transformation reduces the action to that of a field in the flat Minkowski spacetime.
In effect, a conformal field in a conformally flat spacetime is totally decoupled from
gravity.

The equation of motion for a conformally coupled field φ follows from the ac-
tion (5.5),

∂α
∂L
∂φ,α

− ∂L
∂φ

=
(√−ggαβφ,β

)

,α
+
∂V

∂φ
+ ξRφ

√−g = 0. (5.7)

This equation can be rewritten in a manifestly covariant form as

φ;α
;α +

∂V

∂φ
+ ξRφ = 0. (5.8)

This is similar to the Klein-Gordon equation,

φ,α
,α +m2φ = 0,

except for the covariant derivatives and the nonminimal coupling term ξRφ which
can be interpreted as a curvature-dependent mass.

Gauss’s law with covariant derivatives

When computing the variation of a generally covariant action such as the action (5.4),
one needs to integrate by parts. A useful shortcut in such calculations is an analog of
Gauss’s law with covariant derivatives. The covariant divergence of a vector field Aµ

can be written as

Aµ
;µ =

1√−g∂µ

(√−gAµ
)

.

Assuming that the contribution of the boundary terms vanishes, we obtain

∫

dnx
√−gAµ

;µB = −
∫

dnx
√−gAµB,µ. (5.9)

This formula can be used to integrate by parts: we set Aµ ≡ φ,αg
αµ, B ≡ ψ and find

∫

d4x
√−gφ,αψ,βg

αβ = −
∫

d4x
√−g

(

φ,αg
αβ
)

;β
ψ.

Note that the covariant derivative of the metric is zero, g ;α
αβ = 0, so we may lower or

raise the indices under covariant derivatives at will; for example, Aµ
;µ = A ;µ

µ .

5.2 Gauge symmetry and gauge fields

Gauge fields naturally appear if the action for a field is invariant under a group of
internal symmetry transformations and this symmetry is made local, i.e. when differ-
ent symmetry transformations are applied at different spacetime points x. We shall
now study this construction on some examples.
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5.2 Gauge symmetry and gauge fields

5.2.1 The U(1) gauge symmetry

Let us consider a complex scalar field φ(x) with the action

S [φ] =

∫

d4x
√−g

[

1

2
gαβφ,αφ

∗
,β − V (φφ∗)

]

. (5.10)

It is clear that the action (5.10) is generally covariant and describes a minimal coupling
to gravity. This action is also invariant under the gauge transformation

φ(x) → φ̃(x) = eiαφ(x), (5.11)

where α is an arbitrary real constant. These transformations form the U(1) symmetry
group which is the gauge group in the theory of a complex scalar field.

The symmetry transformation (5.11) is called internal because it only changes the
value of the field φ(x) within its space of values but does not change the point x.
Other symmetry transformations such as Lorentz rotations or mirror reflections in-
volve also the spacetime coordinates and are not called internal.

Remark: conservation of charge. According to Noether’s theorem, the invariance under
transformations (5.11) leads to the conservation of total charge,

d

dt

Z

d3
x

„

φ∗ ∂φ

∂t
− φ

∂φ∗

∂t

«

= 0.

The transformation (5.11) is called global because the values φ(x) are transformed
in the same way at all points x. An important discovery was that this global symme-
try can be made local, with an arbitrary function α(x) instead of a constant α:

φ(x) → φ̃(x) = eiα(x)φ(x). (5.12)

The action (5.10) is not invariant under local gauge transformations because the deriva-
tive φ,µ transforms as

φ,µ(x) → φ̃,µ(x) = eiα(x) (φ,µ + iα,µφ) ,

instead of φ̃,µ = eiα(x)φ,µ. To achieve the invariance under local gauge transfor-
mations, one introduces an additional vector field Aµ called the gauge field which
compensates the extra term in the derivative φ,µ. Namely, all derivatives of the field
φ in the Lagrangian are replaced by the modified derivatives Dµ,

φ,µ → Dµφ ≡ φ,µ + iAµφ, (5.13)

which are called gauge-covariant derivatives, in analogy with the covariant deriva-
tive in general relativity,

fα
;µ = fα

,µ + Γα
βµf

β .

One then postulates that the gauge transformation of the field Aµ is given by the
following special rule,

Aµ → Ãµ ≡ Aµ − α,µ. (5.14)
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5 Overview of classical field theory

Then it is straightforward to verify that the covariant derivative of φ transforms ac-
cording to the local transformation law:

D̃µφ̃ =
(

∂µ + iÃµ

)(

eiα(x)φ
)

= eiα(x)Dµφ,

and that the modified action

S [φ,A] =

∫

d4x
√−g

[

1

2
gαβ (Dαφ) (Dβφ)∗ − V (φφ∗)

]

(5.15)

is invariant under local gauge transformations (5.12)-(5.14). Note that the transfor-
mation law for Aµ can be chosen at will since all we need is some transformation law
for the fields which makes the action invariant.

Remark: minimal coupling. The introduction of the gauge field Aµ, the covariant deriva-
tive Dµ, and the transformation law (5.14) may appear arbitrary at this stage. In fact, it
follows from geometric considerations (based on the theory of fiber bundles) that this is
the minimum necessary modification of the action (5.10) that ensures local gauge invari-
ance. Therefore the coupling of the field φ to the gauge field manifested in the action (5.15)
is called minimal coupling.

Building a gauge-invariant action is quite similar to building a generally covariant ac-
tion. This is so because gravity may be also viewed as a gauge field that arises in a field
theory after localizing the symmetry of coordinate transformations. One can derive the
minimal coupling to gravity from the equivalence principle as the minimum necessary
modification of the flat-space action.

Remark: elementary particles. In QFT, each field describes a certain family of particles.
The present picture of fundamental interactions divides all elementary particles into “mat-
ter” and “gauge” particles. Namely, “matter particles” interact by forces mediated by
“gauge particles,” i.e. particles that correspond to gauge fields. For example, electrons
are matter particles while photons are gauge particles that transmit the electromagnetic
interaction between electrons. Similarly, quarks are matter particles that interact through
gluons (gauge particles of the SU(3) symmetry group). It is also remarkable that that all
presently known matter particles are fermions, while all gauge particles are bosons.

5.2.2 Action for gauge fields

The action (5.15) describes a scalar field φ coupled to the vector field Aµ and to grav-
ity. To obtain the total action of the system, we need to add to Eq. (5.15) some fur-
ther terms describing the dynamics of the gauge field Aµ itself and the dynamics of
gravitation. As before, we need to find an action that is generally covariant and in-
variant under local gauge transformations. For instance, one cannot add a mass term
m2gµνA

µAν because this term is not invariant under the gauge transformation (5.14).
The standard form of a gauge-invariant action for the field Aµ is built using the

antisymmetric field strength tensor

Fµν ≡ Aν;µ −Aµ;ν = Aν,µ −Aµ,ν . (5.16)
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The Christoffel symbols in the covariant derivatives in Eq. (5.16) cancel because of an-
tisymmetrization. One can check that the tensor Fµν is invariant under gauge trans-
formations. So any scalar quantity built from Fµν would be an acceptable (gauge-
invariant and generally covariant) term in the action.

The simplest such quantity is the Yang-Mills term, FµνF
µν ≡ gαβgµνFαµFβν . The

action

S [Aµ] = − 1

16π

∫

d4x
√−gFµνF

µν (5.17)

describes classical electrodynamics coupled to gravity (in vacuum); the field Aµ is
proportional to the electromagnetic 4-potential. It is a standard result that Maxwell’s
equations follow from this action. The combined action (5.15) and (5.17) describes
a field of charged relativistic particles of spin 0 (scalar mesons) interacting with the
electromagnetic field (photons) and with gravity.

Remark: conformal invariance of electrodynamics. The action (5.17) describes the dy-
namics of photons as well as the interaction between photons and gravity. We notice that
a conformal transformation (5.6) leaves the action invariant since

√−g changes by the fac-
tor Ω4 while gαβ is multiplied by the factor Ω−2. Therefore the evolution of electromag-
netic field in any conformally flat spacetime is exactly the same as in the flat Minkowski
spacetime (after a conformal transformation). In particular, the gravitational field does not
produce electromagnetic waves in conformally flat spacetimes.

The action for gravity is not as straightforward to derive. The simplest theory of
gravity is Einstein’s general relativity defined by the Einstein-Hilbert action,

Sgrav = − 1

16πG

∫

d4x
√−g(R + 2Λ). (5.18)

Here G is Newton’s gravitational constant, R is the Ricci curvature scalar and Λ is a
constant parameter (the cosmological constant). The Einstein equations are obtained
by extremizing this action with respect to gαβ .

Exercise 5.1
Derive the Einstein equations in vacuum (“pure gravity”) from the action

Sgrav = − 1

16πG

Z

R
√−gd4x

using the Palatini method, namely by varying the action with respect to the metric gµν

and the Christoffel symbol Γµ
αβ independently, as if they were unrelated functions.

Hint: Write the curvature scalar through the Ricci tensor,

R = gαβRαβ = gαβ `∂µΓµ
αβ − ∂βΓµ

αµ + Γµ
αβΓν

µν − Γν
αµΓµ

βν

´

. (5.19)

(We use the sign convention of Landau and Lifshitz.) First find the variation of R
√−g

with respect to Γ and establish the standard relation between Γ and g, assuming that Γµ
αβ

is symmetric in α,β:

Γµ
αβ =

1

2
gµν (gαν,β + gβν,α − gαβ,ν) . (5.20)
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Then compute the variation of R
√−g with respect to gαβ (note the variation of the deter-

minant) and finally obtain the vacuum Einstein equation as

δSgrav

δgαβ
= −

√−g
16πG

„

Rαβ − 1

2
gαβR

«

= 0. (5.21)

Remark: alternative theories of gravity. At the moment, general relativity agrees with
available gravitation experiments. However, we cannot probe strongly curved spacetimes
and it is natural to expect that general relativity may be an approximation to a more ac-
curate theory. For instance, the action might contain terms of the form R2, RµνR

µν , or
RµνρσR

µνρσ . The effect of these terms would be to modify the Einstein equations in the
high-curvature regime. Such terms greatly complicate the theory and may be introduced
only with sufficient justification. All such theories must necessarily agree with Einstein’s
general relativity in the Newtonian limit of small curvature (weak gravity). Therefore any
differences between the alternative theories of gravity can be manifested only when the
gravitational field is extremely strong. Such experiments are presently impossible.

5.3 Energy-momentum tensor for fields

The main result of this section is that the energy-momentum tensor (EMT) of a field
is related to the functional derivative of the action with respect to the metric gαβ .

We consider a generally covariant action

S [φi, gµν ] = Sgrav [gµν ] + Sm [φi, gµν ]

describing a set of matter fields φi coupled to gravity. Here Sgrav is the gravitational
action (5.18) and Sm is the action for the matter fields. (The coupling to gravity does
not have to be minimal.) The equations of motion for the gravitational field are ob-
tained by varying the action S with respect to gαβ ,

δS [φi, gµν ]

δgαβ
=

δ

δgαβ
Sgrav [gµν ] +

δ

δgαβ
Sm [φi, gµν ] = 0.

We know that the result must be the Einstein equation:

Rαβ − 1

2
gαβR = 8πGTαβ , (5.22)

where Tαβ is the combined energy-momentum tensor of the fields φi. As shown in
Exercise 5.1 (p. 59), the functional derivative of Sgrav with respect to gαβ gives (up to
a factor) the LHS of Eq. (5.22). Therefore we expect Eq. (5.22) to coincide with

−
√−g
16πG

(

Rαβ − 1

2
gαβR

)

= − δSm

δgαβ
.

This requirement immediately leads to the relation

Tαβ =
2√−g

δSm

δgαβ
. (5.23)
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Equation (5.23) can be viewed as a convenient definition of the EMT of matter fields.
The resulting tensor Tαβ is symmetric and covariantly conserved (see the next sec-
tion),

T ;α
αβ = 0. (5.24)

Remark: Strictly speaking, the above derivation shows only that if the Einstein equa-
tion follows from the action of matter fields combined with the Einstein-Hilbert action for
gravity, then the total EMT of all matter must be given by Eq. (5.23).

Example: The energy-momentum tensor for the field φ with the action (5.4) is

Tαβ(x) =
2√−g

δS

δgαβ(x)
= φ,αφ,β − gαβ

[

1

2
gµνφ,µφ,ν − V (φ)

]

.

5.3.1 Conservation of the EMT

In this section we show that the tensor Tαβ defined by Eq. (5.23) is covariantly con-
served, T ;α

αβ = 0, as long as the matter action Sm is generally covariant and the field
φi satisfies its equation of motion,

δSm [φi]

δφi(x)
= 0. (5.25)

The requirement (5.25) is natural: in mechanics, the energy is conserved only when
the equations of motions are satisfied.

To derive the conservation law, we consider an infinitesimal coordinate transfor-
mation

xα → x̃α = xα + ξα(x),

where ξα(x) is the generator of the transformation. (Note that the transformation
depends on the point x.) The matter fields φi are transformed according to

φi(x) → φ̃i(x) = φi(x) + δφi(x),

where δφi(x) is determined for each field according to its spin. The metric (being a
field of spin 2) is transformed according to

gαβ → g̃αβ = gαβ + ξα;β + ξβ;α +O
(

|ξ|2
)

.

We know that the total action is invariant under this transformation, therefore the
variation δS must vanish:

0 = δS =

∫

δSm

δgαβ(x)

(

ξα;β + ξβ;α
)

d4x+

∫

δSm

δφi(x)
δφi(x)d

4x. (5.26)
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Since the field φi satisfies Eq. (5.25), the second term vanishes. Expressing the first
term through the tensor Tαβ , we get

∫

Tαβξ
β;α√−gd4x =

∫

[

(

Tαβξ
β
);α − T ;α

αβξ
β
]√−gd4x

= −
∫

T ;α
αβξ

β√−gd4x = 0. (5.27)

Here we used the relation (5.9) and assumed that ξα vanishes at infinity sufficiently
quickly. Since Eq. (5.27) must be satisfied for arbitrary ξα(x), we conclude that the
conservation law T ;α

αβ = 0 holds.

Remark: The absence of the covariant volume factor
√−g in Eq. (5.26) is not a mistake; the

result is nevertheless a covariant quantity. The derivative with respect to ξα is calculated
using the chain rule, e.g.

δSm =

Z

δSm

δgαβ(x)
δgαβ(x)d4x,

and the rule requires a simple integration over x. The correct covariant behavior is sup-
plied by the functionals Sgrav and Sm.

In a flat spacetime, the laws of energy and momentum conservation follow from
the invariance of the action under spacetime translations. In the presence of grav-
itation the spacetime is curved, so in general the spacetime translations are not a
physical symmetry any more. However, the action is covariant with respect to ar-
bitrary coordinate transformations. The corresponding conservation law is the co-
variant conservation of the EMT, Eq. (5.24). Because of the presence of the covariant
derivative in Eq. (5.24), it does not actually express a conservation of energy or mo-
mentum of the matter field φi. That equation would be a conservation law if it had
the form∂µ (

√−gT µν) = 0, but instead it can be shown that

∂µ

(√−gT µν
)

= −√−gΓν
µλT

µλ 6= 0. (5.28)

The energy of the matter fields alone, described by the energy-momentum tensor
Tαβ , is not necessarily conserved; the gravitational field can change the energy and
the momentum of matter.
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6 Quantum fields in expanding
universe

Summary: Scalar field in a FRW universe. Mode functions. Bogolyubov
transformations. Choice of the vacuum state. Particle creation.

The principal task of this chapter is to study the influence of time-dependent gravita-
tional backgrounds on quantum fields. To focus on the essential physics and to avoid
cumbersome calculations, we shall consider a free scalar field in a homogeneous and
isotropic universe.

6.1 Scalar field in FRW universe

A minimally coupled real scalar field φ(x) in a curved spacetime is described by the
action (5.4),

S =

∫ √−gd4x

[

1

2
gαβφ,αφ,β − V (φ)

]

. (6.1)

The equation of motion for the field φ is Eq. (5.7) with ξ = 0,

gµνφ,µν +
1√−g

(

gµν√−g
)

,µ
φ,ν +

∂V

∂φ
= 0. (6.2)

For a free massive field, one sets V (φ) = 1
2m

2φ2.
In this chapter we consider an important class of spacetimes—homogeneous and

isotropic Friedmann-Robertson-Walker (FRW) spacetimes with flat spatial sections
(called for brevity flat FRW ) characterized by metrics of the form

ds2 ≡ gµνdx
µdxν = dt2 − a2(t)dx2, (6.3)

where dx2 is the usual Euclidean metric and a(t) is the scale factor. Note that it is only
the three-dimensional spatial sections which are flat; the four-dimensional geometry
of such spacetimes is usually curved.

A flat FRW spacetime is a conformally flat spacetime (this notion was discussed in
Sec. 5.1.3). To explicitly transform the metric (6.3) into a conformally flat form, we
replace the coordinate t by the conformal time η,

η(t) ≡
∫ t

t0

dt

a(t)
,
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6 Quantum fields in expanding universe

where t0 is an arbitrary constant. The scale factor a(t) expressed through the new
variable η is denoted by a(η). In the coordinates (x, η) the line element takes the form

ds2 = a2(η)
[

dη2 − dx2
]

, (6.4)

so the metric tensor is gµν = a2ηµν , gµν = a−2ηµν , and we have
√−g = a4. The field

equation (6.2) in the coordinates (x, η) with V (φ) = 1
2m

2φ2 becomes

φ′′ + 2
a′

a
φ′ − ∆φ +m2a2φ = 0, (6.5)

where the prime ′ denotes derivatives with respect to η. It is convenient to introduce
the auxiliary field χ ≡ a(η)φ and to rewrite Eq. (6.5) as

χ′′ − ∆χ+

(

m2a2 − a′′

a

)

χ = 0. (6.6)

Exercise 6.1
Derive Eq. (6.6) from Eq. (6.5).

Comparing Eqs. (6.6) and (4.7), we find that the field χ(x) obeys the usual equa-
tion of motion of a field in the Minkowski spacetime, except for the time-dependent
effective mass

m2
eff(η) ≡ m2a2 − a′′

a
. (6.7)

The action (6.1) can be rewritten in terms of the field χ,

S =
1

2

∫

d3x dη
(

χ′2 − (∇χ)2 −m2
eff(η)χ

2
)

, (6.8)

and is analogous to the action (4.4).

Exercise 6.2
Derive the action (6.8) from Eq. (6.1) with V (φ) = 1

2
m2φ2 and the metric (6.4).

Thus the dynamics of a scalar field φ in a flat FRW spacetime is mathematically
equivalent to the dynamics of the auxiliary field χ in the Minkowski spacetime. All
information about the influence of the gravitational field on φ is encapsulated in the
time-dependent mass meff(η) defined by Eq. (6.7). Note that the action (6.8) for the
field χ is explicitly time-dependent, so the energy of the field χ is generally not con-
served. In quantum theory this leads to the possibility of particle creation; the energy
for new particles is supplied by the gravitational field.

6.1.1 Mode functions

Expanding the field χ in Fourier modes,

χ (x, η) =

∫

d3k

(2π)3/2
χk(η)eik·x, (6.9)
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6.1 Scalar field in FRW universe

we obtain from Eq. (6.6) the decoupled equations of motion for the modes χk(η),

χ′′
k +

[

k2 +m2a2(η) − a′′

a

]

χk ≡ χ′′
k + ω2

k(η)χk = 0. (6.10)

Remark: other spacetimes. The decoupling of the field modes hinges on the separation
of the time coordinate in the Klein-Gordon equation and on the expansion of the field χ
through the eigenfunctions of the spatial Laplace operator at a fixed time. In flat space,
these eigenfunctions are exp (ikx); another solvable case is a static, spherically symmetric
spacetime with a metric gαβ(r) that depends only on the radial coordinate r. However,
the field equations in a general spacetime are not separable. In such cases, the mode
decoupling cannot be performed explicitly and quantization is difficult.

We now need a few mathematical facts about time-dependent oscillator equations
such as Eq. (6.10),

ẍ+ ω2(t)x = 0. (6.11)

This equation has a two-dimensional space of solutions. Any two linearly indepen-
dent solutions x1(t) and x2(t) are a basis in that space. The expression

W [x1, x2] ≡ ẋ1x2 − x1ẋ2

is called the Wronskian of the two functions x1(t) and x2(t). Standard properties of
the Wronskian are summarized in the following exercise.

Exercise 6.3
Show that the Wronskian W [x1, x2] is time-independent if x1,2(t) satisfy Eq. (6.11).

Prove that W [x1, x2] 6= 0 if and only if x1(t) and x2(t) are two linearly independent
solutions.

If {x1(t), x2(t)} is a basis of solutions, it is convenient to define the complex func-
tion v(t) ≡ x1(t) + ix2(t). Then v(t) and v∗(t) are linearly independent and form a
basis in the space of complex solutions of Eq. (6.11). It is easy to check that

Im (v̇v∗) =
v̇v∗ − v̇∗v

2i
=

1

2i
W [v, v∗] = −W [x1, x2] 6= 0,

and thus the quantity Im (v̇v∗) is a nonzero real constant. If v(t) is multiplied by a

constant, v(t) → λv(t), the Wronskian W [v, v∗] changes by the factor |λ|2, therefore
we may normalize v(t) to a prescribed value of Im (v̇v∗) by choosing the constant λ.

A complex solution v(t) of Eq. (6.11) is called a mode function if v(t) is normalized
by the condition Im (v̇v∗) = 1. It follows from Exercise 6.3 that any solution v(t) nor-
malized by Im (v̇v∗) = 1 is necessarily such that v(t) and v∗(t) are a basis of linearly
independent complex solutions of Eq. (6.11).

Remark: How to find a mode function. There exist infinitely many mode functions for
Eq. (6.18). For instance, the solution v(t) with the initial conditions v (t0) = 1, v̇ (t0) = i at
some t = t0 is a mode function since it satisfies the normalization condition Im (v̇v∗) = 1.
If exact solutions of Eq. (6.11) are not available in an analytic form, mode functions v(t)
must be found by approximate methods (e.g. numerically).
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6 Quantum fields in expanding universe

If some complex solution f(t) of Eq. (6.11) is known, one can compute the Wronskian of
f and f∗ which is always a pure imaginary number. IfW [f, f∗] = 0, the solution f(t) can-
not be used to produce a mode function. If, on the other hand, W [f, f∗] ≡ 2iλ 6= 0, then
a mode function is obtained from f(t) by an appropriate rescaling, namely v(t) = fλ−1/2

if λ > 0 and v(t) = f∗ |λ|−1/2 if λ < 0. There still remains the freedom of multiplying v(t)
by a phase eiα with a real constant α.

6.1.2 Mode expansions

All modes χk(η) with equal |k| = k are complex solutions of the same equation (6.10).
If a mode function vk(η) of that equation is chosen, the general solution χk(η) can be
expressed as a linear combination of vk and v∗k as

χk(η) =
1√
2

[

a−k v
∗
k(η) + a+

−kvk(η)
]

, (6.12)

where a±k are complex constants of integration that depend on the vector k (but not
on η). The index −k in the second term of Eq. (6.12) and the factor 1√

2
are chosen for

later convenience.
Since χ is real, χ∗

k = χ−k and it follows from Eq. (6.12) that a+
k

=
(

a−
k

)∗
. Combining

Eqs. (6.9) and (6.12), we find

χ (x, η) =

∫

d3k

(2π)3/2

1√
2

[

a−k v
∗
k(η) + a+

−kvk(η)
]

eik·x

=

∫

d3k

(2π)3/2

1√
2

[

a−k v
∗
k(η)eik·x + a+

k vk(η)e−ik·x] . (6.13)

Note that the integration variable k was changed (k → −k) in the second term of
Eq. (6.13) to make the integrand a manifestly real expression.

The relation (6.13) is called the mode expansion of the field χ (x, η) w.r.t. the mode
functions vk(η). At this point the choice of the mode functions is still arbitrary.

The coefficients a±k are easily expressed through χk(η) and vk(η):

a−k =
√

2
v′kχk − vkχ

′
k

v′kv
∗
k − vkv∗′k

=
√

2
W [vk, χk]

W [vk, v∗k]
; a+

k =
(

a−k
)∗
. (6.14)

Note that the numerators and denominators in Eq. (6.14) are time-independent since
they are Wronskians of solutions of the same oscillator equation.

Remark: isotropy of mode functions. In Eq. (6.12) we expressed all χk(η) with |k| = k
through the same mode function vk(η), written with the scalar index k. We call this the
isotropic choice of the mode functions vk(η). This convenient simplification is possible
because ωk depends only on k = |k|. (The modes χk and the coefficients a±

k
must have the

vector index k.) Of course, the mode functions vk(η) can also be chosen anisotropically;
below we shall discuss this in more detail.
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6.2 Quantization of scalar field

6.2 Quantization of scalar field

The field χ(x) can be quantized in the standard fashion by introducing the equal-time
commutation relations,

[χ̂ (x, η) , π̂ (y, η)] = iδ (x− y) , (6.15)

where π̂ = dχ̂/dη ≡ χ̂′ is the canonical momentum. The quantum Hamiltonian is

Ĥ(η) =
1

2

∫

d3x
(

π̂2 + (∇χ̂)2 +m2
eff(η)χ̂

2
)

. (6.16)

Then the modes χ̂k(t) and the creation and annihilation operators â±
k

are defined as
in chapter 4.

However, a quicker way to quantize the field is based on the mode expansion (6.13)
which can be used for quantum fields in the same way as for classical fields. The
mode expansion for the field operator χ̂ is found by replacing the constants a±k in
Eq. (6.13) by time-independent operators â±k ,

χ̂ (x, η) =

∫

d3k

(2π)3/2

1√
2

(

eik·xv∗k(η)â−k + e−ik·xvk(η)â+
k

)

, (6.17)

where vk(η) are mode functions obeying the equations

v′′k + ω2
k(η)vk = 0, ωk(η) ≡

√

k2 +m2
eff(η). (6.18)

The operators â±k satisfy the usual commutation relations for creation and annihila-
tion operators,

[

â−k , â
+
k′

]

= δ (k − k′) ,
[

â−k , â
−
k′

]

=
[

â+
k , â

+
k′

]

= 0. (6.19)

The next exercise shows that the commutation relations (6.15) and (6.19) are consistent
if the mode functions vk(η) are normalized by

Im (v′kv
∗
k) =

v′kv
∗
k − vkv

′∗
k

2i
≡ W [vk, v

∗
k]

2i
= 1. (6.20)

Therefore, quantization of the field χ̂ can be accomplished by postulating the mode
expansion (6.17), the commutation relations (6.19) and the normalization (6.20). (The
choice of the mode functions vk (η) will be made later on.) The technique of mode
expansions is a shortcut to quantization which avoids introducing the canonical mo-
mentum π̂ (x, η) explicitly.1

1One can also show, by using the operator analog of Eq. (6.14), that the commutation relations (6.15)
follow from (6.19) and (6.20).
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Exercise 6.4
Use the mode expansion of the scalar field in the form

χ̂ (x, η) =
1√
2

Z

d3k

(2π)3/2

h

eik·xv∗k(η)â−
k

+ e−ik·xvk(η)â+
k

i

(6.21)

to show that Eqs. (6.15) and (6.19) require the normalization condition

v′kv
∗
k − vkv

′∗
k = 2i. (6.22)

Isotropy of modes is not to be assumed (the mode functions vk have the vector index k).

The mode expansion (6.17) can be visualized as the general solution of the field
equation (6.6), where the operators â±k are integration constants. The mode expan-
sion can also be viewed as a definition of the operators â±k through the field operator
χ̂ (x, η). Explicit formulae relating â±k to χ̂ and π̂ ≡ χ̂′ are analogous to Eq. (6.14).
Clearly, the definition of â±k depends on the choice of the mode functions vk(η).

Remark: complex scalar field. If χ were a complex field, then (χk)∗ 6= χ−k and Eq. (6.12)
would give

`

a−
k

´∗ 6= a+
k

. In that case we cannot use Eq. (6.12) but instead introduce two

sets of creation and annihilation operators, e.g. â±
k

and b̂±
k

, satisfying (â−
k

)† = â+
k

and

(b̂−
k

)† = b̂+
k

, and the mode expansion would be

χ̂ (x, η) =

Z

d3k

(2π)3/2

1√
2

“

eik·xv∗k(η)â−
k

+ e−ik·xvk(η)b̂+
k

”

.

This agrees with the picture of a complex field as a set of two real fields. The operators

â+
k

and b̂+
k

describe the creation of respectively particles and antiparticles. (A real field
describes particles that are their own antiparticles.)

6.2.1 The vacuum state and particle states

Once the operators â±k are determined, the vacuum state |0〉 is defined as the eigen-
state of all annihilation operators â−

k
with eigenvalue 0, i.e. â−

k
|0〉 = 0 for all k. An

excited state |mk1 , nk2 , ...〉 with the occupation numbers m,n, ... in the modes χk1 ,
χk2 , ..., is constructed by

|mk1 , nk2 , ...〉 ≡
1√

m!n!...

[(

â+
k1

)m (
â+
k2

)n
...
]

|0〉 . (6.23)

We write |0〉 instead of |0k1, 0k2 , ...〉 for brevity. An arbitrary quantum state |ψ〉 is a
linear combination of these states,

|ψ〉 =
∑

m,n,...

Cmn... |mk1 , nk2 , ...〉 .

If the field is in the state |ψ〉, the probability for measuring the occupation number m

in the mode χk1 , the number n in the mode χk2 , etc., is |Cmn...|2.
Let us now comment on the role of the mode functions. Complex solutions vk(η)

of a second-order differential equation (6.18) with one normalization condition (6.20)

68



6.2 Quantization of scalar field

are parametrized by one complex parameter. Multiplying vk(η) by a constant phase
eiα introduces an extra phase e±iα in the operators â±k , which can be compensated by
a constant phase factor eiα in the state vectors |0〉 and |mk1 , nk2, ...〉. There remains
one real free parameter that distinguishes physically inequivalent mode functions.
With each possible choice of the functions vk(η), the operators â±

k
and consequently

the vacuum state and particle states are different. As long as the mode functions
satisfy Eqs. (6.18) and (6.20), the commutation relations (6.19) hold and thus the oper-
ators â±k formally resemble the creation and annihilation operators for particle states.
However, we do not yet know whether the operators â±k obtained with some choice
of vk(η) actually correspond to physical particles and whether the quantum state |0〉
describes the physical vacuum. The correct commutation relations alone do not guar-
antee the validity of the physical interpretation of the operators â±k and of the state
|0〉. For this interpretation to be valid, the mode functions must be appropriately se-
lected; we postpone the consideration of this important issue until Sec. 6.3 below. In
the rest of this section we shall formally study the consequences of choosing several
sets of mode functions to quantize the field φ.

6.2.2 Bogolyubov transformations

Suppose two sets of isotropic mode functions uk(η) and vk(η) are chosen. Since uk

and u∗k are a basis, the function vk is a linear combination of uk and u∗k,

v∗k(η) = αku
∗
k(η) + βkuk(η), (6.24)

with η-independent complex coefficients αk and βk. If both sets vk(η) and uk(η) are
normalized by Eq. (6.20), it follows that the coefficients αk and βk satisfy

|αk|2 − |βk|2 = 1. (6.25)

In particular, |αk| ≥ 1.

Exercise 6.5
Derive Eq. (6.25).

Using the mode functions uk(η) instead of vk (η), one obtains an alternative mode

expansion which defines another set b̂±k of creation and annihilation operators,

χ̂ (x, η) =

∫

d3k

(2π)3/2

1√
2

(

eik·xu∗k(η)b̂−
k

+ e−ik·xuk(η)b̂+
k

)

. (6.26)

The expansions (6.17) and (6.26) express the same field χ̂ (x, η) through two different
sets of functions, so the k-th Fourier components of these expansions must agree,

eik·x
[

u∗k(η)b̂−k + uk(η)b̂+−k

]

= eik·x [v∗k(η)â−k + vk(η)â+
−k

]

.

A substitution of vk through uk using Eq. (6.24) gives the following relation between

the operators b̂±k and â±k :

b̂−k = αkâ
−
k + β∗

k â
+
−k, b̂+k = α∗

kâ
+
k + βkâ

−
−k. (6.27)
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6 Quantum fields in expanding universe

The relation (6.27) and the complex coefficients αk, βk are called respectively the Bo-
golyubov transformation and the Bogolyubov coefficients.2

The old operators â±k are expressed through the new operators b̂±k in a similar way.

Exercise 6.6
Suppose that the two sets â±

k
, b̂±

k
of creation and annihilation operators for a real scalar

field are related by the Bogolyubov transformation

b̂−
k

= αkâ
−
k

+ β∗
−kâ

+
−k
, b̂+

k
= α∗

kâ
+
k

+ β−kâ
−
−k
. (6.28)

Isotropy of Bogolyubov coefficients is not assumed, so αk and βk depend on the vector k.

Express the operators â±
k

through b̂±
k

.
Hint: First show that for a real scalar field, αk = α−k and βk = β−k.

Remark: Quantum states defined by an exponential of a quadratic combination of creation
operators acting on the vacuum, as in Eq. (6.29), are called squeezed vacuum states. The
b-vacuum is therefore a squeezed vacuum state with respect to the a-vacuum. Similarly,
the a-vacuum is a squeezed b-vacuum state.

The two sets of annihilation operators â−k and b̂−k define the corresponding vacua
∣

∣

(a)0
〉

and
∣

∣

(b)0
〉

which we call the “a-vacuum” and the “b-vacuum.” Two parallel
sets of excited states are built from the two vacua using Eq. (6.23). We refer to these
states as a-particle and b-particle states. So far the physical interpretation of the a-
and b-particles remains unspecified. In chapters 7-9 we shall apply this formalism to
study specific physical effects and the interpretation of excited states corresponding
to various mode functions will be fully explained.

The b-vacuum can be expressed as a superposition of a-particle states (Exercise 6.7):

∣

∣

(b)0
〉

=

[

∏

k

1

|αk|1/2
exp

(

− β∗
k

2αk

â+
k â

+
−k

)

]

∣

∣

(a)0
〉

. (6.29)

A similar relation expresses the a-vacuum as a linear combination of b-particle states.
From Eq. (6.29) it is clear that the b-vacuum state contains a-particles in pairs of op-
posite momentum k and −k.

Exercise 6.7
The b-vacuum state

˛

˛

(b)0k,−k

¸

of the mode χk is defined by

b̂−
k

˛

˛

(b)0k,−k

¸

= 0, b̂−−k

˛

˛

(b)0k,−k

¸

= 0.

Show that the b-vacuum is expanded through a-particle states
˛

˛

(a)mk, n−k

¸

as

˛

˛

(b)0k,−k

¸

=
1

|αk|

∞
X

n=0

„

− β∗
k

αk

«n
˛

˛

(a)nk, n−k

¸

and derive Eq. (6.29). The Bogolyubov coefficients αk and βk in Eq. (6.28) are known.

Note that the b-vacuum state (6.29) is normalized by the infinite product
∏

k |αk|.
This product converges only if |αk| rapidly tends to 1 at large |k|, or more precisely if

|βk|2 → 0 faster than k−3 at k → ∞. If this is not the case, the vacuum state
∣

∣

(b)0
〉

is
not normalizable and the Bogolyubov transformation is not well-defined.

2The prononciation is close to the American “bogo-lube-of” with the third syllable stressed.
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Computing the Bogolyubov coefficients

To determine the Bogolyubov coefficients αk and βk, it is necessary to know the mode
functions vk(η) and uk(η) and their derivatives at only one value of η, say η = η0. From
Eq. (6.24) and its derivative at η = η0, we find

v∗k (η0) = αku
∗
k (η0) + βkuk (η0) ,

v∗′k (η0) = αku
∗′
k (η0) + βku

′
k (η0) .

This system of equations can be solved for αk and βk using Eq. (6.20):

αk =
u′kv

∗
k − ukv

∗′
k

2i

∣

∣

∣

∣

η0

, β∗
k =

u′kvk − ukv
′
k

2i

∣

∣

∣

∣

η0

. (6.30)

These relations hold at any time η0 (note that the numerators are Wronskians and
thus are time-independent). For instance, knowing only the asymptotics of vk(η) and
uk(η) at η → −∞ would suffice to compute αk and βk.

Remark: Anisotropic mode expansions. In this book we always use isotropic mode func-
tions vk(η) because in all cases under consideration the modes χk with constant |k| satisfy
the same equation. An anisotropic choice of mode functions would be an unnecessary
complication. However, anisotropic mode functions are needed in some cases, so it is
useful to know which relations depend on the assumption of isotropy. Here we list the
relevant changes to the formalism for anisotropic mode functions. Note that the results of
Exercises 6.4 to 6.8 below are valid without the assumption of isotropy.

For a real scalar field χ with anisotropic mode functions vk(η), the relation (6.12) is
replaced by

χk(η) =
1√
2

ˆ

a−
k
v∗k(η) + a+

−k
vk(η)

˜

. (6.31)

The identity vk (η) = v−k (η) must still hold, as follows from the relations (χk)∗ = χ−k,
`

a−
k

´∗
= a+

k
and Eq. (6.31). [For a complex field, (χk)∗ 6= χ−k and mode functions may

be chosen with vk (η) 6= v−k (η).] The mode expansion is Eq. (6.21). The coefficients
αk, βk that relate vk(η) to uk(η) also depend on the vector k, namely v∗k = αku

∗
k + βk.

The Bogolyubov transformation is given by Eq. (6.28). The normalization condition is un-
changed, |αk|2 − |βk|2 = 1. The formulae expressing the Bogolyubov coefficients through
the mode functions at a fixed time η = η0 are the same as Eq. (6.30) but with the vector
index k.

6.2.3 Mean particle number

Here we calculate the mean number of b-particles of the mode χk in the a-vacuum

state. The expectation value of the b-particle number operator N̂
(b)
k = b̂+k b̂

−
k in the

state
∣

∣

(a)0
〉

is found using Eq. (6.27):

〈

(a)0
∣

∣ N̂ (b)
∣

∣

(a)0
〉

=
〈

(a)0
∣

∣ b̂+k b̂
−
k

∣

∣

(a)0
〉

=
〈

(a)0
∣

∣

(

α∗
kâ

+
k + βkâ

−
−k

) (

αkâ
−
k + β∗

k â
+
−k

) ∣

∣

(a)0
〉

=
〈

(a)0
∣

∣

(

βkâ
−
−k

) (

β∗
k â

+
−k

) ∣

∣

(a)0
〉

= |βk|2 δ(3)(0). (6.32)
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The divergent factor δ(3)(0) is a consequence of considering an infinite spatial volume.
As discussed in Sec. 4.2 (p. 48), this divergent factor would be replaced by the box
volume V if we quantized the field in a finite box. Therefore we can remove this
factor and obtain the mean density of b-particles in the mode χk,

nk = |βk|2 . (6.33)

The Bogolyubov coefficient βk is dimensionless and the density nk is the mean num-
ber of particles per spatial volume d3x and per wave number d3k, so that

∫

nkd
3k d3x

is the (dimensionless) total mean number of b-particles in the a-vacuum state.

The combined mean density of particles in all modes is
∫

d3k |βk|2. This integral is

finite if |βk|2 → 0 faster than k−3 at large k. Note that the same condition guarantees
the normalizability of the b-vacuum in Eq. (6.29). In other words, the Bogolyubov
transformation is well-defined only if the the total particle density is finite.

6.3 Choice of vacuum

In the theory developed so far, the particle interpretation depends on the choice of the
mode functions. For instance, the a-vacuum

∣

∣

(a)0
〉

defined above is a state without
a-particles but with b-particle density nk in each mode χk. A natural question to
ask is whether the a-particles or the b-particles are the correct representation of the
observable particles. The problem at hand is to determine the mode functions that
describe the “actual” physical vacuum and particles.

6.3.1 The instantaneous lowest-energy state

In chapter 4 the vacuum state was defined as the eigenstate with the lowest energy.
However, in the present case the Hamiltonian (6.16) explicitly depends on time and
thus does not have time-independent eigenstates that could serve as the vacuum.

One possible prescription for the vacuum state is to select a particular moment of
time, η = η0, and to define the vacuum |η00〉 as the lowest-energy eigenstate of the

instantaneous Hamiltonian Ĥ(η0). To obtain the mode functions that correspond to

the vacuum |η00〉, we first compute the expectation value
〈

(v)0
∣

∣ Ĥ(η0)
∣

∣

(v)0
〉

in the

vacuum state
∣

∣

(v)0
〉

determined by arbitrarily chosen mode functions vk (η). Then we
shall minimize that expectation value with respect to all possible choices of vk (η). (A

standard result in linear algebra is that the minimization of 〈x| Â |x〉 with respect to
all normalized vectors |x〉 is equivalent to finding the eigenvector |x〉 of the operator

Â with the smallest eigenvalue.)
We start with Eq. (6.21) with so far unspecified mode functions vk(η) that depend

on the vector k. (Isotropy of mode functions is not assumed in this calculation.) The
mode functions vk(η) define the operators â±k through which the Hamiltonian (6.16)
is expressed as follows (see Exercise 6.8):

Ĥ(η) =
1

4

∫

d3k

[

â−k â
−
−kF

∗
k + â+

k â
+
−kFk +

(

2â+
k â

−
k + δ(3)(0)

)

Ek

]

, (6.34)
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where the coefficients Fk and Ek are defined by

Ek ≡ |v′k|
2

+ ω2
k(η) |vk|2 , (6.35)

Fk ≡ v′2k + ω2
k(η)v2

k. (6.36)

Exercise 6.8
Use the mode expansion (6.21) to obtain Eqs. (6.34)-(6.36) from Eq. (6.16).

Since â−k
∣

∣

(v)0
〉

= 0, the expectation value of the instantaneous Hamiltonian in the

state
∣

∣

(v)0
〉

is
〈

(v)0
∣

∣ Ĥ (η0)
∣

∣

(v)0
〉

=
1

4
δ(3)(0)

∫

d3k Ek|η=η0
.

As discussed above, the divergent factor δ(3)(0) is a harmless manifestation of the
infinite total volume of space. We obtain the energy density

ε =
1

4

∫

d3k Ek|η=η0
=

1

4

∫

d3k
(

|v′k|
2

+ ω2
k(η0) |vk|2

)

, (6.37)

and the task is to determine the mode functions vk(η) that minimize ε. It is clear that
the contribution 1

4Ek of each mode χk must be minimized separately.
At fixed k, the choice of the mode function vk(η) may be specified by a set of initial

conditions at η = η0,
vk(η0) = q, v′k(η0) = p,

where the parameters p and q are complex numbers satisfying the normalization con-
straint which follows from Eq. (6.22),

q∗p− p∗q = 2i. (6.38)

Now we need to find such p and q that minimize the expression |p|2 +ω2
k |q|

2. If some

p and q minimize |p|2 + ω2
k |q|

2, then so do eiλp and eiλq for arbitrary real λ; this is
the freedom of choosing the overall phase of the mode function. We may choose this
phase to make q real and write p = p1 + ip2 with real p1,2. Then Eq. (6.38) yields

q =
2i

p− p∗
=

1

p2
⇒ Ek = p2

1 + p2
2 +

ω2
k(η0)

p2
2

. (6.39)

If ω2
k(η0) > 0, the function Ek (p1, p2) has a minimum with respect to p1,2 at p1 = 0

and p2 =
√

ωk(η0). Therefore the desired initial conditions for the mode function are

vk (η0) =
1

√

ωk(η0)
, v′k(η0) = i

√

ωk(η0) = iωkvk(η0). (6.40)

On the other hand, for ω2
k(η0) < 0 the function Ek in Eq. (6.39) has no minimum

because the expression p2
2 +ω2

k(η0)p
−2
2 varies from −∞ to +∞. In that case the instan-

taneous lowest-energy vacuum does not exist.
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6 Quantum fields in expanding universe

Discussion and remarks

The main result of the above calculation is Eq. (6.40). A mode function satisfying the
conditions (6.40) defines a certain set of operators â±k and the corresponding vacuum
|η00〉. For this mode function one finds Ek|η=η0

= 2ωk and Fk|η=η0
= 0, so the

Hamiltonian at time η0 is related to the operators â±k by

Ĥ (η0) =

∫

d3kωk(η0)

[

â+
k â

−
k +

1

2
δ(3)(0)

]

. (6.41)

Therefore the instantaneous Hamiltonian is diagonal in the eigenbasis of the occu-

pation number operators N̂k = â+
k â

−
k (this eigenbasis consists of the vacuum state

|η00〉 and the excited states derived from it). Accordingly, the state |η00〉 is sometimes
called the vacuum of instantaneous diagonalization.

Since the initial conditions (6.40) are the same for all k such that |k| = k, the result-
ing mode functions vk(η) are isotropic, vk ≡ vk. This isotropy has a physical origin
which can be understood as follows. The vacuum mode functions were chosen by
minimization of the instantaneous energy. Since the Hamiltonian of the scalar field
in a FRW spacetime is isotropic (invariant under spatial rotations), the lowest-energy
state of the field in that spacetime is isotropic as well.

It also follows that the instantaneous vacuum states at different times are related
by isotropic Bogolyubov coefficients αk and βk. Therefore, if particles are produced,
the occupation numbers are equal in all modes with fixed |k| = k. In situations with
a preferred direction, for example in the presence of anisotropic external fields, one
may find that ωk(η) depends on the vector k and the lowest energy is achieved by
a vacuum state with anisotropic mode functions vk(η). The Bogolyubov coefficients
αk, βk and thus the rate of particle production can be anisotropic in those cases.

Remark: zero-point energy. As before, the zero-point energy density of the quantum field
in the vacuum state |η00〉 is divergent,

1

4

Z

d3
kEk(η0) =

1

2

Z

d3
kωk(η0).

This quantity is time-dependent and cannot be simply subtracted away because the zero-
point energy at one time generally differs from that at another time by a formally infinite
amount. A more sophisticated renormalization procedure (beyond the scope of this book)
is needed to obtain correct values of energy density.

For a scalar field in the Minkowski spacetime, ωk is time-independent and the pre-
scription (6.40) yields the standard mode functions (4.19) which remain the vacuum
mode functions at all times. But this is not the case for a time-dependent gravita-
tional background, because then ωk(η) 6= const and the mode function selected by
the initial conditions (6.40) imposed at a time η0 will generally differ from the mode
function selected at another time η1 6= η0. In other words, the state |η00〉 is not an
energy eigenstate at time η1. In fact, there are no states which remain instantaneous
eigenstates of the Hamiltonian at all times. This statement can be derived formally
from Eq. (6.34). A vacuum state annihilated by â−k could remain an eigenstate of the
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6.3 Choice of vacuum

Hamiltonian only if Fk = 0 for all η, i.e.

Fk = (v′k)
2

+ ω2
k(η)v2

k = 0.

This differential equation has exact solutions of the form

vk(η) = C exp

[

±i
∫

ωk(η)dη

]

.

However, for ωk(η) 6= const these solutions are incompatible with Eq. (6.18), therefore
an all-time eigenstate is impossible.

We can compare the instantaneous vacuum states |η10〉 and |η20〉 defined at two
different times η1 6= η2. There exists a Bogolyubov transformation with some coeffi-
cients αk and βk that relates the corresponding creation and annihilation operators.
Then Eqs. (6.32), (6.41) yield the expectation value of energy at time η = η2 in the
vacuum state |η10〉:

〈η10| Ĥ(η2) |η10〉 = δ3(0)

∫

d3kωk(η2)

[

1

2
+ |βk|2

]

.

This energy is larger than the minimum value unless βk = 0 for all k (this would be
the case in the Minkowski spacetime). This shows once again that for a general FRW
spacetime the vacuum state |η10〉 is normally an excited state at another time η = η2.

Remark: minimized fluctuations. One might try to define the vacuum state by minimiz-
ing the amplitude of quantum fluctuations of the field at a time η0, instead of minimizing
the instantaneous energy. But such a prescription does not yield a definite vacuum state.
The expectation value of the mean squared fluctuation is

˙

(v)0
˛

˛

Z

χ2(x)d3
x
˛

˛

(v)0
¸

=
1

2
δ(3)(0)

Z

d3
k |vk(η0)|2 .

Now the quantity |vk(η0)|2 must be minimized separately for each k. However, the value
of the mode function vk(η0) at one time η = η0 can be made arbitrarily small without vio-
lating the normalization condition (6.20). The Heisenberg uncertainty principle disallows
small uncertainties in both χ̂ and π̂ at the same time, so there exist quantum states with
arbitrarily small (but nonzero) fluctuations in the field χ̂ and a correspondingly large un-
certainty in the canonical momentum π̂ = χ̂′. There is no state with the smallest amplitude
of fluctuations.

6.3.2 The meaning of vacuum

Minimization of the instantaneous energy is certainly not the only possible way to
define the vacuum state. For example, we could instead minimize the average en-
ergy for a certain period of time or the number of particles with respect to some other
vacua. There is no unique “best” prescription available for a general curved space-
time.

The physical reason for this ambiguity is explained by the following qualitative ar-
gument. The usual definitions of the vacuum and of “particles with momentum k” in
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6 Quantum fields in expanding universe

the Minkowski spacetime are based on the decomposition of fields into plane waves
exp (ikx − iωkt). In quantum theory, a particle with momentum p is described by a
wavepacket which has a certain spread ∆p of the momentum. The spread should be
sufficiently small, ∆p ≪ p, for the momentum of the particle to be well-defined. The
spatial size λ of the wavepacket is related to the spread ∆p by λ∆p ∼ 1, therefore
λ≫ 1/p. However, the geometry of a curved spacetime may significantly vary across
a region of size λ. In that case, the plane waves are a poor approximation to solu-
tions of the wave equation and so particles with momentum p cannot be defined in
the usual way. The notion of a particle with momentum p is meaningful only if the
spacetime is very close to Minkowski on distance and time scales of order p−1.

Spatial flatness alone is not sufficient for the applicability of the particle interpre-
tation; the relevant quantity is the four-dimensional curvature. Even in a spatially
flat FRW spacetime it is quite possible that the vacuum and particle states cannot be
reasonably defined for some modes. An example is a nonstationary metric with the
scale factor a(η) such that at some time η the square of the effective frequency

ω2
k(η) = k2 +m2a2 − a′′

a

is negative, ω2
k < 0 (i.e. the frequency ωk is imaginary). In this case the modes χk(η)

do not oscillate but behave as growing and decaying exponents, so the analogy with
a harmonic oscillator breaks down. Formally, with ω2

k < 0 one can still define a
mode expansion with respect to a set of normalized mode functions vk(η) and obtain
the creation and annihilation operators a±k , the vacuum state, and the correspond-
ing excited states. But the interpretation of such states in terms of physical particles
is not justified. For instance, some “excited” states defined in this way will have a
lower mean energy than the “vacuum” state. This happens because the expectation
value (6.37) of the energy density is not necessarily positive when ω2

k < 0. As we have
seen, the state with the lowest instantaneous energy does not exist in that case; there
are states with arbitrarily low energy. In fact, for ω2

k < 0 the condition Fk(η0) = 0
leads to v′k = cvk with real c, which contradicts Eq. (6.20). Thus there are no instan-
taneous eigenstates |0〉 of the Hamiltonian satisfying a−k |0〉 = 0. The prescription of
instantaneous lowest-energy vacuum completely fails when ω2

k(η) < 0.
Even in cases when a well-defined vacuum is available, one cannot simply postu-

late some prescription of the vacuum state as the “correct” one. The reason is that
in general relativity a non-inertial coordinate system is equivalent to the presence of
gravitation, while the field φ is coupled to gravity. Therefore the result of any pre-
scription of the vacuum state, defined in terms of some physical experiment with the
field φ, depends on the coordinate system of the observer. As we shall see in Chap-
ter 8, an accelerated observer in the Minkowski space detects particles in an inertial
observer’s vacuum state. In a general spacetime, no preferred coordinate system can
be selected and therefore no naturally defined “true” vacuum state can be found.

The absence of a generally valid definition of the vacuum state does not mean that
we are unable to make predictions for specific experiments. For instance, we may

consider a hypothetical device that prepares the field φ̂(x) in the lowest-energy state
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6.3 Choice of vacuum

within a box of finite volume. We may assume that the device works by extract-
ing energy from the field in the box instantaneously (as quickly as possible). In the
Minkowski spacetime this device prepares the field in the standard vacuum state.
The same device may be used in an FRW spacetime to prepare the field in an instan-
taneous lowest-energy vacuum state (assuming that ω2

k > 0 for all relevant modes
χk). The resulting quantum state depends on the time and place where we run the
device, as well as on the reference frame in which the device is at rest; this reflects
the ambiguity of the vacuum state in a curved spacetime. However, if the vacuum
preparation device is known to move along a certain trajectory, one can compute the
quantum state of the prepared field and make predictions about any experiments
involving this field.

We conclude that “vacuum” and “particles” are approximate concepts that are in-
herently ambiguous in the presence of gravitation. One observer’s particle may be
another observer’s vacuum. In contrast, quantities defined directly through the field

φ̂, e.g. expectation values 〈ψ| φ̂(x) |ψ〉 in some state |ψ〉, are unambiguous. In this
sense, field observables are more fundamental than particle occupation numbers.

6.3.3 Vacuum at short distances

We have seen that the instantaneous vacuum state at time η cannot be defined when
ω2

k(η) < 0. But since ω2
k(η) = k2 +m2

eff(η), there always exist large enough wavenum-
bers k for which ω2

k > 0 even if m2
eff < 0, namely

k2 > k2
min(η) ≡ −m2

eff(η) =
a′′

a
−m2a2. (6.42)

Therefore the instantaneous vacuum is well-defined for modes χk with wavelengths
shorter than the scale Lmax ∼ k−1

min (large values of k correspond to short distances).
In cosmological applications, the relevant scales Lmax are usually larger than the size
of the observable universe (∼ 1029cm), and the absence of an adequate vacuum state
for larger-scale modes is unimportant.

A natural length scale in a curved spacetime is the radius of curvature; on much
shorter scales, the spacetime looks approximately flat. The field modes with wave-
lengths much shorter than the curvature radius are almost unaffected by gravitation.
These are the modes χk with large k such that |meff(η)| ≪ k and thus ωk ≈ k. Then
the mode functions are approximately those of Eq. (4.19),

vk(η) ≈ 1√
k
eikη. (6.43)

This gives a natural definition of the vacuum for modes with sufficiently short wave-

lengths, L≪ Lmax ∼ |meff|−1.

6.3.4 Adiabatic vacuum

There are situations where the lowest-energy vacuum prescription fails in such a way
that we must doubt the physical interpretation of the instantaneous vacuum states.
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6 Quantum fields in expanding universe

If a lowest-energy state |η10〉 is defined at some time η1, this state will generally be a
state with particles with respect to the vacuum |η20〉 defined at another time η2. At
first sight this may not look problematic because some particle production is expected
in a gravitational background. However, it turns out that in some anisotropic space-
times the total density of such “η2-particles” is infinite when all modes are counted,
even when the geometry changes slowly with time and the interval (η1, η2) is small.
This outcome is generic and occurs in a broad class of spacetimes.3 Thus, particle
states defined through the vacuum |η0〉 are not always an adequate description of the
actual physical particles at time η. This motivates us to consider another prescription
for vacuum that does not exhibit infinite particle production.

Often the frequency ωk(η) is a slowly-changing function for some range of η. This
range is called the adiabatic regime4 of ωk(η). It is assumed that ω2

k(η) > 0 within
the adiabatic regime. Then the WKB approximation for Eq. (6.18) yields approximate
solutions of the form

v
(approx)
k (η) =

1
√

ωk(η)
exp

[

i

∫ η

η0

ωk(η)dη

]

. (6.44)

A quantitative condition for ωk(η) to be a slowly-changing function of η is that the
relative change of ωk(η) during one oscillation period ∆η = 2π/ωk is negligibly small,

∣

∣

∣

∣

ωk(η + ∆η) − ωk(η)

ωk(η)

∣

∣

∣

∣

≈
∣

∣

∣

∣

ω′
k

ωk
∆η

∣

∣

∣

∣

= 2π

∣

∣

∣

∣

ω′
k

ω2
k

∣

∣

∣

∣

≪ 1. (6.45)

This inequality is called the adiabaticity condition. The adiabatic regime is precisely
the range of η where this condition holds. Note that according to this definition, a
slowly-changing function does not need to be approximately constant; e.g., the func-

tion ωk(η) = cη2 has an adiabatic regime for |η| ≫ |c|−1/3 where ωk(η) is growing.
The mode functions vk(η) of the adiabatic vacuum |η00ad〉 at time η0 are defined by

the requirement that the function vk(η) and its derivative v′k(η) should be equal to the
value and the derivative of the WKB function (6.44) at η = η0, i.e.

vk (η0) =
1

√

ωk (η0)
,

dvk

dη

∣

∣

∣

∣

η=η0

=

(

iωk − 1

2

ω′
k

ωk

)

1√
ωk

∣

∣

∣

∣

η=η0

.

It is easy to check that the normalization (6.20) holds.
In general, the adiabatic vacuum |η00ad〉 is not an eigenstate of the Hamiltonian

and does not minimize the energy Ek in the modes χk at η = η0. However, the
expectation value of energy in the mode χk at time η = η0 in the state |η00ad〉 is only
slightly higher than the minimum value 1

4 Ek|min = 1
2ωk (η0):

1

4
Ek =

1

4

(

|v′k|
2
+ ω2

k |vk|2
)

=
1

2
ωk +

1

16

ω′2
k

ω3
k

≈ 1

2
ωk.

3More details are given in S. A. FULLING, Aspects of quantum field theory in curved space-time (Cambridge
University Press, 1989), chapter 7, section “Particle observables at finite times.”

4In the physics literature, the word regime stands for “an interval of values for a variable.” It should be
clear from the context which interval for which variable is implied.
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6.4 A quantum-mechanical analogy

We would like to stress that the mode functions vk(η) must be computed as exact
solutions of Eq. (6.18) that match the WKB functions at one point η = η0. The WKB
formula (6.44) is merely an approximation to the exact mode functions and the preci-
sion of that approximation is insufficient for some calculations. For instance, the WKB
approximation does not yield the correct Bogolyubov coefficients between vacua de-
fined at different times η = η1 and η = η2, even if the adiabaticity condition (6.45)
holds. (A method of computing the Bogolyubov coefficients in the adiabatic regime
is presented in Appendix B.)

All vacuum prescriptions agree if ωk(η) is exactly constant, ωk(η) ≡ ω
(0)
k , in some

range η1 < η < η2. In that case, it is easy to verify that the natural definition of
the vacuum with the mode functions (4.19) is also the result of the lowest-energy
prescription. The same mode functions are found in the RHS of Eq. (6.44) because the
WKB approximation is exact in the range η1 < η < η2.

Besides a time-independent ωk, another interesting case is when the frequency
ωk(η) has a strongly adiabatic regime at early times, i.e. the LHS of Eq. (6.45) tends to
zero at η → −∞ for all k. In that case we can define the mode functions of the adi-
abatic vacuum by imposing the condition (6.40) at η0 → −∞. The resulting vacuum
state is the naturally unique state that minimizes the energy in the infinite past.

Remark: the “in-out” transition. We may consider the case when ωk(η) tends to a con-
stant both in the distant past and in the far future. This happens if a non-negligible grav-
itational field is present only for a certain period of time, e.g. η1 < η < η2. In that case,
there are natural “in” (at η < η1) and “out” (at η > η2) vacuum states. The relation
between the corresponding mode functions is described by a certain set of Bogolyubov
coefficients αk and βk. Since the choice of the “in” and “out” vacuum states is unique, we
obtain an unambiguous prediction for the total number density of particles, nk = |βk|2.
This is the density of particles produced by gravity in the spacetime where the field was
initially (at η < η1) in the natural vacuum state. The created particles are observed at late
times η > η2, when gravity is inactive and the definition of particles is again unambigu-
ous. However, the choice of vacuum states at intermediate times η between η1 and η2 is
ambiguous and particle numbers at these times are not well-defined.

6.4 A quantum-mechanical analogy

The oscillator equation for the mode functions, Eq. (6.18), is formally similar to the
stationary Schrödinger equation for the wave function ψ(x) of a quantum-mechanical
particle in a one-dimensional potential V (x),

d2ψ

dx2
+ (E − V (x))ψ = 0.

The two equations are related by the replacements η → x and ω2
k(η) → E − V (x).

To illustrate the analogy, we may consider the case when the potential V (x) is al-
most constant for x < x1 and for x > x2 but varies in the intermediate region (see
Fig. 6.1). An incident wave ψ(x) = exp(−ipx) comes from large positive x and is scat-
tered off the potential. A reflected wave ψR(x) = R exp(ipx) is produced in the region
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x1 x2

incoming

R

T

V (x)

x

Figure 6.1: Quantum-mechanical analogy: motion in a potential V (x).

x > x2 and a transmitted wave ψT (x) = T exp(−ipx) in the region x < x1. For most
potentials, the reflection amplitude R is nonzero. The conservation of probability

gives the constraint |R|2 + |T |2 = 1.
The solution ψ(x) behaves similarly to the mode function vk(η) in the case when

ωk(η) is approximately constant at η < η1 and at η > η2. If we define the mode func-
tion vk(η) by the instantaneous vacuum condition v′k = iωkvk at some η0 < η1, then at
η > η2 the function vk(η) will be a superposition of positive and negative exponents
exp (±iωkη). The relation between R and T is similar to the normalization condition
(6.25) for the Bogolyubov coefficients. We have seen that a nontrivial Bogolyubov
transformation (with βk 6= 0) signifies the presence of particles. Therefore we come
to the qualitative conclusion that particle production is manifested by a mixing of
positive and negative exponentials in the mode functions.

We emphasize that the analogy with quantum mechanics is purely mathematical.
When we consider a quantum field, the modes χk(η) are not particles moving in real
space and η is not a spatial coordinate. The mode functions vk(η) do not represent
reflected or transmitted waves. The quantum-mechanical analogy can be used only
to visualize the qualitative behavior of the mode functions vk(η).

Remark: “positive” and “negative” frequency. The function vk(η) ∝ exp (iωkη) is some-
times called the positive-frequency solution and the conjugate function v∗k(η) ∝ exp (−iωkη)
the negative-frequency solution. Alternatively, these solutions are called positive-energy
and negative-energy. This terminology historically comes from the old interpretation of
QFT as the theory of quantized wave functions (the “second quantization”). The classical
field φ (x, t) was thought to be a “wave function” and the Schrödinger equation

i
∂φ

∂t
= Eφ

was used to interpret the functions φ(t) ∝ exp(±iωt) as having positive or negative
energy. Particle creation was described as a “mixing of positive- and negative-energy
modes.” However, Eq. (6.6) does not have the meaning of a Schrödinger equation and the
mode functions vk(η) are not wave functions.
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7 Quantum fields in de Sitter
spacetime

Summary: Correlation functions. Amplitude of quantum fluctuations. Par-
ticle production and fluctuations: a worked-out example. Field quantiza-
tion in de Sitter spacetime. Bunch-Davies vacuum. Evolution of quantum
fluctuations.

7.1 Amplitude of quantum fluctuations

In the previous chapter the focus was on particle production. The main observable

to compute was the average particle number 〈N̂〉 in a certain quantum state. Now
we consider another important quantity—the amplitude of field fluctuations. This
quantity is well-defined even for those quantum states that cannot be meaningfully
interpreted in terms of particles.

7.1.1 Correlation functions

To characterize the amplitude of quantum fluctuations of a field χ̂ (x, η) in some quan-
tum state |ψ〉, one may use the equal-time correlation function

〈ψ| χ̂ (x, η) χ̂ (y, η) |ψ〉 .

For simplicity, we consider correlation functions in a vacuum state |ψ〉 = |0〉. (The
choice of the vacuum state will be discussed below.)

If the vacuum state |0〉 is determined by a set of mode functions vk(η), the correla-
tion function is given by the formula

〈0| χ̂ (x, η) χ̂ (y, η) |0〉 =

∫ ∞

0

k2dk

4π2
|vk(η)|2 sin kL

kL
, (7.1)

where L ≡ |x − y|.
Exercise 7.1

Derive Eq. (7.1) from the mode expansion (6.17).

We can perform a qualitative estimate of the RHS of Eq. (7.1). The main contribu-
tion to the integral comes from wave numbers k ∼ L−1, therefore the magnitude of
the correlation function is estimated as

〈0| χ̂ (x, η) χ̂ (y, η) |0〉 ∼ k3 |vk|2 , k ∼ 1

L
. (7.2)
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7 Quantum fields in de Sitter spacetime

Note that the quantity L in Eqs. (7.1)-(7.2) is defined as the difference between the
coordinate values, L = |x − y|, which is not the same as the physically observed
distance Lp between these points, Lp = a(η)L. The scale L is called the comoving
distance to distinguish it from the physical distance Lp.

7.1.2 Fluctuations of averaged fields

Another way to characterize fluctuations on scales L is to average the field χ̂ (x, η)
over a region of size L (e.g. a cube with sides L × L × L). The averaged operator χ̂L

such as

χ̂L(η) ≡ 1

L3

∫

L×L×L

χ̂ (x, η) d3x

can be used to describe measurements of the field χ̂ with a device that cannot resolve
distances smaller than L. The amplitude δχL(η) of fluctuations in χ̂L(η) in a quantum
state |ψ〉 is found from

δχ2
L(η) ≡ 〈ψ| [χ̂L(η)]

2 |ψ〉 .

A convenient way to describe spatial averaging over arbitrary domains is by using
window functions. A window function for scale L is any function W (x) which is
of order 1 for |x| . L, rapidly decays for |x| ≫ L, and satisfies the normalization
condition

∫

W (x) d3x = 1. (7.3)

The prototypical example of a window function is the Gaussian window

WG (x) =
1

(2π)3/2
exp

(

−1

2
|x|2

)

which selects |x| . 1. A given window function can be easily modified to select
another scale, for instance if WL(x) is a window for the scale L, then

WL′(x) ≡ L3

L′3WL

(

L

L′x

)

yields a window that selects the scale L′.
The basic use of window functions is to integrateW (x) with an x-dependent quan-

tity f(x). The result is the window-averaged quantity

fL ≡
∫

f (x)W (x) d3x.

By construction, the main contribution to the averaged quantity fL comes from the
values f(x) at |x| . L. The normalization (7.3) guarantees that a spatially constant
quantity does not change after the averaging.
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7.1 Amplitude of quantum fluctuations

Vacuum fluctuations of a spatially averaged field

We define the averaged field operator χ̂L(η) by integrating the product of χ̂ (x, η)
with a window function that selects the scale L,

χ̂L(η) ≡
∫

d3x χ̂ (x, η)WL(x).

The amplitude of vacuum fluctuations in χ̂L (η) can be computed as a function of
L. The calculation is similar to that of Exercise 7.1. It is natural to suppose that the
window function WL(x) is of the form

WL (x) =
1

L3
W
(x

L

)

,

where W (x) is a fixed (L-independent) window profile. Then it is convenient to in-
troduce the Fourier image w (k) of this window profile,

w (k) ≡
∫

d3xW (x) e−ik·x.

The function w (k) satisfies w|k=0 = 1 and decays rapidly for |k| & 1. (Self-test
exercise: prove these statements!) It follows that the Fourier image of WL(x) is

∫

d3xWL(x)e−ik·x = w (kL) .

We now use the mode expansion (6.17) for the field operator χ̂ (x, η), assuming that
the mode functions vk (η) are given. After some straightforward algebra we find

〈0|
[∫

d3xWL(x)χ̂ (x, η)

]2

|0〉 =
1

2

∫

d3k

(2π)3
|vk|2 |w (kL)|2 .

Since the function w (kL) is of order 1 for |k| . L−1 and almost zero for |k| & L−1,
we can estimate the above integral as follows,

1

2

∫

d3k

(2π)3
|vk|2 |w (kL)|2 ∼

∫ L−1

0

k2 |vk|2 dk ∼ 1

L3
|vk|2 .

Thus the amplitude of fluctuations δχL is (up to a factor of order 1)

δχ2
L ∼ k3 |vk|2 , where k ∼ L−1. (7.4)

The results (7.2) and (7.4) coincide, therefore the correlation function at a distance L
and the mean square fluctuation δχ2

L (for any choice of the window function WL) are
both order-of-magnitude estimates of the same characteristic of the field χ̂. We call
this characteristic the amplitude of fluctuations on scales L and denote it by δχL (η).
This quantity is defined only up to a factor of order 1 and is a function of time η
and of the comoving scale L. Expressed through the wavenumber k ≡ 2πL−1, the
fluctuation amplitude is usually called the spectrum of fluctuations.
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7 Quantum fields in de Sitter spacetime

δχ

k

∼ k

∼ k3/2

Figure 7.1: A sketch of the spectrum of fluctuations δχL in the Minkowski space; L ≡
2πk−1. (The logarithmic scaling is used for both axes.)

Remark: dependence on window functions. It is clear that the result of averaging over
a domain depends on the exact shape of that domain, and thus the fluctuation amplitude
δχL depends on the particular window profile W (x). However, the qualitative behavior
of δχL as a function of the scale L is the same regardless of the shape of the window. To
remove the dependence on the window profile, we first perform the calculations with an
arbitrary windowW (x). The resulting expression contains a window-dependent factor of
order 1 which is discarded, as we have done in the derivation of Eq. (7.4). The rest is the
window-independent result we are looking for.

7.1.3 Fluctuations in vacuum and nonvacuum states

Intuitively one may expect that quantum fluctuations in an excited state are larger
than those in the vacuum state. To verify this, let us now compute the spectrum of
fluctuations for a scalar field in the Minkowski space.

The vacuum mode functions are vk (η) = ω
−1/2
k exp (iωkη), where ωk =

√
k2 +m2.

So the spectrum of fluctuations in vacuum is

δχL(η) = k3/2 |vk(η)| =
k3/2

(k2 +m2)
1/4

. (7.5)

This time-independent spectrum is sketched in Fig. 7.1. When measured with a high-
resolution device (small L or large k), the field shows large fluctuations. On the other
hand, if the field is averaged over a large volume (L→ ∞), the amplitude of fluctua-
tions tends to zero.

Now we consider the (nonvacuum) state |b〉 annihilated by operators b̂−k which
are related to the initial annihilation operators â−k by Bogolyubov transformations of

84



7.2 A worked-out example

the form (6.27). Instead of performing a new calculation, we use the mode expan-
sion (6.26) with the new mode functions uk. The result is the same as Eq. (7.4) with
the mode functions uk(η) instead of vk(η):

δχ
(b)
L = k3/2 |uk(η)| = k3/2 |αkvk(η) − β∗

kv
∗
k(η)| .

Substitution of the expression (4.19) for vk(η) gives

δχ
(b)
L =

k3/2

√
ωk

[

|αk|2 + |βk|2 − 2Re
(

αkβke
2iωkη

)

]1/2

. (7.6)

Comparing this result with the spectrum (7.5) in the vacuum state, we obtain

(

δχ
(b)
L

)2

(δχL)
2 = 1 + 2 |βk|2 − 2Re

(

αkβke
2iωkη

)

. (7.7)

The oscillating term Re
(

αkβke
2iωkη

)

in Eq. (7.7) cannot be ignored in general. How-

ever, if the quantity (7.7) is averaged over a sufficiently long time ∆η ≫ ω−1
k , the

oscillations cancel and the result is simply 1 + 2 |βk|2.
This calculation shows that fluctuations in a nonvacuum state are typically larger

than those in the vacuum state. Nevertheless, at a particular time η the oscillating

term may be negative and the fluctuation amplitude δχ
(b)
L (η) may be smaller than the

time-averaged value δχL(η).

7.2 A worked-out example

To illustrate the relation of quantum fluctuations and particle production, we now ex-
plicitly perform the required calculations for a scalar field in a specially chosen FRW
spacetime. To make the computations easier, we choose the effective mass meff(η) as
follows,

m2
eff(η) =

{

m2
0, η < 0 and η > η1;

−m2
0, 0 < η < η1.

(7.8)

In the two regimes η < 0 and η > η1 the vacuum states are defined naturally; these
states are called the “in” vacuum |0in〉 and the “out” vacuum |0out〉. We assume that
the field is initially (η < 0) in the “in” vacuum state. Our present goals are:

1. To compute the mean particle number at η > η1.

2. To compute the mean energy in produced particles.

3. To estimate the amplitude of quantum fluctuations.

We work in the Heisenberg picture where the field χ̂ is at all times the “in” vacuum
state. Note that the correct physical vacuum at late times η > η1 is the “out” vacuum.
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7 Quantum fields in de Sitter spacetime

Mode functions

The mode functions vk(η) are solutions of the time-dependent oscillator equation

d2

dη2
vk + ω2

k(η)vk = 0.

The “in” vacuum is described by the standard Minkowski mode functions,

v
(in)
k (η) =

1√
ωk
eiωkη, η < 0. (7.9)

At η > 0 the functions v
(in)
k (η) are given by more complicated expressions (as we will

see below). The mode functions of the “out” vacuum can be chosen as

v
(out)
k (η) =

1√
ωk
ei(η−η1)ωk , η > η1.

The task at hand is to represent the “in” mode functions at η > η1 as linear combina-
tions of the “out” mode functions.

Since the frequency ωk(η) is discontinuous at η = 0 and η = η1, the mode func-

tions v
(in)
k (η) and their derivatives must be matched at these points. The resulting

expression is (see Exercise 7.2)

v
(in)
k (η) =

1√
ωk

[

α∗
ke

iωk(η−η1) + β∗
ke

−iωk(η−η1)
]

, η > η1,

where the Bogolyubov coefficients αk, βk are given by the formulae

αk =
e−iΩkη1

4

(

√

ωk

Ωk
+

√

Ωk

ωk

)2

− eiΩkη1

4

(

√

ωk

Ωk
−
√

Ωk

ωk

)2

,

βk =
1

4

(

Ωk

ωk
− ωk

Ωk

)

(

eiΩkη1 − e−iΩkη1
)

=
1

2

(

Ωk

ωk
− ωk

Ωk

)

sin(Ωkη1).

Here we have denoted ωk ≡
√

k2 +m2
0 and Ωk ≡

√

k2 −m2
0.

Exercise 7.2
Consider a real scalar field with the effective mass (7.8). Verify that the mode func-

tions (7.9) are expressed through the “out” mode functions v
(out)
k (η) at η > η1 with the

Bogolyubov coefficients given above.

Particle number density

At late times η > η1 the physical vacuum is |0out〉 while the field is in the state |0in〉.
Therefore the mean particle number density nk in a mode χk at η > η1 is

nk = |βk|2 =
m4

0

|k4 −m4
0|

∣

∣

∣

∣

sin

(

η1

√

k2 −m2
0

)∣

∣

∣

∣

2

. (7.10)
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7.2 A worked-out example

Note that this expression remains finite at k → m0.
We now distinguish two limiting cases: k ≫ m0 (ultrarelativistic particles) and

k ≪ m0 (wavelengths much larger than the curvature scale).
When k ≫ m0, one may approximate ωk ≈ Ωk. Assuming that m0η1 is not large,

we expand Eq. (7.10) in the small parameter (m0/k) and obtain, after some algebra,

nk =
m4

0

k4
sin2(kη1) +O

(

m5
0

k5

)

.

It follows that nk ≪ 1; in other words, very few particles are created.

The situation is different for k ≪ m0 because Ωk = i
√

m2
0 − k2 is imaginary and

therefore |sin(η1Ωk)| in Eq. (7.10) may become large. Since Ωk ≈ iωk, we get

βk ≈ sin (im0η1) = i sinh (m0η1) .

The leading asymptotic of nk can be found (assuming m0η1 . 1) as

nk = sinh2 (m0η1)

[

1 +O

(

k2

m2
0

)]

. (7.11)

If m0η1 ≫ 1, the density of produced particles is exponentially large. In that case,

Eq. (7.11) is valid only when k ≪
√

m0/η1, since it is based on the approximation
exp(η1 |Ωk|) ≈ exp(m0η1).

Remark: normalization of Bogolyubov coefficients. In highly excited quantum states,
both |αk| and |βk| may be large but they still remain normalized by |αk|2 − |βk|2 = 1.

Particle energy density

The energy density in produced particles (after subtracting the zero-point energy) is

ε0 =

∫

d3knkωk =

∫ ∞

0

dk 4πk2nk

√

k2 +m2
0. (7.12)

Since nk ∼ k−4 at large k, the above integral logarithmically diverges at the upper
(ultraviolet) limit. This divergence is a consequence of the discontinuity in the fre-
quency ωk(η) and would disappear if we chose a smooth function for ωk(η). For the
purposes of qualitative estimation, we may ignore this divergence and assume that
the integral is cut off at some k = kmax. For large m0η1 ≫ 1, the main contribution to
the integral comes from small k . m0 for which ωk ∼ m0. The value of nk at these k
is given by Eq. (7.11) and therefore we obtain the following rough estimate,

ε0 ∼ m0

∫ m0

0

dk k2 exp (2m0η1) ∼ m4
0 exp (2m0η1) .
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δχ

k

∼ k

∼k3/2

Figure 7.2: A sketch of the spectrum δχL after particle creation; L ≡ 2πk−1. (The
logarithmic scaling is used for both axes.) The dotted line is the spectrum
in the Minkowski space.

Exercise 7.3*
Derive a more precise asymptotic estimate for ε0. Assuming that the integral in Eq. (7.12)

is performed over 0 < k < kmax, show that for m0η1 ≫ 1 the dominant contribution to
the integral comes from k ≈

p

m0/η and then obtain the leading asymptotic

ε0 ∝ m4
0

(m0η1)
3/2

exp (2m0η1) .

Amplitude of fluctuations

The amplitude of fluctuations at late times η > η1 is found from Eq. (7.6),

δχL(η) =
k3/2

√
ωk

[

1 + 2 |βk|2 − 2Re
(

αkβke
2iωkη

)

]1/2

.

This function rapidly oscillates with time η. After an averaging over time, the value
of δχL is of order

δχL ∼ k3/2

√
ωk

(

1 + 2 |βk|2
)1/2

∼
{

k, k ≫ m0;

k3/2m
−1/2
0 exp (m0η1) , k ≪ m0.

Comparing with the spectrum (7.5) of fluctuations in the Minkowski space, we find
an enhancement by the factor exp (m0η1) on large scales (see Fig. 7.2).
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7.3 Field quantization in de Sitter spacetime

7.3 Field quantization in de Sitter spacetime

The de Sitter spacetime is the solution of the vacuum Einstein equations with a pos-
itive cosmological constant Λ. This is a cosmologically relevant spacetime in which
(as we shall see) the particle interpretation of field states is usually absent, while the
amplitude of fluctuations is an important quantity to compute.

To describe the geometry of this spacetime, we use the spatially flat metric

ds2 = dt2 − a2(t)dx2 (7.13)

with the scale factor a(t) defined by

a(t) = a0e
Ht. (7.14)

The Hubble parameterH = ȧ/a > 0 is a fixed constant. For convenience, we redefine
the origin of time t to set a0 = 1, so that a(t) = exp(Ht). The de Sitter spacetime has
a constant four-dimensional curvature characterized by the Ricci scalar R = −12H2.

Remark: derivation of a(t) ∝ exp(Ht). The de Sitter metric (7.13)-(7.14) can be derived
from the Einstein equation for a universe filled with homogeneous matter with the equa-
tion of state p = −ε. The presence of matter with this equation of state is equivalent to a
cosmological constant because the conservation of energy,

dε

dt
= −3(ε+ p)

ȧ

a
= 0,

forces ε = const, and then the energy-momentum tensor of matter is

Tµν = (ε+ p)uµuν − pgµν = εgµν.

The 0-0th component of the Einstein equation for a flat FRW spacetime yields the equation

„

ȧ

a

«2

=
8πG

3
ε,

which has the solution

a(t) = a0 exp

 

t

r

8πGε

3

!

≡ a0 exp(Ht),

where

H ≡
r

8πGε

3

is the (time-independent) Hubble parameter.

Incompleteness of the coordinates (t,x)

The coordinates t and x used in the metric (7.13) vary from −∞ to +∞ and yet do
not cover the entire de Sitter spacetime. To show this, one may consider a timelike
trajectory x(t) of a freely falling observer and compute the observer’s proper time
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7 Quantum fields in de Sitter spacetime

along that trajectory. One finds that the infinite interval (−∞, 0) of the coordinate t
corresponds to a finite proper time interval of the moving observer. In a spacetime
without boundaries, an observer should be able to move for arbitrarily long proper
time intervals. Therefore the coordinates (t,x) cover only a portion of the observer’s
worldline.

Here is an explicit derivation of this result. A freely falling observer moves along a
timelike worldline x(t) that extremizes the proper time functional τ [x],

τ [x(t)] ≡
∫

dt
√

1 − a2(t)ẋ2.

The variation of the functional τ [x] with respect to x(t) must vanish, therefore

δτ [x(t)]

δx(t)
= 0 ⇒ d

dt

a2(t)ẋ
√

1 − a2(t)ẋ2
≡ d

dt
p = 0 ⇒ p = const.

The integral of motion p is equal to the momentum of a unit-mass observer. The
trajectory x(t) can now be found explicitly. However, we need only the relation

a2ẋ2 =
p2

p2 + a2
, p ≡ |p| .

If the observer’s initial velocity is nonzero, ẋ(0) 6= 0, then p 6= 0 and it follows that
the proper time τ0 elapsed for the observer during the interval −∞ < t < 0 is finite:

τ0 =

∫ 0

−∞
dt
√

1 − a2(t)ẋ2 =

∫ 0

−∞

a(t)dt
√

p2 + a2(t)
= H−1 sinh−1 1

p
<∞.

An event at the proper time τ = −τ0 in the observer’s frame corresponds to the val-
ues t = −∞ and |x| = ∞; events encountered by the observer at earlier proper times
τ < −τ0 are not covered by the coordinates (t,x). These coordinates cover only a part
of the whole spacetime as shown in Fig. 7.3. However, the incompleteness of this co-
ordinate system is a benign problem. In cosmological applications, only a relatively
small portion of the de Sitter space (shaded in Fig. 7.3) is used as an approximation
to a certain epoch in the history of the universe. The coordinate system (t,x) is com-
pletely adequate for that task, and the inability to describe events in very distant past
is unimportant. At the same time, a different choice of the coordinate system would
significantly complicate the calculations.

Horizons

Another feature of the de Sitter spacetime—the presence of horizons—is revealed by
the following consideration of trajectories of lightrays. A null worldline x(t) satisfies
a2(t)ẋ2(t) = 1, which yields the solution

|x(t)| =
1

H

(

e−Ht0 − e−Ht
)

90



7.3 Field quantization in de Sitter spacetime

������
������
������
������

our history

t = const

Figure 7.3: A conformal diagram of the de Sitter spacetime. The flat coordinate sys-
tem (t,x) covers only the left upper half of the diagram. Dashed lines are
surfaces of constant t.

for trajectories starting at the origin, x(t0) = 0. Therefore all lightrays emitted at the
origin at t = t0 asymptotically approach the sphere |x| = rmax(t0) ≡ H−1 exp(−Ht0).
This sphere is the horizon for the observer at the origin; the spacetime expands too
quickly for lightrays to reach any points beyond the horizon. Similarly, observers at
the origin will never receive any lightrays emitted at t = t0 at points |x| > rmax.

It is easy to verify that at any time t0 the horizon is always at the same proper
distance a(t0)rmax(t0) = H−1 from the observer. This distance is called the horizon
scale.

7.3.1 Quantization of scalar fields

To describe a real scalar field φ (x, t) in the de Sitter spacetime, we first transform the
coordinate t to make the metric explicitly conformally flat:

ds2 = dt2 − a2(t)dx2 = a2(η)
(

dη2 − dx2
)

,

where the conformal time η and the scale factor a(η) are

η = − 1

H
e−Ht, a(η) = − 1

Hη
.

The conformal time η changes from −∞ to 0 when the proper time t goes from −∞
to +∞. (Since the value of η is always negative, we shall sometimes have to write |η|
in the equations. However, it is essential that the variable η grows when t grows, so
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7 Quantum fields in de Sitter spacetime

we cannot choose −η as the time variable. For convenience, we chose the origin of η
so that the infinite future corresponds to η = 0.)

The field φ(x, η) can now be quantized by the method of Sec. 6.2. The action for the
scalar field is given by Eq. (5.4) with V (φ) = 1

2m
2φ2. We introduce the auxiliary field

χ ≡ aφ and use the mode expansion (6.17)-(6.18) with

ω2
k(η) = k2 +m2a2 − a′′

a
= k2 +

(

m2

H2
− 2

)

1

η2
. (7.15)

From this expression it is clear that the effective frequency may become imaginary,
i.e. ω2

k(η) < 0, if m2 < 2H2. In most cosmological scenarios where the early universe
is approximated by a region of the de Sitter spacetime, the relevant value ofH is much
larger than the masses of elementary particles. Therefore below we shall assume that
m≪ H .

7.3.2 Mode functions

When the definition (7.15) of the effective frequency, Eq. (6.18) becomes

v′′k +

[

k2 −
(

2 − m2

H2

)

1

η2

]

vk = 0, (7.16)

which can be reduced to the Bessel equation (see Exercise 7.4). The general solution
is expressed through the Bessel functions Jn (x) and Yn (x),

vk(η) =
√

k |η| [AJn (k |η|) +BYn (k |η|)] , n ≡
√

9

4
− m2

H2
.

The normalization of the mode function, Im (v∗kv
′
k) = 1, constrains the constants A

and B by

AB∗ −A∗B =
iπ

k
.

Exercise 7.4
Assume that m ≪ H and transform Eq. (7.16) by a change of variables into the Bessel

equation

s2
d2f

ds2
+ s

df

ds
+
`

s2 − n2´ f = 0

which has the general solution

f(s) = AJn(s) +BYn(s),

where A and B are constants. Use the asymptotics of the Bessel functions Jn(s), Yn(s) at
large and small s to determine the asymptotics of the mode functions vk(η) for k |η| ≫ 1
and k |η| ≪ 1.

In the preceding exercise, the asymptotics of the mode functions vk(η) at very early
and very late times were obtained from the Bessel functions. This can also be done
using the following elementary considerations.
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7.3 Field quantization in de Sitter spacetime

At very early times (large negative η), we may neglect η−2 and approximately set
ωk ≈ k. This is the same as the short-distance limit considered in Sec. 6.3.3. The
approximation is valid when

k2 ≫
∣

∣

∣

∣

a′′

a
−m2a2

∣

∣

∣

∣

∼ 1

η2
.

In this limit the field modes χ̂k are not significantly affected by gravity. The vacuum
is defined as in the Minkowski space, with the mode functions

vk(η) ≈ 1√
k
eikη, k |η| ≫ 1. (7.17)

At very late times (η → 0) the term k2 becomes negligible and we obtain

ω2
k(η) ≈ −

(

2 − m2

H2

)

1

η2
.

It follows that for small masses, m≪ H , the frequency ωk is imaginary. The equation
for the mode functions is

v′′k −
(

2 − m2

H2

)

1

η2
vk = 0.

This equation is homogeneous in η, so the general solution can be written as

vk(η) = A |η|n1 +B |η|n2 , k |η| ≪ 1, (7.18)

where

n1,2 ≡ 1

2
±
√

9

4
− m2

H2
=

1

2
± n.

The dominant asymptotic at late times (η → 0) is the term with the larger negative
exponent,

vk(η) ∼ B |η|n2 .

We found that the asymptotic forms of the mode functions depend on the value of
k |η|. A wave with the wave number k has the comoving wavelength L ∼ k−1 and
the physical wavelength Lp = a(η)L, therefore

k |η| ∼ 1

L

1

aH
=
H−1

Lp
.

This suggests the following physical interpretation of the parameter k |η|. Large val-
ues of k |η| correspond to wavelengths which are much shorter than the horizon
distance H−1 at time η (the subhorizon modes). These modes are essentially unaf-
fected by the curvature of the spacetime. On the other hand, small values of k |η|
correspond to physical wavelengths Lp ≫ H−1 stretching far beyond the horizon.
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These superhorizon modes are significantly affected by gravity. A mode with co-
moving wavenumber k is subhorizon at early times and becomes superhorizon at a
k-dependent time η = ηk at which the physical wavelength Lp is equal to the horizon
scale, i.e. k |ηk| = 1. The time η = ηk is conventionally referred to as the moment
of horizon crossing for the mode χk. Note that the existence of horizon crossing is
due to an accelerated expansion of the de Sitter spacetime (ä > 0); there would be no
horizon crossing if the expansion were decelerating (ä < 0).

7.3.3 The Bunch-Davies vacuum

Quantum fields in the de Sitter spacetime have a preferred vacuum state which is
known as the Bunch-Davies (BD) vacuum, defined essentially as the Minkowski vac-
uum in the early-time limit (η → −∞) of each mode.

Before introducing the BD vacuum, let us consider the prescription of the instan-
taneous vacuum defined at a time η = η0. If we had ω2

k(η0) > 0 for all k, this pre-
scription would yield a well-defined vacuum state. However, since m ≪ H , there
always exists a small enough k such that k |η0| ≪ 1 and thus ω2

k(η0) < 0. It was
shown in Sec. 6.3.2 that the energy in a mode χk cannot be minimized when ω2

k < 0.
Therefore the instantaneous energy prescription cannot define a vacuum state of the
entire quantum field (for all modes) but only for the modes χk with k |η0| & 1, i.e. for
the subhorizon modes at η = η0. This “partial” definition of the vacuum is adequate
if the time η0 is chosen to be sufficiently early such that all observationally relevant
modes χk are subhorizon at η = η0.

The motivation for introducing the BD vacuum state is the following. The effective
frequency ωk(η) becomes constant in the early-time limit η → −∞, and thus each
mode χk has a strongly adiabatic regime in that limit (see Sec. 6.3.4 for a discussion of
adiabatic regimes). Physically, the influence of gravity on each mode χk is negligible
at sufficiently early (k-dependent) times. So it is natural to define the mode func-
tions vk(η) by applying the Minkowski vacuum prescription in the limit η → −∞,
separately for each mode χk. This prescription can be expressed by the asymptotic
relations

vk(η) → 1√
ωk
eiωkη,

v′k(η)

vk(η)
→ iωk, as η → −∞. (7.19)

The vacuum state determined by the mode functions vk(η) satisfying Eq. (7.19) is
called the Bunch-Davies vacuum. From the result of Exercise 7.4 we can read the
mode functions of the BD vacuum,

vk(η) =

√

π |η|
2

[Jn (k |η|) − iYn (k |η|)] , n ≡
√

9

4
− m2

H2
. (7.20)

The Bunch-Davies vacuum prescription has important applications in cosmology.
The de Sitter spacetime approximates the inflationary stage of the evolution of the
universe. However, this approximation is valid only for a certain time interval, for
instance ηi < η < ηf , while at earlier times, η < ηi, the spacetime is not de Sitter.
Therefore the procedure of imposing the adiabatic conditions at earlier times η < ηi
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7.4 Evolution of fluctuations

cannot be justified, and the BD vacuum state can be used only for modes χk such
that k |ηi| ≫ 1. The modes χk with k |ηi| . 1 were superhorizon at η = ηi and
their quantum states are determined by the evolution of the spacetime at η < ηi.
Unless this evolution is known, one should refrain from making predictions about
the quantum state of those modes.

Remark: interpretation of superhorizon modes. Form≪ H , all modes χk with k |η| < 2
have imaginary effective frequencies ωk(η) at time η. Hence, quantum states of these
superhorizon modes do not have a particle interpretation. However, field modes with
superhorizon wavelengths are real and their influence can be quantitatively investigated,
for instance, by computing the spectrum of fluctuations. This is another illustration of the

fact that field observables such as 〈0| φ̂(x)φ̂(y) |0〉 are more fundamental than a description
of quantum states in terms of particles.

7.4 Evolution of fluctuations

We now study the fluctuation amplitude δφL(η) in the BD vacuum state as a function
of time η and scale L.

According to the formula (7.4), the amplitude of fluctuations is determined by abso-
lute values of the mode functions. Up to now we have been mostly working with the

auxiliary field χ̂(x) = aφ̂(x). The mode expansion for φ̂(x) is simply a−1(η) times the

mode expansion for χ̂. Therefore, the mode functions of the field φ̂ are a−1(η)vk(η),
where vk(η) are the mode functions of the field χ̂, and the amplitude of fluctuations

of φ̂ on a comoving scale L is

δφL(η) = a−1(η)k3/2 |vk(η)| , k ≡ L−1. (7.21)

To compute the time dependence of the fluctuations, we could use the exact expres-
sion (7.20). However, the correct order or magnitude of the mode function vk(η) can
be found without cumbersome calculations.

Evolution of mode functions

The mode functions (7.20) describing the BD vacuum possess the asymptotic forms
(7.17) and (7.18). We assume that the earliest available time is ηi and do not consider
modes with k |ηi| < 2; their quantum state is considered to be unknown.

For a mode χk with a wavelength which at η = ηi was much smaller than the
horizon so that k |ηi| ≫ 1, the adiabatic regime lasts from ηi until the horizon crossing
time ηk such that k |ηk| ∼ 1. Therefore within the time interval ηi < η < ηk the BD
mode function is approximately equal to the Minkowski mode function,

vk(η) ≈ 1√
k
eikη, ηi < η < ηk, ηk ≡ −1

k
. (7.22)
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7 Quantum fields in de Sitter spacetime

a−1vk(η)

η

Figure 7.4: The imaginary part of the mode function a−1vk(η) for the Bunch-Davies
vacuum (massless field). The time η is plotted in logarithmic scale. The
magnitude of fluctuations is constant at late times.

At η = ηk , we match the asymptotic solution (7.18) to this function and find

vk(η) ∼ Ak
1√
k

∣

∣

∣

∣

η

ηk

∣

∣

∣

∣

n1

+Bk
1√
k

∣

∣

∣

∣

η

ηk

∣

∣

∣

∣

n2

, η > ηk,

where the coefficients Ak and Bk must be both of order 1 to match the value and the
derivative of vk(η). (Exact expressions for Ak and Bk are not needed for the present
estimate.) Finally, for k |η| ≪ 1 the term multiplied by Ak is negligible, therefore

vk(η) ∼ 1√
k

∣

∣

∣

∣

η

ηk

∣

∣

∣

∣

1
2−n

, n =

√

9

4
− m2

H2
, |η| ≪ k−1. (7.23)

The mode functions of the field φ̂ are a−1vk, and at late times (k |η| ≪ 1) we have

a−1vk(η) ∝ |η| vk(η) ∝ |η|3/2−n
.

For m ≪ H , Eq. (7.23) gives n ≈ 3
2 and it follows that the mode function a−1vk(η)

tends to a constant at late times. The exact mode function for m = 0 is plotted in
Fig. 7.4 where one can see the transition from the oscillatory regime at early times to
the late-time behavior.

Spectrum of fluctuations

Now we can compute the amplitude of fluctuations according to Eq. (7.21). The
asymptotic forms (7.22)-(7.23) of the Bunch-Davies mode functions yield the corre-
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regime I

regime II

0ηi

|ηi|

η

? ??

?

?

L

regime I

regime II

0ηi η

H−1

?

?

?

?

Lp

Lp = H−1 ηi

η

Figure 7.5: The asymptotic regimes of δφL (left) from Eq. (7.24) and δφLp
(right) from

Eq. (7.25). Question marks indicate undetermined spectra.

sponding asymptotic estimates of δφL(η) in various regimes of L and η:

δφL(η) =







unknown, η < ηi or L & |ηi| ;
H
∣

∣L−1η
∣

∣ , L < |η| < |ηi| (regime I);

H
∣

∣L−1η
∣

∣

3/2−n
, L≫ |η| (regime II).

(7.24)

By assumption m≪ H , therefore 3/2 − n is a small positive number,

3

2
− n =

3

2
−
√

9

4
− m2

H2
=

1

3

m2

H2
+O

(

m4

H4

)

.

The relevant domains of the (η, L) plane are shown in Fig. 7.5, left.
It is useful to express the function δφL(η) through the physical distance Lp ≡ a(η)L

measured at time η, instead of the comoving scale L. We find a simpler set of results,

δφLp
(η) =











unknown, η < ηi or Lp & H−1 ηi

η
;

L−1
p , Lp < H−1 (regime I);

H |LpH |n−3/2
, Lp > H−1 (regime II).

(7.25)

As a function of the physical lengthLp, the fluctuation spectrum is independent of the
time η and only the domain of applicability of the “regime II” moves with η toward
larger scales (see Fig. 7.5, right).

The fluctuation spectrum δφLp
(η) at a fixed time η can be visualized using Eq. (7.25).

The spectrum for Lp < H−1 is the same as in the Minkowski spacetime, while for su-
perhorizon scales Lp > H−1 the spectrum becomes almost flat (scale-invariant ) and
shows much larger fluctuations than the Minkowski spacetime spectrum, δφ ∼ L−1

p
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7 Quantum fields in de Sitter spacetime

Lmax

regime I regime II

δφ

∼ L−1
p

∼ L
n−3/2
p

LpH−1

?

?

Figure 7.6: The fluctuation amplitude δφLp
(η) as function of Lp at fixed time η. The

dashed line shows the amplitude of fluctuations in the Minkowski space-
time. (The logarithmic scaling is used for both axes.)

(see Fig. 7.6). The growth of fluctuations is due to the influence of gravity on the su-

perhorizon modes of the field φ̂. Beyond the scale Lmax = H−1 ηi

η the quantum state

of the field is unknown.
The scale Lmax grows with time as Lmax ∼ exp(Ht), so the region Lp > Lmax where

the spectrum is unknown quickly moves toward extremely large scales. We can there-
fore picture the evolution of the spectrum as a gradual “ironing” of unknown fluctua-
tions into the almost flat regimeH−1 < Lp < Lmax. At sufficiently late times, fluctua-
tions on all cosmologically interesting scales are independent of the initial conditions
at η = ηi and coincide with the fluctuations in the Bunch-Davies vacuum state. We
find that the effect of the de Sitter expansion is to bring an arbitrary initial quantum
state into the Bunch-Davies vacuum state at late times.

The growth of quantum fluctuations is used in cosmology to explain the formation
of large-scale structures (galaxies and clusters of galaxies) in the early universe. The
theory of cosmological inflation assumes the existence of a de Sitter-like epoch dur-
ing which quantum fluctuations of the fields were amplified and at the same time all
information about previous quantum states was moved to unobservably large scales.
The resulting large quantum fluctuations act as seeds for the inhomogeneities of en-
ergy density, which then grow by gravitational collapse and eventually cause the for-
mation of galaxies. This theory is a practical application of QFT in curved spacetime
to astrophysics.
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8 The Unruh effect

Summary: Uniformly accelerated motion. The Rindler spacetime in 1+1
dimensions. Quantization of massless scalar field. The Rindler and the
Minkowski vacua. Density of particles. The Unruh temperature.

The Unruh effect predicts the detection of particles in vacuum by an accelerated ob-
server. In this chapter we consider the simplest case when the observer moves with
a constant acceleration through the Minkowski spacetime. Even though the field is
in the vacuum state, the observer finds a distribution of particles characteristic of a
thermal bath of blackbody radiation.

8.1 Kinematics of uniformly accelerated motion

First we consider the trajectory of an object moving with a constant acceleration in
the Minkowski spacetime. A model of this situation is a spaceship with an infinite
energy supply and a propulsion engine that exerts a constant force (but moves with
the ship). The resulting motion of the spaceship is such that the acceleration of the
ship in its own frame of reference (the proper acceleration) is constant. This is the
natural definition of a uniformly accelerated motion in a relativistic theory. (An object
cannot move with dv/dt = const for all time because velocities must be smaller than
the speed of light, |v| < 1.)

We now introduce the reference frames that will play a major role in our consider-
ations: the laboratory frame, the proper frame, and the comoving frame. The labo-
ratory frame is the usual inertial reference frame with the coordinates (t, x, y, z). The
proper frame is the accelerated system of reference that moves together with the ob-
server; we shall also call it the accelerated frame. The comoving frame defined at a
time t0 is the inertial frame in which the accelerated observer is instantaneously at rest
at t = t0. (Thus the term comoving frame actually refers to a different frame for each
t0.)

By definition, the observer’s proper acceleration at time t = t0 is the 3-acceleration
measured in the comoving frame at time t0. We consider a uniformly accelerated
observer whose proper acceleration is time-independent and equal to a given 3-vector
a. The trajectory of such an observer may be described by a worldline xµ(τ), where
τ is the proper time measured by the observer. The proper time parametrization
implies the condition

uµuµ = 1, uµ ≡ dxµ

dτ
. (8.1)
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8 The Unruh effect

It is a standard result that the 4-acceleration in the laboratory frame,

aµ ≡ duµ

dτ
=
d2xµ

dτ2
,

is related to the three-dimensional proper acceleration a by

aµaµ = − |a|2 . (8.2)

Derivation of Eq. (8.2). Let uµ(τ ) be the observer’s 4-velocity and let tc be the time vari-
able in the comoving frame defined at τ = τ0; this is the time measured by an inertial
observer moving with the constant velocity uµ(τ0). We shall show that the 4-acceleration
aµ(τ ) in the comoving frame has components

`

0, a1, a2, a3
´

, where ai are the components
of the acceleration 3-vector a ≡ d2x/dt2c measured in the comoving frame. It will then
follow that Eq. (8.2) holds in the comoving frame, and hence it holds also in the laboratory
frame since the Lorentz-invariant quantity aµaµ is the same in all frames.

Since the comoving frame moves with the velocity uµ(τ0), the 4-vector uµ(τ0) has the
components (1, 0, 0, 0) in that frame. The derivative of the identity uµ(τ )uµ(τ ) = 1 with
respect to τ yields aµ(τ )uµ(τ ) = 0, therefore a0(τ0) = 0 in the comoving frame. Since
dtc = u0(τ )dτ and u0(τ0) = 1, we have

d2xµ

dt2c
=

1

u0

d

dτ

»

1

u0

dxµ

dτ

–

=
d2xµ

dτ 2
+
dxµ

dτ

d

dτ

1

u0
.

It remains to compute

d

dτ

1

u0(τ0)
= −

ˆ

u0(τ0)
˜−2 du0

dτ

˛

˛

˛

˛

τ=τ0

= −a0 (τ0) = 0,

and it follows that d2xµ/dτ 2 = d2xµ/dt2c =
`

0, a1, a2, a3
´

as required. (Self-test question:
why is aµ = duµ/dτ 6= 0 even though uµ = (1, 0, 0, 0) in the comoving frame?)

We now derive the trajectory xµ(τ) of the accelerated observer. Without loss of
generality, we may assume that the acceleration is parallel to the x axis, a ≡ (a, 0, 0),
where a > 0, and that the observer moves only in the x direction. Then the coordi-
nates y and z of the observer remain constant and only the functions x(τ), t(τ) need to
be computed. From Eqs. (8.1)-(8.2) it is straightforward to derive the general solution

x(τ) = x0 −
1

a
+

1

a
coshaτ, t(τ) = t0 +

1

a
sinh aτ. (8.3)

This trajectory has zero velocity at τ = 0 (which implies x = x0, t = t0).

Derivation of Eq. (8.3). Since aµ = duµ/dτ and u2 = u3 = 0, the components u0, u1 of the
velocity satisfy

„

du0

dτ

«2

−
„

du1

dτ

«2

= −a2,

`

u0´2 −
`

u1´2 = 1.
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8.1 Kinematics of uniformly accelerated motion

We may assume that u0 > 0 (the time τ grows together with t) and that du1/dτ > 0, since
the acceleration is in the positive x direction. Then

u0 =

q

1 + (u1)2;
du1

dτ
= a

q

1 + (u1)2.

The solution with the initial condition u1(0) = 0 is

u1(τ ) ≡ dx

dτ
= sinh aτ, u0(τ ) ≡ dt

dτ
= cosh aτ.

After an integration we obtain Eq. (8.3).

The trajectory (8.3) has a simpler form if we choose the initial conditions x(0) = a−1

and t(0) = 0. Then the worldline is a branch of the hyperbola x2 − t2 = a−2 (see
Fig. 8.1). At large |t| the worldline approaches the lightcone. The observer comes in
from x = +∞, decelerates and stops at x = a−1, and then accelerates back towards
infinity. In the comoving frame of the observer, this motion takes infinite proper time,
from τ = −∞ to τ = +∞.

From now on, we drop the coordinates y and z and work in the 1+1-dimensional
spacetime (t, x).

8.1.1 Coordinates in the proper frame

To describe quantum fields as seen by an accelerated observer, we need to use the
proper coordinates (τ, ξ), where τ is the proper time and ξ is the distance measured
by the observer. The proper coordinate system (τ, ξ) is related to the laboratory frame
(t, x) by some transformation functions τ(t, x) and ξ(t, x) which we shall now deter-
mine.

The observer’s trajectory t(τ), x(τ) should correspond to the line ξ = 0 in the proper
coordinates. Let the observer hold a rigid measuring stick of proper length ξ0, so
that the entire stick accelerates together with the observer. Then the stick is instanta-
neously at rest in the comoving frame and the far endpoint of the stick has the proper
coordinates (τ, ξ0) at time τ . We shall derive the relation between the coordinates
(t, x) and (τ, ξ) by computing the laboratory coordinates (t, x) of the far end of the
stick as functions of τ and ξ0.

In the comoving frame at time τ , the stick is represented by the 4-vector sµ
(com) ≡

(0, ξ0) connecting the endpoints (τ, 0) and (τ, ξ0). This comoving frame is an inertial
system of reference moving with the 4-velocity uµ(τ) = dxµ/dτ . Therefore the coor-
dinates sµ

(lab) of the stick in the laboratory frame can be found by applying the inverse

Lorentz transformation to the coordinates sµ
(com):

[

s0(lab)

s1(lab)

]

=
1√

1 − v2

(

1 v
v 1

)

[

s0(com)

s1(com)

]

=

(

u0 u1

u1 u0

)

[

s0(com)

s1(com)

]

=

[

u1ξ
u0ξ

]

,

where v ≡ u1/u0 is the velocity of the stick in the laboratory system. The stick is
attached to the observer moving along xµ(τ), so the proper coordinates (τ, ξ) of the
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Q

P

R

a−1

t = −
x

t =
x

x

t

0

Figure 8.1: The worldline of a uniformly accelerated observer (proper acceleration
a ≡ |a|) in the Minkowski spacetime. The dashed lines show the light-
cone. The observer cannot receive any signals from the events P , Q and
cannot send signals to R.
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8.1 Kinematics of uniformly accelerated motion

far end of the stick correspond to the laboratory coordinates

t(τ, ξ) = x0(τ) + s0(lab) = x0(τ) +
dx1(τ)

dτ
ξ, (8.4)

x(τ, ξ) = x1(τ) + s1(lab) = x1(τ) +
dx0(τ)

dτ
ξ. (8.5)

Note that the relations (8.4)-(8.5) specify the proper frame for any trajectory x0,1(τ) in
the 1+1-dimensional Minkowski spacetime.

Now we can substitute Eq. (8.3) into the above relations to compute the proper
coordinates for a uniformly accelerated observer. We choose the initial conditions
x0(0) = 0, x1(0) = a−1 for the observer’s trajectory and obtain

t(τ, ξ) =
1 + aξ

a
sinhaτ, (8.6)

x(τ, ξ) =
1 + aξ

a
coshaτ. (8.7)

The converse relations are

τ(t, x) =
1

2a
ln
x+ t

x− t
,

ξ(t, x) = −a−1 +
√

x2 − t2.

The horizon

From Eqs. (8.6)-(8.7) it can be seen that the coordinates (τ, ξ) vary in the intervals
−∞ < τ < +∞ and −a−1 < ξ < +∞. In particular, for ξ < −a−1 we would
find ∂t/∂τ < 0, i.e. the direction of time t would be opposite to that of τ . One can
verify that an accelerated observer cannot measure distances longer than a−1 in the
direction opposite to the acceleration, for instance, the distances to the events P and
Q in Fig. 8.1. A measurement of the distance to a point requires to place a clock
at that point and to synchronize that clock with the observer’s clock. However, the
observer cannot synchronize clocks with the events P and Q because no signals can
be ever received from these events. One says that the accelerated observer perceives
a horizon at proper distance a−1.

The coordinate system (8.6)-(8.7) is incomplete and covers only a “quarter” of the
Minkowski spacetime, more precisely, the subdomain x > |t| (see Fig. 8.2). This
is the subdomain of the Minkowski spacetime accessible to a uniformly accelerated
observer. For instance, the events P , Q, R cannot be described by (real) values of τ
and ξ. The past lightcone x = −t corresponds to the proper coordinates τ = −∞
and ξ = −a−1. The observer can see signals from the event R, however these signals
appear to have originated not from R but from the horizon ξ = −a−1 in the infinite
past τ = −∞.

Another way to see that the line ξ = −a−1 is a horizon is to consider a line of
constant proper length ξ = ξ0 > −a−1. It follows from Eqs. (8.6)-(8.7) that the line
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8 The Unruh effect

ξ = ξ0 is a trajectory of the form x2 − t2 = const with the proper acceleration

a0 ≡ 1√
x2 − t2

=
(

ξ0 + a−1
)−1

.

The observer cannot hold a rigid measuring stick longer than a−1 because the point
ξ = −a−1 of the stick would have to move with an infinite proper acceleration, which
would require an infinitely large force and is thus impossible.

8.1.2 The Rindler spacetime

The Minkowski metric in the proper coordinates (τ, ξ) is

ds2 = dt2 − dx2 = (1 + aξ)2dτ2 − dξ2. (8.8)

The spacetime with this metric is called the Rindler spacetime. The curvature of the
Rindler spacetime is everywhere zero since it differs from the Minkowski spacetime
merely by a change of coordinates.

Exercise 8.1
Derive the metric (8.8) from Eqs. (8.6)-(8.7).

To develop the quantum field theory in the Rindler spacetime, we first rewrite the
metric (8.8) in a conformally flat form. This can be achieved by choosing the new

spatial coordinate ξ̃ such that dξ = (1 + aξ)dξ̃, because in that case both dτ2 and dξ̃2

will have a common factor (1 + aξ)2. The necessary replacement is therefore

ξ̃ ≡ 1

a
ln(1 + aξ).

Since the proper distance ξ is constrained by ξ > −a−1, the conformal distance ξ̃

varies in the interval −∞ < ξ̃ < +∞. The metric becomes

ds2 = e2aξ̃(dτ2 − dξ̃2). (8.9)

The relation between the laboratory coordinates and the conformal coordinates is

t(τ, ξ̃) = a−1eaξ̃ sinh aτ, x(τ, ξ̃) = a−1eaξ̃ coshaτ. (8.10)

8.2 Quantum fields in the Rindler spacetime

The goal of this section is to quantize a scalar field in the proper reference frame of
a uniformly accelerated observer. To simplify the problem, we consider a massless
scalar field in the 1+1-dimensional spacetime. All physical conclusions will be the
same as those drawn from a four-dimensional calculation.

The action for a massless scalar field φ(t, x) is

S[φ] =
1

2

∫

gαβφ,αφ,β

√
−gd2x.
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Q

P

R

x

t

Figure 8.2: The proper coordinate system of a uniformly accelerated observer in the
Minkowski spacetime. The solid hyperbolae are the lines of constant
proper distance ξ; the hyperbola with arrows is ξ = 0, or x2 − t2 = a−2.
The lines of constant τ are dotted. The dashed lines show the lightcone
which corresponds to ξ = −a−1. The events P , Q, R are not covered by
the proper coordinate system.
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8 The Unruh effect

Here xµ ≡ (t, x) is the two-dimensional coordinate. It is easy to see that this action is
conformally invariant: indeed, if we replace

gαβ → g̃αβ = Ω2(t, x)gαβ ,

then the determinant
√−g and the contravariant metric are replaced by

√−g → Ω2√−g, gαβ → Ω−2gαβ , (8.11)

so the factors Ω2 cancel in the action. Therefore the minimally coupled massless scalar
field in the 1+1-dimensional Minkowski spacetime is in fact conformally coupled. The
conformal invariance causes a significant simplification of the theory in 1+1 dimen-
sions. (Note that a minimally coupled massless scalar field in 3+1 dimensions is not
conformally coupled!)

In the laboratory coordinates (t, x), the action is

S[φ] =
1

2

∫

[

(∂tφ)
2 − (∂xφ)

2
]

dt dx.

In the conformal coordinates, the metric (8.9) is equal to the flat Minkowski metric

multiplied by a conformal factor Ω2(τ, ξ̃) ≡ exp(2aξ̃). Therefore, due to the conformal

invariance, the action has the same form in the coordinates (τ, ξ̃):

S[φ] =
1

2

∫

[

(∂τφ)
2 − (∂ξ̃φ)2

]

dτ dξ̃.

The classical equations of motion in the laboratory frame and in the accelerated
frame are

∂2φ

∂t2
− ∂2φ

∂x2
= 0;

∂2φ

∂τ2
− ∂2φ

∂ξ̃2
= 0,

with the general solutions

φ(t, x) = A(t− x) +B(t+ x), φ(τ, ξ̃) = P (τ − ξ̃) +Q(τ + ξ̃).

Here A, B, P , and Q are arbitrary smooth functions. Note that a solution φ(t, x)

representing a certain state of the field will be a very different function of τ and ξ̃.

8.2.1 Quantization

We shall now quantize the field φ and compare the vacuum states in the laboratory
frame and in the accelerated frame.

The procedure of quantization is formally the same in both coordinate systems

(t, x) and (τ, ξ̃). The mode expansion in the laboratory frame is found from Eq. (4.17)
with the substitution ωk = |k|:

φ̂(t, x) =

∫ +∞

−∞

dk

(2π)1/2

1
√

2 |k|

[

e−i|k|t+ikxâ−k + ei|k|t−ikxâ+
k

]

. (8.12)
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The normalization factor (2π)1/2 is used in 1+1 dimensions instead of the factor (2π)3/2

used in 3+1 dimensions. The creation and annihilation operators â±k defined by
Eq. (8.12) satisfy the usual commutation relations and describe particles moving with
momentum k either in the positive x direction (k > 0) or in the negative x direction
(k < 0).

Remark: the zero mode. The mode expansion (8.12) ignores the k = 0 solution, φ(t, x) =
c0 + c1t, called the zero mode. Quantization of the zero mode in the 1+1-dimensional
spacetime is a somewhat complicated technical issue. However, the zero mode does not
contribute to the four-dimensional theory and we ignore it here.

The vacuum state in the laboratory frame (the Minkowski vacuum), denoted by
|0M 〉, is the zero eigenvector of all annihilation operators â−k ,

â−k |0M 〉 = 0 for all k.

The mode expansion in the accelerated frame is quite similar to Eq. (8.12),

φ̂(τ, ξ̃) =

∫ +∞

−∞

dk

(2π)1/2

1
√

2 |k|

[

e−i|k|τ+ikξ̃ b̂−k + ei|k|τ−ikξ̃ b̂+k

]

. (8.13)

Note that the mode expansions (8.12) and (8.13) are decompositions of the operator

φ̂(x, t) into linear combinations of two different sets of basis functions with operator-

valued coefficients â±k and b̂±k . So it is to be expected that the operators â±k and b̂±k are
different, although they satisfy similar commutation relations.

The vacuum state in the accelerated frame |0R〉 (the Rindler vacuum) is defined by

b̂−k |0R〉 = 0 for all k.

Since the operators b̂k differ from âk, the Rindler vacuum |0R〉 and the Minkowski

vacuum |0M 〉 are two different quantum states of the field φ̂.
At this point, a natural question to ask is whether the state |0M 〉 or |0R〉 is the

“correct” vacuum. To answer this question, we need to consider the physical inter-
pretation of the states |0M 〉 and |0R〉 in a particular (perhaps imaginary) physical ex-
periment. In Sec. 6.3.2 we discussed a hypothetical device for preparing the quantum
field in the lowest-energy state. If mounted onto an accelerated spaceship, the device
will prepare the field in the quantum state |0R〉. All observers moving with the ship
would agree that the field in the state |0R〉 has the lowest possible energy, while the
Minkowski state |0M 〉 has a higher energy. Thus a particle detector which remains at
rest in the accelerated frame will register particles when the field is in the state |0M 〉.
However, in the laboratory frame the state with the lowest energy is |0M 〉 and the
state |0R〉 has a higher energy. Therefore, if the field is in the Rindler state |0R〉 (the
vacuum prepared inside the spaceship), it will appear to be in an excited state when
examined by observers in the laboratory frame.

Neither of the two vacuum states is “more correct” if considered by itself, without
regard for realistic physical conditions in the universe. Ultimately the choice of vac-
uum is determined by experiment: the correct vacuum state must be such that the
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8 The Unruh effect

theoretical predictions agree with available experimental data. In an inertial refer-
ence frame in the Minkowski spacetime, we observe empty space that does not create
any particles by itself. By virtue of this observation, we are justified to assume that
fields in the empty Minkowski spacetime are in the vacuum state |0M 〉 and that any
excitations in the field modes are always due to external sources. In particular, an
accelerated observer moving through empty space will encounter fields in the state
|0M 〉 and therefore will detect particles. This detection is the manifestation of the
Unruh effect.

The rest of this chapter is devoted to a calculation relating the Minkowski frame

operators â±k to the Rindler frame operators b̂±k through the appropriate Bogolyubov
coefficients. This calculation will enable us to express the Minkowski vacuum as a su-
perposition of excited states built on top of the Rindler vacuum and thus to compute
the probability distribution for particle occupation numbers observed in the acceler-
ated frame.

8.2.2 Lightcone mode expansions

It is convenient to introduce the lightcone coordinates1

ū ≡ t− x, v̄ ≡ t+ x; u ≡ τ − ξ̃, v ≡ τ + ξ̃.

The relation between the laboratory frame and the accelerated frame has a simpler
form in lightcone coordinates: from Eq. (8.10) we find

ū = −a−1e−au, v̄ = a−1eav, (8.14)

so the metric is
ds2 = dū dv̄ = ea(v−u)du dv.

The field equations and their general solutions are also expressed more concisely in
the lightcone coordinates:

∂2

∂ū∂v̄
φ (ū, v̄) = 0, φ (ū, v̄) = A (ū) +B (v̄) ;

∂2

∂u∂v
φ(u, v) = 0, φ(u, v) = P (u) +Q(v). (8.15)

The mode expansion (8.12) can be rewritten in the coordinates ū, v̄ by first splitting
the integration into the ranges of positive and negative k,

φ̂(t, x) =

∫ 0

−∞

dk

(2π)1/2

1
√

2 |k|
[

eikt+ikxâ−k + e−ikt−ikxâ+
k

]

+

∫ +∞

0

dk

(2π)1/2

1√
2k

[

e−ikt+ikxâ−k + eikt−ikxâ+
k

]

.

1The chosen notation (u, v) for the lightcone coordinates in a uniformly accelerated frame and (ū, v̄) for
the freely falling (unaccelerated) frame will be used in Chapter 9 as well.
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8.2 Quantum fields in the Rindler spacetime

Then we introduce ω = |k| as the integration variable with the range 0 < ω < +∞
and obtain the lightcone mode expansion

φ̂ (ū, v̄) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωūâ−ω + eiωūâ+
ω + e−iωv̄â−−ω + eiωv̄â+

−ω

]

. (8.16)

Lightcone mode expansions explicitly decompose the field φ̂ (ū, v̄) into a sum of
functions of ū and functions of v̄. This agrees with Eq. (8.15) from which we find
that A (ū) is a linear combination of the operators â±ω with positive momenta ω, while
B (v̄) is a linear combination of â±−ω with negative momenta −ω:

φ̂ (ū, v̄) = Â (ū) + B̂ (v̄) ;

Â (ū) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωūâ−ω + eiωūâ+
ω

]

,

B̂ (v̄) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωv̄â−−ω + eiωv̄â+
−ω

]

.

The lightcone mode expansion in the Rindler frame has exactly the same form ex-
cept for involving the coordinates (u, v) instead of (ū, v̄). We use the integration vari-
able Ω to distinguish the Rindler frame expansion from that of the Minkowski frame,

φ̂(u, v) = P̂ (u) + Q̂(v)

=

∫ +∞

0

dΩ

(2π)1/2

1√
2Ω

[

e−iΩub̂−Ω + eiΩub̂+Ω + e−iΩv b̂−−Ω + eiΩv b̂+−Ω

]

. (8.17)

As before, P̂ (u) is expanded into operators b̂±Ω with positive momenta Ω and Q̂(v)

into the operators b̂±−Ω with negative momenta −Ω. (Note that in all lightcone mode
expansions, the variables ω and Ω take only positive values.)

8.2.3 The Bogolyubov transformations

The relation between the operators â±±ω and b̂±±Ω, which we shall presently derive, is a
Bogolyubov transformation of a more general form than that considered in Sec. 6.2.2.

Since the coordinate transformation (8.14) does not mix u and v, the identity

φ̂(u, v) = Â (ū(u)) + B̂ (v̄(v)) = P̂ (u) + Q̂(v)

entails two separate relations for u and for v,

Â (ū(u)) = P̂ (u), B̂ (v̄(v)) = Q̂(v).

Comparing the expansions (8.16) and (8.17), we find that the operators â±ω with posi-

tive momenta ω are expressed through b̂±Ω with positive momenta Ω, while the oper-

ators â±−ω are expressed through negative-momentum operators b̂±−Ω. In other words,
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8 The Unruh effect

there is no mixing between operators of positive and negative momentum. The rela-

tion Â (ū) = P̂ (u) is then rewritten as

Â (ū) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[

e−iωūâ−ω + eiωūâ+
ω

]

=P̂ (u) =

∫ +∞

0

dΩ

(2π)1/2

1√
2Ω

[

e−iΩub̂−Ω + eiΩub̂+Ω

]

. (8.18)

Here ū is understood to be the function of u given by Eq. (8.14); both sides of Eq. (8.18)
are equal as functions of u.

We can now express the positive-momentum operators â±ω as explicit linear combi-

nations of b̂±Ω . To this end, we perform the Fourier transform of both sides of Eq. (8.18)
in u. The RHS yields

∫ +∞

−∞

du√
2π
eiΩuP̂ (u) =

1
√

2 |Ω|

{

b̂−Ω , Ω > 0;

b̂+|Ω|, Ω < 0.
(8.19)

(The Fourier transform variable is denoted also by Ω for convenience.) The Fourier
transform of the LHS of Eq. (8.18) yields an expression involving all â±ω ,

∫ +∞

−∞

du√
2π
eiΩuÂ (ū) =

∫ ∞

0

dω√
2ω

∫ +∞

−∞

du

2π

[

eiΩu−iωūâ−ω + eiΩu+iωūâ+
ω

]

≡
∫ ∞

0

dω√
2ω

[

F (ω,Ω)â−ω + F (−ω,Ω)â+
ω

]

, (8.20)

where we introduced the auxiliary function2

F (ω,Ω) ≡
∫ +∞

−∞

du

2π
eiΩu−iωū =

∫ +∞

−∞

du

2π
exp

[

iΩu+ i
ω

a
e−au

]

. (8.21)

Comparing Eqs. (8.19) and (8.20) restricted to positive Ω, we find that the relation

between â±ω and b̂−Ω is of the form

b̂−Ω =

∫ ∞

0

dω
[

αωΩâ
−
ω + βωΩâ

+
ω

]

, (8.22)

where the coefficients αωΩ and βωΩ are

αωΩ =

√

Ω

ω
F (ω,Ω), βωΩ =

√

Ω

ω
F (−ω,Ω); ω > 0,Ω > 0. (8.23)

2Because of the carelessly interchanged order of integration while deriving Eq. (8.20), the integral (8.21)
diverges at u → +∞ and the definition of F (ω, Ω) must be understood in the distributional sense. In
Appendix A.3 it is shown how to express F (ω,Ω) through Euler’s gamma function, but we shall not
need that representation.
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8.2 Quantum fields in the Rindler spacetime

The operators b̂+Ω can be similarly expressed through â±ω using the Hermitian conju-
gation of Eq. (8.22) and the identity

F ∗(ω,Ω) = F (−ω,−Ω).

The relation (8.22) is a Bogolyubov transformation that mixes creation and annihi-
lation operators with different momenta ω 6= Ω. In contrast, the Bogolyubov trans-
formations considered in Sec. 6.2.2 are “diagonal,” with αωΩ and βωΩ proportional to
δ(ω − Ω).

The relation between the operators â±−ω and b̂±−Ω is obtained from the equation

B̂ (v̄) = Q̂(v). We omit the corresponding straightforward calculations and concen-
trate on the positive-momentum modes; the results for negative momenta are com-
pletely analogous.

General Bogolyubov transformations

We need to briefly consider the properties of general Bogolyubov transformations,

b̂−Ω =

∫ +∞

−∞
dω
[

αωΩâ
−
ω + βωΩâ

+
ω

]

. (8.24)

The relation (8.22) is of this form except for the integration over 0 < ω < +∞ which
is justified because the only nonzero Bogolyubov coefficients are those relating the
momenta ω,Ω of equal sign, i.e. α−ω,Ω = 0 and β−ω,Ω = 0. But for now we shall not
limit ourselves to this case.

The relation for the operator b̂+Ω is the Hermitian conjugate of Eq. (8.24).

Remark: To avoid confusion in the notation, we always write the indices ω,Ω in the Bo-
golyubov coefficients in this order, i.e. αωΩ, but never αΩω . In the calculations throughout
this chapter, the integration is always over the first index ω corresponding to the momen-
tum of a-particles.

Since the operators â±ω , b̂±Ω satisfy the commutation relations

[

â−ω , â
+
ω′

]

= δ(ω − ω′), [b̂−Ω , b̂
+
Ω′ ] = δ(Ω − Ω′), (8.25)

the Bogolyubov coefficients are constrained by

∫ +∞

−∞
dω (αωΩα

∗
ωΩ′ − βωΩβ

∗
ωΩ′) = δ(Ω − Ω′). (8.26)

This is analogous to the normalization condition |αk|2 − |βk|2 = 1 we had earlier.

Exercise 8.2
Derive Eq. (8.26).

Note that the origin of the δ function in Eq. (8.25) is the infinite volume of the entire
space. If the field were quantized in a finite box of volume V , the momenta ω and Ω
would be discrete and the δ function would be replaced by the ordinary Kronecker
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8 The Unruh effect

symbol times the volume factor, i.e. V δΩΩ′ . The δ function in Eq. (8.26) has the same
origin. Below we shall use Eq. (8.26) with Ω = Ω′ and the divergent factor δ(0) will
be interpreted as the infinite spatial volume.

Remark: inverse Bogolyubov transformations. The commutation relation [̂b−Ω , b̂
−
Ω′ ] = 0

yields another restriction on the Bogolyubov coefficients,

Z +∞

−∞

dω (αωΩβωΩ′ − αωΩ′βωΩ) = 0. (8.27)

It follows from Eqs. (8.26), (8.27) that the inverse Bogolyubov transformation is

â−ω =

Z +∞

−∞

dΩ
“

α∗
ωΩb̂

−
Ω − βωΩb̂

+
Ω

”

.

This relation can be easily verified by substituting it into Eq. (8.24). One can also derive
orthogonality relations similar to Eqs. (8.26), (8.27) but with the integration over Ω. We
shall not need the inverse Bogolyubov transformations in this chapter.

8.2.4 Density of particles

Since the vacua |0M 〉 and |0R〉 corresponding to the operators â−ω and b̂−Ω are different,
the a-vacuum is a state with b-particles and vice versa. We now compute the density
of b-particles in the a-vacuum state.

The b-particle number operator is N̂Ω ≡ b̂+Ω b̂
−
Ω , so the average b-particle number in

the a-vacuum |0M 〉 is equal to the expectation value of N̂Ω,

〈N̂Ω〉 ≡ 〈0M | b̂+Ω b̂−Ω |0M 〉

= 〈0M |
∫

dω
[

α∗
ωΩâ

+
ω + β∗

ωΩâ
−
ω

]

∫

dω′ [αω′Ωâ
−
ω′ + βω′Ωâ

+
ω′

]

|0M 〉

=

∫

dω |βωΩ|2 . (8.28)

This is the mean number of particles observed in the accelerated frame.
In principle one can explicitly compute the Bogolyubov coefficients βωΩ defined by

Eq. (8.23) in terms of the Γ function (see Appendix A.3). However, we only need to
evaluate the RHS of Eq. (8.28) which involves an integral over ω, and we shall use a
mathematical trick that allows us to compute just that integral and avoid cumbersome
calculations.

We first note that the function F (ω,Ω) satisfies the identity

F (ω,Ω) = F (−ω,Ω) exp

(

πΩ

a

)

, for ω > 0, a > 0. (8.29)

Exercise 8.3*
Derive the relation (8.29) from Eq. (8.21). Hint: deform the contour of integration in the

complex plane.

112



8.2 Quantum fields in the Rindler spacetime

We then substitute Eq. (8.23) into the normalization condition (8.26), use Eq. (8.29)
and find

δ(Ω − Ω′) =

∫ +∞

0

dω

√
ΩΩ′

ω
[F (ω,Ω)F ∗(ω,Ω′) − F (−ω,Ω)F ∗(−ω,Ω′)]

=

[

exp

(

πΩ + πΩ′

a

)

− 1

]∫ +∞

0

dω
Ω

ω
F ∗(−ω,Ω)F (−ω,Ω).

The last line above yields the relation

∫ +∞

0

dω
Ω

ω
F (−ω,Ω)F ∗(−ω,Ω′) =

[

exp

(

2πΩ

a

)

− 1

]−1

δ(Ω − Ω′). (8.30)

Setting Ω′ = Ω in Eq. (8.30), we directly compute the integral in the RHS of Eq. (8.28),

〈N̂Ω〉 =

∫ +∞

0

dω |βωΩ|2 =

∫ +∞

0

dω
Ω

ω
|F (−ω,Ω)|2 =

[

exp

(

2πΩ

a

)

− 1

]−1

δ(0).

As usual, we expect 〈N̂Ω〉 to be divergent since it is the total number of particles in
the entire space. As discussed in Sec. 4.2, the divergent volume factor δ(0) represents
the volume of space, and the remaining factor is the density nΩ of b-particles with
momentum Ω:

∫ +∞

0

dω |βωΩ|2 ≡ nΩδ(0).

Therefore, the mean density of particles in the mode with momentum Ω is

nΩ =

[

exp

(

2πΩ

a

)

− 1

]−1

. (8.31)

This is the main result of this chapter.
So far we have computed nΩ only for positive-momentum modes (with Ω > 0). The

result for negative-momentum modes is obtained by replacing Ω by |Ω| in Eq. (8.31).

8.2.5 The Unruh temperature

A massless particle with momentum Ω has energy E = |Ω|, so the formula (8.31) is
equivalent to the Bose distribution

n(E) =

[

exp

(

E

T

)

− 1

]−1

where T is the Unruh temperature

T ≡ a

2π
.
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We found that an accelerated observer detects particles when the field φ is in the
Minkowski vacuum state |0M 〉. The detected particles may have any momentum
Ω, although the probability for registering a high-energy particle is very small. The
particle distribution (8.31) is characteristic of the thermal blackbody radiation with
the temperature T = a/2π, where a is the magnitude of the proper acceleration (in
Planck units). An accelerated detector behaves as though it were placed in a thermal
bath with temperature T . This is the Unruh effect.

Remark: conformal invariance. Earlier we said that a conformally coupled field cannot
exhibit particle production by gravity. This is not in contradiction with the detection of
particles in accelerated frames. Conformal invariance means that identical initial condi-
tions produce identical evolution in all conformally related frames. If the lowest-energy
state is prepared in the accelerated frame (this is the Rindler vacuum |0R〉) and later the
number of particles is measured by a detector that remains accelerated in the same frame,
then no particles will be registered after arbitrarily long times. This is exactly the same pre-
diction as that obtained in the laboratory frame. Nevertheless, the vacuum state prepared
in one frame of reference may be a state with particles in another frame.

A physical interpretation of the Unruh effect as seen in the laboratory frame is the
following. The accelerated detector is coupled to the quantum fields and perturbs
their quantum state around its trajectory. This perturbation is very small but as a
result the detector registers particles, although the fields were previously in the vac-
uum state. The detected particles are real and the energy for these particles comes
from the agent that accelerates the detector.

Finally, we note that the Unruh effect is impossible to use in practice because the
acceleration required to produce a measurable temperature is enormous (see Exer-
cise 1.6 on p. 12 for a numerical example). The energy spent by the accelerating agent
is exponentially large compared with the energy in detected particles. The Unruh
effect is an extremely inefficient way to produce particles.

Remark: more general motion. Observers moving with a nonconstant acceleration will
generally also detect particles but with a nonthermal spectrum. For a general trajectory
xµ(τ ) it is difficult to construct a proper reference frame; instead one considers a quantum-
mechanical model of a detector coupled to the field φ(x) and computes the probability for
observing an excited state of the detector. A calculation of this sort was first performed by
W. G. Unruh; see the book by Birrell and Davies, §3.2.
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9 The Hawking effect.
Thermodynamics of black holes

Summary: Quantization of fields in a black hole spacetime. Choice of vac-
uum. Hawking radiation. Black hole evaporation. Thermodynamics of
black holes.

In this chapter we consider a counter-intuitive effect: emission of particles by black
holes.

9.1 The Hawking radiation

Classical general relativity describes black holes as massive objects with such a strong
gravitational field that even light cannot escape their surface (the black hole horizon).
However, quantum theory predicts that black holes emit particles moving away from
the horizon. The particles are produced out of vacuum fluctuations of quantum fields
present around the black hole. In effect, a black hole (BH) is not completely black but
radiates a dim light as if it were an object with a low but nonzero temperature.

The theoretical prediction of radiation by black holes came as a complete surprise.
It was thought that particles may be produced only by time-dependent gravitational
fields. The first rigorous calculation of the rate of particle creation by a rotating BH
was performed in 1974 by S. Hawking. He expected that in the limit of no rotation the
particle production should disappear, but instead he found that nonrotating (static)
black holes also create particles at a steady rate. This was so perplexing that Hawk-
ing thought he had made a mistake in calculations. It took some years before this
theoretically derived effect (the Hawking radiation) was accepted by the scientific
community.

An intuitive picture of the Hawking radiation involves a virtual particle-antiparticle
pair at the BH horizon. It may happen that the first particle of the pair is inside the
BH horizon while the second particle is outside. The first virtual particle always falls
onto the BH center, but the second particle has a nonzero probability for moving
away from the horizon and becoming a real radiated particle. The mass of the black
hole is decreased in the process of radiation because the energy of the infalling virtual
particle with respect to faraway observers is formally negative.

Another qualitative consideration is that a black hole of size R cannot capture ra-
diation with wavelength much larger than R. It follows that particles (real or virtual)
with sufficiently small energies E ≪ ~c/R might avoid falling into the BH horizon.
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This argument indicates the correct order of magnitude for the energy of radiated par-
ticles, although it remains unclear whether and how the radiation is actually emitted.

The main focus of this section is to compute the density of particles emitted by a
static black hole, as registered by observers far away from the BH horizon.

9.1.1 Scalar field in a BH spacetime

In quantum theory, particles are excitations of quantum fields, so we consider a scalar
field in the presence of a single nonrotating black hole of mass M . The BH spacetime
is described by the Schwarzschild metric,1

ds2 =

(

1 − 2M

r

)

dt2 − dr2

1 − 2M
r

− r2
(

dθ2 + dϕ2 sin2 θ
)

.

This metric is singular at r = 2M which corresponds to the BH horizon, while for
r < 2M the coordinate t is spacelike and r is timelike. Therefore the coordinates (t, r)
may be used with the normal interpretation of time and space only in the exterior
region, r > 2M .

To simplify the calculations, we assume that the field φ is independent of the angu-
lar variables θ, ϕ and restrict our attention to a 1+1-dimensional section of the space-
time with the coordinates (t, r). The line element in 1+1 dimensions,

ds2 = gabdx
adxb, x0 ≡ t, x1 ≡ r,

involves the reduced metric

gab =

[

1 − 2M
r 0

0 −
(

1 − 2M
r

)−1

]

.

The theory we are developing is a toy model (i.e. a drastically simplified version) of
the full 3+1-dimensional QFT in the Schwarzschild spacetime. We expect that the
main features of the full theory are preserved in the 1+1-dimensional model.

The action for a minimally coupled massless scalar field is

S [φ] =
1

2

∫

gabφ,aφ,b

√
−gd2x.

As shown in Sec. 8.2, the field φ with this action is in fact conformally coupled. Be-
cause of the conformal invariance, a significant simplification occurs if the metric
is brought to a conformally flat form. This is achieved by changing the coordinate
r → r∗, where the function r∗(r) is chosen so that

dr =

(

1 − 2M

r

)

dr∗.

1In our notation here and below, the asimuthal angle is ϕ while the scalar field is φ.
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From this relation we find r∗(r) up to an integration constant which we choose as 2M
for convenience,

r∗(r) = r − 2M + 2M ln
( r

2M
− 1
)

. (9.1)

The metric in the coordinates (t, r∗) is conformally flat,

ds2 =

(

1 − 2M

r

)

[

dt2 − dr∗2
]

, (9.2)

where r must be expressed through r∗ using Eq. (9.1). We shall not need an explicit
formula for the function r(r∗).

The coordinate r∗(r) is defined only for r > 2M and varies in the range −∞ < r∗ <
+∞. It is called the “tortoise coordinate” because an object approaching the horizon
r = 2M needs to cross an infinite coordinate distance in r∗. From Eq. (9.2) it is clear
that the tortoise coordinates (t, r∗) are asymptotically the same as the Minkowski
coordinates (t, r) when r → +∞, i.e. in regions far from the black hole where the
spacetime is almost flat.

The action for the scalar field in the tortoise coordinates is

S [φ] =
1

2

∫

[

(∂tφ)
2 − (∂r∗φ)

2
]

dt dr∗,

and the general solution of the equation of motion is of the form

φ (t, r∗) = P (t− r∗) +Q (t+ r∗) ,

where P and Q are arbitrary (but sufficiently smooth) functions.
In the lightcone coordinates (u, v) defined by

u ≡ t− r∗, v ≡ t+ r∗, (9.3)

the metric is expressed as

ds2 =

(

1 − 2M

r

)

du dv. (9.4)

Note that r = 2M is a singularity where the metric becomes degenerate.

9.1.2 The Kruskal coordinates

The coordinate system (t, r∗) has the advantage that for r∗ → +∞ it asymptotically
coincides with the Minkowski coordinate system (t, r) naturally defined far away
from the BH horizon. However, the coordinates (t, r∗) do not cover the black hole in-
terior, r < 2M . To describe the entire spacetime, we need another coordinate system.

It is a standard result that the singularity in the Schwarzschild metric (9.4) which
occurs at r → 2M is merely a coordinate singularity since a suitable change of co-
ordinates yields a metric regular at the BH horizon. For instance, an observer freely
falling into the black hole would see a normal, finitely curved space while crossing
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9 The Hawking effect. Thermodynamics of black holes

the horizon line r = 2M . Therefore one is motivated to consider the coordinate sys-
tem (t̄, r̄) describing the proper time t̄ and the proper distance r̄ measured by a freely
falling observer at the moment of horizon crossing. This coordinate system is called
the Kruskal frame.

We omit the construction of the Kruskal frame2 and write only the final formulae.
The Kruskal lightcone coordinates

ū ≡ t̄− r̄, v̄ ≡ t̄+ r̄

are related to the tortoise lightcone coordinates (9.3) by

ū = −4M exp
(

− u

4M

)

, v̄ = 4M exp
( v

4M

)

. (9.5)

The parameters ū, v̄ vary in the intervals

−∞ < ū < 0, 0 < v̄ < +∞. (9.6)

The inverse relation between (ū, v̄) and the tortoise coordinates (t, r∗) is then found
from Eqs. (9.1) and (9.5):

t = 2M ln
(

− v̄
ū

)

,

exp

(

− r∗

2M

)

= −exp
(

1 − r
2M

)

1 − r
2M

= −16M2

ūv̄
. (9.7)

The BH horizon r = 2M corresponds to the lines ū = 0 and v̄ = 0. To examine the
spacetime near the horizon, we need to rewrite the metric in the Kruskal coordinates.
With the substitution

u = −4M ln
(

− ū

4M

)

, v = 4M ln
v̄

4M
,

the metric (9.4) becomes

ds2 = −16M2

ūv̄

(

1 − 2M

r

)

dū dv̄.

Using Eqs. (9.1) and (9.7), after some algebra we obtain

ds2 =
2M

r
exp

(

1 − r

2M

)

dū dv̄, (9.8)

where it is implied that the Schwarzschild coordinate r is expressed through ū and v̄
using the relation (9.7).

It follows from Eq. (9.8) that at r = 2M the metric is ds2 = dū dv̄, the same as in the
Minkowski spacetime. Although the coordinates ū, v̄ were defined in the ranges (9.6),

2A detailed derivation can be found, for instance, in §31 of the book Gravitation by C.W. MISNER, K.
THORNE, and J. WHEELER (W. H. Freeman, San Francisco, 1973).
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9.1 The Hawking radiation

there is no singularity at ū = 0 or at v̄ = 0 and therefore the coordinate system may
be extended to ū > 0 and v̄ < 0. Thus the Kruskal coordinates cover a larger patch of
the spacetime than the tortoise coordinates (t, r∗). For instance, Eq. (9.7) relates r to
ū, v̄ also for 0 < r < 2M , even though r∗ is undefined for these r.

The Kruskal spacetime is the extension of the Schwarzschild spacetime described
by the Kruskal coordinates t̄, r̄.

Remark: the physical singularity. The Kruskal metric (9.8) is undefined at r = 0. A
calculation shows that the spacetime curvature grows without limit as r → 0. Therefore
r = 0 (the center of the black hole) is a real singularity where general relativity breaks
down. From Eq. (9.7) one finds that r = 0 corresponds to the line ūv̄ = t̄2− r̄2 = 16e−1M2.
This line is a singular boundary of the Kruskal spacetime; the coordinates t̄, r̄ vary in the
domain |t̄| <

√
r̄2 + 16e−1M2.

Since the Kruskal metric (9.8) is conformally flat, the action and the classical field
equations for a conformally coupled field in the Kruskal frame have the same form
as in the tortoise coordinates. For instance, the general solution for the field φ is
φ (ū, v̄) = A (ū) +B (v̄).

We note that Eq. (9.5) is similar to the definition (8.14) of the proper frame for a
uniformly accelerated observer. The formal analogy is exact if we set a ≡ (4M)−1.
Note that a freely falling observer (with the worldline r̄ = const) has zero proper ac-
celeration. On the other hand, a spaceship remaining at a fixed position relative to the
BH must keep its engine running at a constant thrust and thus has a constant proper
acceleration. To make the analogy with the Unruh effect more apparent, we chose the
notation in which the coordinates (ū, v̄) always refer to freely falling observers while
the coordinates (u, v) describe accelerated frames.

9.1.3 Field quantization

In the previous section we introduced two coordinate systems corresponding to a
locally inertial observer (the Kruskal frame) and a locally accelerated observer (the
tortoise frame). Now we quantize the field φ(x) in these two frames and compare the
respective vacuum states. The considerations are formally quite similar to those in
Chapter 8.

To quantize the field φ(x), it is convenient to employ the lightcone mode expansions
(defined in Sec. 8.2.2) in the coordinates (u, v) and (ū, v̄). Because of the intentionally
chosen notation, the relations (8.16) and (8.17) can be directly used to describe the

quantized field φ̂ in the BH spacetime.
The lightcone mode expansion in the tortoise coordinates is

φ̂(u, v) =

∫ +∞

0

dΩ√
2π

1√
2Ω

[

e−iΩub̂−Ω +H.c.+ e−iΩv b̂−−Ω +H.c.
]

,

where the “H.c.” denotes the Hermitian conjugate terms. The operators b̂±±Ω corre-
spond to particles detected by a stationary observer at a constant distance from the
BH. The role of this observer is completely analogous to that of the uniformly accel-
erated observer considered in Sec. 8.1.
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The lightcone mode expansion in the Kruskal coordinates is

φ̂ (ū, v̄) =

∫ +∞

0

dω√
2π

1√
2ω

[

e−iωūâ−ω +H.c.+ e−iωv̄â−−ω +H.c.
]

.

The operators â±±ω are related to particles registered by an observer freely falling into
the black hole.

It is clear that the two sets of creation and annihilation operators â±±ω, b̂±±Ω specify
two different vacuum states, |0K〉 (“Kruskal”) and |0T 〉 (“tortoise”),

â−±ω |0K〉 = 0; b̂−±Ω |0T 〉 = 0.

The state |0T 〉 is also called the Boulware vacuum.

Exactly as in the previous chapter, the operators b̂±±Ω can be expressed through â±±ω

using the Bogolyubov transformation (8.22). The Bogolyubov coefficients are found
from Eq. (8.23) if the acceleration a is replaced by (4M)−1.

The correspondence between the Rindler and the Schwarzschild spacetimes is sum-
marized in the following table. (We stress that this analogy is precise only for a con-
formally coupled field in 1+1 dimensions.)

Rindler Schwarzschild
Inertial observers: vacuum |0M 〉 Observers in free fall: vacuum |0K〉

Accelerated observers: |0R〉 Observers at r = const: |0T 〉
Proper acceleration a Proper acceleration (4M)−1

ū = −a−1 exp(−au) ū = −4M exp [−u/(4M)]
v̄ = a−1 exp(av) v̄ = 4M exp [v/(4M)]

9.1.4 Choice of vacuum

To find the expected number of particles measured by observers far outside of the
black hole, we first need to make the correct choice of the quantum state of the field

φ̂. In the present case, there are two candidate vacua, |0K〉 and |0T 〉. We shall draw on
the analogy with Sec. 8.2.1 to justify the choice of the Kruskal vacuum |0K〉, which is
the lowest-energy state for freely falling observers, as the quantum state of the field.

When considering a uniformly accelerated observer in the Minkowski spacetime,
the correct choice of the vacuum state is |0M 〉 which is the lowest-energy state as mea-
sured by inertial observers. An accelerated observer registers this state as thermally
excited. The other vacuum state, |0R〉, can be physically realized by an accelerated
vacuum preparation device occupying a very large volume of space. Consequently,
the energy needed to prepare the field in the state |0R〉 in the whole space is infinitely

large. If one computes the mean energy density of the field φ̂ in the state |0R〉, one
finds (after subtracting the zero-point energy) that in the Minkowski frame the en-
ergy density diverges at the horizon.3 On the other hand, the Minkowski vacuum

3This result can be qualitatively understood if we recall that the Rindler coordinate ξ̃ covers an infinite

range when approaching the horizon (ξ̃ → −∞ as ξ → −a−1). The zero-point energy density in
the state |0R〉 is constant in the Rindler frame and thus appears as an infinite concentration of energy
density near the horizon in the Minkowski frame. We omit the detailed calculation.
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9.1 The Hawking radiation

state |0M 〉 has zero energy density everywhere.
It turns out that a very similar situation occurs in the BH spacetime. At first it

may appear that the field φ̂ should be in the Boulware state |0T 〉 which is the vacuum
measured by observers remaining at a constant distance from the black hole. How-

ever, the field φ̂ in the state |0T 〉 has an infinite energy density (after subtracting the
zero-point energy) near the BH horizon.4 Any energy density influences the metric
via the Einstein equation. A divergent energy density indicates that the backreaction
of the quantum fluctuations in the state |0T 〉 is so large near the BH horizon that the
Schwarzschild metric is not a good approximation for the resulting spacetime. Thus
the picture of a quantum field in the state |0T 〉 near an almost unperturbed black hole

is inconsistent. On the other hand, the field φ̂ in the Kruskal state |0K〉 has an every-
where finite and small energy density (when computed in the Schwarzschild frame
after a subtraction of the zero-point energy). In this case, the backreaction of the quan-
tum fluctuations on the metric is negligible. Therefore one has to employ the vacuum
state |0K〉 rather than the state |0T 〉 to describe quantum fields in the presence of a
classical black hole.

Another argument for selecting the Kruskal vacuum |0K〉 is the consideration of a
star that turns into a black hole through the gravitational collapse. Before the collapse,
the spacetime is almost flat and the initial state of quantum fields is the naturally
defined Minkowski vacuum. It can be shown that the final quantum state of the field

φ̂ after the collapse is the Kruskal vacuum.

9.1.5 The Hawking temperature

Observers remaining at r = const far away from the black hole (r ≫ 2M ) are in an
almost flat space where the natural vacuum is the Minkowski one. The Minkowski
vacuum at r ≫ 2M is approximately the same as the Boulware vacuum |0T 〉. Since

the field φ̂ is in the Kruskal vacuum state |0K〉, these observers would register the
presence of particles.

The calculations of Sec. 8.2.4 show that the temperature measured by an acceler-
ated observer is T = a/(2π), and we have seen that the correspondence between the
Rindler and the Schwarzschild cases requires to set a = (4M)−1. It follows that ob-
servers at a fixed distance r ≫ 2M from the black hole detect a thermal spectrum of
particles with the temperature

TH =
1

8πM
. (9.9)

This temperature is known as the Hawking temperature. (Observers staying closer
to the BH will see a higher temperature due to the inverse gravitational redshift.)

Similarly, we find that the density of observed particles with energy E = k is

nE =

[

exp

(

E

TH

)

− 1

]−1

.

4This is analogous to the divergent energy density near the horizon in the Rindler vacuum state. We again
omit the required calculations.
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This formula remains valid for massive particles with massm and momentum k, after
the natural replacement E =

√
m2 + k2. One can see that the particle production is

significant only for particles with very small masses m . TH .
The Hawking effect is in principle measurable, although the Hawking temperature

for plausible astrophysical black holes is extremely small.

Exercise 9.1
Rewrite Eq. (9.9) in the SI units and compute the Hawking temperature for black holes

of massesM1 = M⊙ = 2 ·1030kg (one solar mass),M2 = 1015g, and M3 = 10−5g (of order
of the Planck mass).

Exercise 9.2
(a) Estimate the typical wavelength of photons radiated by a black hole of mass M and

compare it with the size of the black hole (the Schwarzschild radius R = 2M ).
(b) The temperature of a sufficiently small black hole can be high enough to efficiently

produce baryons (e.g. protons) as components of the Hawking radiation. Estimate the
required mass M of such black holes and compare their Schwarzschild radius with the
size of the proton (its Compton length).

9.1.6 The Hawking effect in 3+1 dimensions

We have considered the 1+1-dimensional field φ̂(t, r) that corresponds to spherically
symmetric 3+1-dimensional field configurations. However, there is a difference be-
tween fields in 1+1 dimensions and spherically symmetric modes in 3+1 dimensions.

The field φ in 3+1 dimensions can be decomposed into spherical harmonics,

φ(t, r, θ, ϕ) =
∑

l,m

φlm(t, r)Ylm(θ, ϕ).

The mode φ00(t, r) is spherically symmetric and independent of the angles θ, ϕ. How-
ever, the restriction of the 3+1-dimensional wave equation to the mode φ00 is not
equivalent to the 1+1-dimensional problem. The four-dimensional wave equation
(4)�φ = 0 for the spherically symmetric mode is

[

(2)� +

(

1 − 2M

r

)

2M

r3

]

φ00(t, r) = 0.

This equation represents a wave propagating in the potential

V (r) =

(

1 − 2M

r

)

2M

r3

instead of a free wave φ(t, r) considered above. The potential V (r) has a barrier-like
shape shown in Fig. 9.1, and a wave escaping the black hole needs to tunnel from
r ≈ 2M to the potential-free region r ≫ 2M . This decreases the intensity of the wave
and changes the resulting distribution of produced particles by a greybody factor
Γgb(E) < 1,

nE = Γgb(E)

[

exp

(

E

TH

)

− 1

]−1

.
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M20

V (r)

r

Figure 9.1: The potential V (r) for the propagation of the spherically symmetric mode
in 3+1 dimensions.

The computation of the greybody factor Γgb(E) is beyond the scope of this book.
This factor depends on the geometry of the radiated field mode and is different for
fields of higher spin. (Of course, fermionic fields obey the Fermi instead of the Bose
distribution.)

9.1.7 Remarks on other derivations

We derived the Hawking effect in one of the simplest possible cases, namely that of
a conformally coupled field in a static BH spacetime restricted to 1+1 dimensions.
This derivation cannot be straightforwardly generalized to the full 3+1-dimensional
spacetime. For instance, a free massless scalar field is not conformally coupled in
3+1 dimensions, and spherically symmetric modes are not the only available ones.
Realistic calculations must consider the production of photons or massive fermions
instead of massless scalar particles. However, all such calculations yield the same
temperature TH of the black hole.

It is also important to consider a black hole formed by a gravitational collapse of
matter (see Fig. 9.2). Hawking’s original calculation involved wave packets of field
modes that entered the collapsing region before the BH was formed (the dotted line
in the figure). The BH horizon is a light-like surface, therefore massless and ultra-
relativistic particles may remain near the horizon for a very long time before they
escape to infinity. Since the spacetime is almost flat before the gravitational collapse,
the “in” vacuum state of such modes is well-defined in the remote past. After the
mode moves far away from the black hole, the “out” vacuum state is again the stan-
dard Minkowski (“tortoise”) vacuum. A computation of the Bogolyubov coefficients
between the “in” and the “out” vacuum states for this wave packet yields a thermal
spectrum of particles with the temperature TH .

This calculation implies that the radiation coming out of the black hole consists of
particles that already existed at the time of BH formation but spent a long time near
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t

x

Figure 9.2: Black hole (shaded region) formed by gravitational collapse of matter
(lines with arrows). The wavy line marks the singularity at the BH cen-
ter. A light-like trajectory (dotted line) may linger near the horizon (the
boundary of the shaded region) for a long time before escaping to infinity.

the horizon and only managed to escape at the present time. This explanation, how-
ever, contradicts the intuitive expectation that particles are created right at the present
time by the gravitational field of the BH. The rate of particle creation should depend
only on the present state of the black hole and not on the details of its formation in
the distant past. One expects that an eternal black hole should radiate in the same
way as a BH formed by gravitational collapse.

Another way to derive the Hawking radiation is to evaluate the energy-momentum
tensor Tµν of a quantum field in a BH spacetime and to verify that it corresponds to
thermal excitations. However, a direct computation of the EMT is complicated and
has been explicitly performed only for a 1+1-dimensional spacetime. The reason for
the difficulty is that the EMT contains information about the quantum field at all
points, not only the asymptotic properties at spatial infinity. This additional informa-
tion is necessary to determine the backreaction of fields on the black hole during its
evaporation. The detailed picture of the BH evaporation remains unknown.

There seems to be no unique physical explanation of the BH radiation. However,
the resulting thermal spectrum of the created particles has been derived in many
different ways and agrees with general thermodynamical arguments. There is little
doubt that the Hawking radiation is a valid and in principle observable prediction of
general relativity and quantum field theory.
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9.2 Thermodynamics of black holes

9.2 Thermodynamics of black holes

9.2.1 Evaporation of black holes

In many situations, a static black hole of mass M behaves as a spherical body with
radius r = 2M and surface temperature TH . According to the Stefan-Boltzmann law,
a black body radiates the flux of energy

L = γσT 4
HA,

where γ parametrizes the number of degrees of freedom available to the radiation,
σ = π2/60 is the Stefan-Boltzmann constant in Planck units, and

A = 4πR2 = 16πM2

is the surface area of the BH. The emitted flux determines the loss of energy due to
radiation. The mass of the black hole decreases with time according to

dM

dt
= −L = − γ

15360πM2
. (9.10)

The solution with the initial condition M |t=0 = M0 is

M(t) = M0

(

1 − t

tL

)1/3

, tL ≡ 5120π
M3

0

γ
.

This calculation suggests that black holes are fundamentally unstable objects with
the lifetime tL during which the BH completely evaporates. Taking into account the
greybody factor (see Sec. 9.1.6) would change only the numerical coefficient in the
power law tL ∼M3

0 .

Exercise 9.3
Estimate the lifetime of black holes with masses M1 = M⊙ = 2 · 1030kg, M2 = 1015g,

M3 = 10−5g.

It is almost certain that the final stage of the BH evaporation cannot be described
by classical general relativity. The radius of the BH eventually reaches the Planck
scale 10−33cm and one expects unknown effects of quantum gravity to dominate in
that regime. One possible outcome is that the BH is stabilized into a “remnant,”
a microscopic black hole that does not radiate, similarly to electrons in atoms that
do not radiate on the lowest orbit. It is plausible that the horizon area is quantized
to discrete levels and that a black hole becomes stable when its horizon reaches the
minimum allowed area. In this case, quanta of Hawking radiation are emitted as a
result of transitions between allowed horizon levels, so the spectrum of the Hawking
radiation must consist of discrete lines. This prediction of the discreteness of the
spectrum of the Hawking radiation may be one of the few testable effects of quantum
gravity.
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Remark: cosmological consequences of BH evaporation. Black holes formed by collapse
of stars have extremely small Hawking temperatures. So the Hawking effect could be ob-
served only if astronomers discovered a black hole near the end of its life, with a very high
surface temperature. However, the lifetimes of astrophysically plausible black holes are
much larger than the age of the Universe which is estimated as ∼ 1010 years. To evapo-
rate within this time, a black hole must be lighter than ∼ 1015g (see Exercise 9.3). Such
black holes could not have formed as a result of stellar collapse and must be primordial,
i.e. created at very early times when the universe was extremely dense and hot. There is
currently no direct observational evidence for the existence of primordial black holes.

9.2.2 Laws of BH thermodynamics

Prior to the discovery of the BH radiation it was already known that black holes
require a thermodynamical description involving a nonzero intrinsic entropy.

The entropy of a system is defined as the logarithm of the number of internal
microstates of the system that are indistinguishable on the basis of macroscopically
available information. Since the gravitational field of a static black hole is completely
determined (both inside and outside of the horizon) by the mass M of the BH, one
might expect that a black hole has only one microstate and therefore its entropy is
zero. However, this conclusion is inconsistent with the second law of thermodynam-
ics. A black hole absorbs all energy that falls onto it. If the black hole always had
zero entropy, it could absorb some thermal energy and decrease the entropy of the
world. This would violate the second law unless one assumes that the black hole has
an intrinsic entropy that grows in the process of absorption.

Similar gedanken experiments involving classical general relativity and thermody-
namics lead J. Bekenstein to conjecture in 1971 that a static black hole must have an
intrinsic entropy SBH proportional to the surface area A = 16πM2. However, the
coefficient of proportionality between SBH and A could not be computed until the
discovery of the Hawking radiation. The precise relation between the BH entropy
and the horizon area follows from the first law of thermodynamics,

dE ≡ dM = THdSBH , (9.11)

where TH is the Hawking temperature for a black hole of mass M . A simple calcula-
tion using Eq. (9.9) shows that

SBH = 4πM2 =
1

4
A. (9.12)

To date, there seems to be no completely satisfactory explanation of the BH entropy.
Here is an illustration of the problem. A black hole of one solar mass has the entropy
S⊙ ∼ 1076. A microscopic explanation of the BH entropy would require to demon-
strate that a solar-mass BH actually has exp(1076) indistinguishable microstates. A
large number of microstates implies many internal degrees of freedom not visible
from the outside. Yet, a black hole is almost all empty space, with the exception of a
Planck-sized region around its center where the classical general relativity does not
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apply. It is not clear how this microscopically small region could contain such a huge
number of degrees of freedom. A fundamental explanation of the BH entropy proba-
bly requires a theory of quantum gravity which is not yet available.

The thermodynamical law (9.11) suggests that in certain circumstances black holes
behave as objects in thermal contact with their environment. This description applies
to black holes surrounded by thermal radiation and to adiabatic processes of emission
and absorption of heat.

Remark: rotating black holes. A static black hole has no degrees of freedom except its
mass M . A more general situation is that of a rotating BH with an angular momentum
J . In that case it is possible to perform work on the BH in a reversible way by making it
rotate faster or slower. The first law (9.11) can be modified to include contributions to the
energy in the form of work.

For a complete thermodynamical description of black holes, one needs an equation
of state. This is provided by the relation

E(T ) = M =
1

8πT
.

It follows that the heat capacity of the BH is negative,

CBH =
∂E

∂T
= − 1

8πT 2
< 0.

In other words, black holes become colder when they absorb heat.
The second law of thermodynamics now states that the combined entropy of all

existing black holes and of all ordinary thermal matter never decreases,

δStotal = δSmatter +
∑

k

δS
(k)
BH ≥ 0.

Here S
(k)
BH is the entropy (9.12) of the k-th black hole.

In classical general relativity it has been established that the combined area of all
BH horizons cannot decrease (this is Hawking’s “area theorem”). This statement ap-
plies not only to adiabatic processes but also to strongly out-of-equilibrium situations,
such as a collision of black holes with the resulting merger. It is mysterious that this
theorem, derived from a purely classical theory, assumes the form of the second law
of thermodynamics when one considers quantum thermal effects of black holes.

Moreover, there is a general connection between horizons and thermodynamics
which has not yet been completely elucidated. The presence of a horizon in a space-
time means that a loss of information occurs, since one cannot observe events beyond
the horizon. Intuitively, a loss of information entails a growth of entropy. It seems to
be generally true in the theory of relativity that any event horizon behaves as a surface
with a certain entropy and emits radiation with a certain temperature.5 For instance,
the Unruh effect considered in Chapter 8 can be interpreted as a thermodynamical
consequence of the presence of a horizon in the Rindler spacetime.

5See e.g. the paper by T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically
symmetric spacetimes, Class. Quant. Grav. 19 (2002), p. 5378.
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9.2.3 Black holes in heat reservoirs

As an application of the thermodynamical description, we consider a black hole in-
side a reservoir of thermal energy. The simplest such reservoir is a reflecting cav-
ity filled with radiation. Usual thermodynamical systems can be in a stable thermal
equilibrium with an infinite heat reservoir. However, the behavior of black holes is
different because of their negative heat capacity.

A black hole surrounded by an infinite heat bath at a lower temperature T < TBH

would emit heat and become even hotter. The process of evaporation is not halted
by the heat bath whose low temperature T remains constant. On the other hand, a
black hole placed inside an infinite reservoir with a higher temperature T > TBH

will tend to absorb radiation from the reservoir and become colder. The process of
absorption will continue indefinitely. In either case, no stable equilibrium is possible.
The following exercise demonstrates that a black hole can be stabilized with respect
to absorption or emission of radiation only by a reservoir with a finite heat capacity.

Exercise 9.4
(a) Given the mass M of the black hole, find the range of heat capacities Cr of the

reservoir for which the BH is in a stable equilibrium with the reservoir.
(b) Assume that the reservoir is a completely reflecting cavity of volume V filled with

thermal radiation (massless fields). The energy of the radiation is Er = σV T 4, where
the constant σ characterizes the number of degrees of freedom in the radiation fields.
Determine the largest volume V for which a black hole of mass M can remain in a stable
equilibrium with the surrounding radiation.

Hint: The stable equilibrium is the state with the largest total entropy.
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Summary: Zero-point energy for a field with boundary conditions. Regu-
larization and renormalization.

The Casimir effect is an experimentally verified prediction of QFT. It is manifested by
a force of attraction between two uncharged conducting plates in vacuum.

This force cannot be explained except by considering the zero-point energy of the
quantized electromagnetic field. The presence of the conducting plates makes the
electromagnetic field vanish on the surfaces of the plates, which changes the struc-
ture of vacuum fluctuations and causes a finite shift ∆E of the zero-point energy.
This energy shift depends on the distance L between the plates. As a result, it is ener-
getically favorable for the plates to move closer together, which is manifested as the
Casimir force

F (L) = − d

dL
∆E(L).

This theoretically predicted force has been confirmed by several experiments.1

10.1 Vacuum energy between plates

A realistic description of the Casimir effect requires to quantize the electromagnetic
field in the presence of conducting plates. To simplify the calculations, we consider
a massless scalar field φ(t, x) in the flat 1+1-dimensional spacetime and impose the
following boundary conditions which simulate the presence of the plates,

φ(t, x)|x=0 = φ(t, x)|x=L = 0.

The equation of motion for the classical field is ∂2
t φ−∂2

xφ = 0, and the general solution
for the chosen boundary conditions is of the form

φ(t, x) =

∞
∑

n=1

(

Ane
−iωnt +Bne

iωnt
)

sinωnx, ωn ≡ nπ

L
. (10.1)

To quantize the field φ(t, x) in flat space, one normally uses the mode expansion

φ̂(t, x) =

∫

dk

(2π)1/2

1√
2ωk

[

â−k e
−iωkt+ikx + â+

k e
iωkt−ikx

]

.

1For example, a recent measurement of the Casimir force to 1% precision is described in: U. MOHIDEEN

and A. ROY, Phys. Rev. Lett. 81 (1998), p. 4549.
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However, in the present case the only allowed modes are those in Eq. (10.1), so the

mode expansion for φ̂ must be

φ̂(t, x) =

√

2

L

∞
∑

n=1

sinωnx√
2ωn

[

â−n e
−iωnt + â+

n e
iωnt

]

. (10.2)

We need to compute the energy of the field only between the plates, 0 < x < L. After
some algebra, the zero-point energy per unit length is expressed as

ε0 ≡ 1

L
〈0| Ĥ |0〉 =

1

2L

∑

k

ωk =
π

2L2

∞
∑

n=1

n. (10.3)

Exercise 10.1
(a) Show that the normalization factor

p

2/L in the mode expansion (10.2) yields the
standard commutation relations

ˆ

â−m, â
+
n

˜

= δmn.
(b) Derive Eq. (10.3).
Hint: Use the identities which hold for integer m,n:

Z L

0

dx sin
mπx

L
sin

nπx

L
=

Z L

0

dx cos
mπx

L
cos

nπx

L
=
L

2
δmn. (10.4)

As always, the zero-point energy density ε0 is divergent. However, in the presence
of the plates the energy density diverges in a different way than in free space because
ε0 = ε0(L) depends on the distance L between the plates. The zero-point energy
density in free space can be thought of as the limit of ε0(L) at L→ ∞,

ε
(free)
0 = lim

L→∞
ε0 (L) .

When the zero-point energy is renormalized in free space, the infinite contribution

ε
(free)
0 is subtracted. Thus we are motivated to subtract ε

(free)
0 from the energy density

ε0(L) and to expect a finite difference ∆ε between these formally infinite quantities,

∆ε (L) = ε0 (L) − ε
(free)
0 = ε0 (L) − lim

L→∞
ε0 (L) . (10.5)

In the remainder of the chapter we shall calculate this energy shift ∆ε(L).

10.2 Regularization and renormalization

Taken at face value, Eq. (10.5) is meaningless because the difference between two in-
finite quantities is undefined. The standard way to deduce reasonable answers from
infinities is a regularization followed by a renormalization. A regularization means
introducing an extra parameter into the theory to make the divergent quantity finite
unless that parameter is set to zero. Such regularization parameters or cutoffs can
be chosen in many ways. After the regularization, one derives the asymptotic form
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10.2 Regularization and renormalization

of the divergent quantity at small values of the cutoff. This asymptotic will usually
contain divergent powers and logarithms of the cutoff as well as finite terms. Renor-
malization means removing the divergent terms and leaving only the finite terms in
the expression. (Of course, a suitable justification must be provided for subtracting
the divergent terms.) After renormalization, the cutoff is set to zero and the remaining
terms yield the final result. If the cutoff function is chosen incorrectly, the renormal-
ization procedure will not succeed. It is usually possible to motivate the correct choice
of the cutoff by physical considerations.

We shall now apply this procedure to Eq. (10.5). As a first step, a cutoff must be
introduced into the divergent expression (10.3). One possibility is to replace ε0 by the
regularized quantity

ε0 (L;α) =
π

2L2

∞
∑

n=1

n exp
[

−nα
L

]

, (10.6)

where α is the cutoff parameter. The regularized series converges for α > 0, while the
original divergent expression is recovered in the limit α→ 0.

Remark: choosing the cutoff function. We regularize the series by the factor exp(−nα/L)
and not by exp(−nα) or exp(−nLα). The motivation is that the physically significant
quantity is ωn = πn/L, therefore the cutoff factor should be a function of ωn.

Now we need to evaluate the regularized quantity (10.6) and to analyze its asymp-
totic behavior at α→ 0. A straightforward computation gives

ε0 (L;α) = − π

2L

∂

∂α

∞
∑

n=1

exp
[

−nα
L

]

=
π

2L2

exp
(

−α
L

)

[

1 − exp
(

−α
L

)]2 .

At α→ 0 this expression is expanded in a Laurent series,

ε0 (L;α) =
π

8L2

1

sinh2 α
2L

=
π

2α2
− π

24L2
+O

(

α2
)

. (10.7)

The series (10.7) contains the singular term π
2α

−2, a finite term, and further terms
that vanish as α → 0. The crucial fact is that the singular term in Eq. (10.7) does not
depend on L. (This would not have happened if we chose the cutoff as exp(−nα) or
in some other way!) The limit L → ∞ in Eq. (10.5) is taken before the limit α → 0, so
the divergent term π

2α
−2 cancels and the renormalized value of ∆ε is finite,

∆εren(L) = lim
α→0

[

ε0 (L;α) − lim
L→∞

ε0 (L;α)
]

= − π

24L2
. (10.8)

The formula (10.8) is the main result of this chapter; the zero-point energy density
is nonzero in the presence of plates at x = 0 and x = L. The Casimir force between
the plates is

F = − d

dL
∆E = − d

dL
(L∆εren) = − π

24L2
.

Since the force is negative, the plates are pulled toward each other.
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10 The Casimir effect

A similar calculation for a massless scalar field in 3+1 dimensions gives the Casimir
force per unit area of the plates as

F

A
= − π2

240
L−4.

Remark: negative energy. Note that the zero-point energy density (10.8) is negative.
Quantum field theory generally admits quantum states with a negative expectation value
of energy.

10.3 Renormalization using Riemann’s zeta function

An elegant way to extract information from infinities is to use Riemann’s zeta (ζ)
function defined by the series

ζ(x) =

∞
∑

n=1

1

nx
(10.9)

which converges for real x > 1. An analytic continuation extends this function to all
(complex) x except x = 1 where ζ(x) has a pole.

The divergent sum
∑∞

n=1 n appearing in Eq. (10.3) is formally equivalent to the
series for ζ(x) with x = −1. However, after an analytic continuation the ζ function
has a finite value at x = −1 which is 2

ζ (−1) = − 1

12
.

This motivates us to replace the sum
∑∞

n=1 n in Eq. (10.3) by the number − 1
12 . After

this substitution, we immediately obtain the result (10.8).
The general “recipe” of renormalization using the ζ function is the following:

1. Rewrite the divergent quantity as a series of the form
∑

n n
−x and formally

express this series through ζ(x).

2. The analytic continuation of ζ(x) to that value x is a finite number which is
interpreted as the renormalized value of the originally divergent quantity.

This procedure seems to always work (if the calculations can be performed), although
its success may appear miraculous and lacking explanation, unlike the results of
other, more straightforward renormalization approaches. However, the Casimir ef-
fect and several other QFT predictions obtained by the ζ function method have been
experimentally verified. Thus there are grounds to expect that the mathematical trick
involving an analytic continuation of the ζ function yields correct physical results.

2This result requires a complicated proof. See e.g. H. BATEMAN and A. ERDELYI, Higher transcendental
functions, vol. 1 (McGraw-Hill, New York, 1953).
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Part II

Path integral methods





11 Path integral quantization

Summary: The propagator as a path integral. Path integrals with Hamilto-
nian and Lagrangian action.

In the first part of this book, we used canonical quantization which is based on re-
placing the canonical variables (the coordinate q and the momentum p) by Hermitian
operators q̂, p̂ acting in a suitable Hilbert space. The path integral formalism provides
a powerful alternative method of quantization. In this chapter we introduce path
integrals by considering the evolution of simple quantum-mechanical systems.

11.1 Evolution operators. Propagators

We recall that in the Schrödinger picture of quantum mechanics, state vectors |ψ(t)〉
evolve according to the Schrödinger equation,

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 .

For simplicity, we focus on Hamiltonians which do not explicitly depend on time,

Ĥ = Ĥ (p̂, q̂). Then a formal solution of the Schrödinger equation is

|ψ(t)〉 = exp

[

− i

~
(t− t0) Ĥ

]

|ψ0〉 ,

where |ψ0〉 ≡ |ψ(t0)〉 is the initial state at time t = t0.

Remark: The term formal solution indicates that the above expression does not actually
provide an explicit formula for the solution |ψ(t)〉. Moreover, the infinite series

exp

»

− i

~
(t− t0) Ĥ

–

|ψ0〉 ≡ |ψ0〉 −
i (t− t0)

~
Ĥ |ψ0〉 +

1

2!

»

− i (t− t0)

~
Ĥ

–2

|ψ0〉 + ...

does not necessarily converge for all |ψ0〉. In this book we shall not discuss the subtle issue
of convergence of such series.

The operator transforming |ψ(t0)〉 into |ψ(t)〉 is called the evolution operator

Û (t, t0) ≡ exp

[

− i

~
(t− t0) Ĥ

]

. (11.1)

This operator is unitary if Ĥ is Hermitian. It is also clear that a composition of evolu-
tion operators is equal to the evolution operator for the combined timespan, i.e.

Û (t1, t2) Û (t2, t3) = Û (t1, t3) .
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11 Path integral quantization

Since Û(t, t0) ≡ Û(t− t0) is a function only of (t− t0), we find

Û (∆t1) Û (∆t2) = Û (∆t1 + ∆t2) = Û (∆t2) Û (∆t1) ,

therefore all evolution operators Û(∆t) for all ∆t commute.1

In the coordinate representation, the quantum state |ψ(t)〉 is described by a wave-
function ψ(q, t),

ψ(q, t) = 〈q|ψ(t)〉; |ψ(t)〉 =

∫

ψ(q, t) |q〉 dq.

The evolution operator transforms an initial wavefunction ψ (q, t0) into ψ (q, t) which
can be expressed as

ψ(q, t) = 〈q|ψ(t)〉 =

∫

dq0ψ (q0, t0) 〈q| Û (t, t0) |q0〉

≡
∫

dq0ψ (q0, t0)K (q, q0; t, t0) ,

where the function K (q, q0; t, t0) ≡ 〈q| Û (t, t0) |q0〉, called the propagator, is the coor-
dinate representation of the evolution operator. The propagator is interpreted as the
quantum-mechanical amplitude of the transition between an initial state |q0〉 at time
t0 and a final state |q〉 at time t.

11.2 Propagator as a path integral

The propagator can be expressed as an integral over all trajectories connecting the
initial and the final states (a path integral ).

To derive the path integral representation of the propagator, we consider the evo-
lution of a quantum-mechanical system during a time interval (t0, tf ) and choose n
intermediate time moments t1, ..., tn, so that the range (t0, tf ) is divided into n + 1
subranges (t0, t1), ..., (tn, tf ). For convenience, we denote tn+1 ≡ tf . Eventually we
shall take the limit n → ∞ and ∆tk ≡ tk+1 − tk → 0, so it is assumed that n is large
and ∆tk are small.

The evolution operator for the range (t0, tf ) is equal to the product of evolution
operators for all intermediate ranges (tk, tk+1),

Û (tf , t0) = Û (tf , tn) ...Û (t1, t0) =

n
∏

k=0

Û (tk+1, tk) .

Therefore the propagator

K (qf , q0; tf , t0) = 〈qf | Û (t, t0) |q0〉 = 〈qf |
n
∏

k=0

Û (tk+1, tk) |q0〉

1If the Hamiltonian is explicitly time-dependent, the evolution operators are not expressed by Eq. (11.1)

and do not commute because Û(t1, t2) is not a function only of t1 − t2.
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11.2 Propagator as a path integral

q

q0

q1

q2

q3
qf

t

t0 t1 t2 t3 tf

Figure 11.1: A “constrained transition” with fixed intermediate points q1, ..., qn. The
multiple lines connecting the points qk indicate that the motion of the
quantum particle between the specified points is not described by a sin-
gle classical path.

can be expressed through the propagators for the intermediate ranges by inserting n
decompositions of unity of the form

∫

|q〉 〈q| dq,

〈qf |
n
∏

k=0

Û (tk+1, tk) |q0〉 = 〈qf | Û (tn+1, tn)

[∫

|qn〉 〈qn| dqn
]

× Û (tn, tn−1) ...

[∫

|q1〉 〈q1| dq1
]

Û (t1, t0) |q0〉 ,

where the n auxiliary integration variables are denoted by qn, ..., q1. We find that the
propagator is the n-fold integrated product of the propagators of all the subranges:

K (qf , q0; tf , t0) =

∫

(

n
∏

k=1

dqk

)

n
∏

k=0

K (qk+1, qk; tk+1, tk) . (11.2)

The product of (n+ 1) intermediate propagators
∏n

k=0K (qk+1, qk; tk+1, tk) is equal
to the quantum-mechanical amplitude for a chain of transitions |q0〉→|q1〉→...→|qf 〉.
This amplitude describes a certain class of “constrained transitions” for which the
particle passes from q0 to qf while visiting the intermediate points qk at the times tk
(see Fig. 11.1). So the formula (11.2) shows that the total amplitude for the transition
from the initial state |q0〉 to the final state |qf 〉 is found by integrating the constrained
transition amplitude over all possible intermediate values q1, ..., qn.

The propagator K(qf , q0; tf , t0) is thus reduced to propagators for short time inter-
vals ∆tk. In the limit of small ∆tk, we can expand the evolution operator,

Û (tk+1, tk) = exp

[

− i

~
∆tkĤ

]

= 1 − i

~
∆tk Ĥ +O

(

∆t2k
)

, (11.3)
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11 Path integral quantization

and express the short-time propagator (neglecting terms of order ∆t2k) as

K (q′, q; tk+1, tk) ≈ 〈q′| 1 − i

~
∆tk Ĥ |q〉 .

The matrix element of the Hamiltonian, 〈q′| Ĥ |q〉, can be calculated by using the de-
composition of unity in the momentum representation,

〈q′| Ĥ |q〉 = 〈q′|
∫

dp |p〉 〈p| Ĥ |q〉 .

For convenience, let us reorder all operators p̂ in the Hamiltonian to the left of all

operators q̂, so that Ĥ(p̂, q̂) acquires the form Ĥ =
∑

j fj(p̂)gj(q̂) with suitable func-
tions fj and gj . The reordering must be performed using the commutation relations,
e.g. the term q̂p̂2q̂ would be rewritten as p̂2q̂2 + 2i~p̂q̂. When the operator ordering in
the Hamiltonian is chosen in this way, we find

〈p| Ĥ |q〉 =
∑

jfj (p) gj (q) 〈p|q〉 ≡ H (p, q) 〈p|q〉 ,

where H(p, q) is the c-number function corresponding to the reordered Hamiltonian;

for example, Ĥ = q̂p̂2q̂ yields H(p, q) = p2q2 + 2i~pq. The matrix element 〈q′| Ĥ |q〉 is
now computed using Eq. (2.36),

〈q′| Ĥ |q〉 =

∫

dp 〈q′| p〉 〈p| q〉H(p, q) =

∫

dp

2π~
H(p, q) exp

i(q′ − q)p

~
. (11.4)

From Eqs. (11.3)-(11.4) we express the propagator K (qk+1, qk; tk+1, tk), once again
neglecting terms of order ∆t2k, as follows,

K (qk+1, qk; tk+1, tk) = 〈qk+1| Û (tk+1, tk) |qk〉 ≈ 〈qk+1| 1 − i∆tk
~

Ĥ |qk〉

=

∫

dpk

2π~

[

1 − i∆tk
~

H(pk, qk)

]

exp
i (qk+1 − qk) pk

~

≈
∫

dpk

2π~
exp

[

i∆tk
~

(

qk+1 − qk
∆tk

pk −H(pk, qk)

)]

.

For later convenience, the integration variable p was renamed to pk.
The same calculation is repeated for each short-time propagator (setting k = 0, ..., n)

and the results are substituted into Eq. (11.2), which yields

K (qf , q0; tf , t0) =

∫

[

n
∏

k=1

dqkdpk

2π~

]

dp0

2π~
exp

[

n
∑

k=0

i∆tk
~

[

qk+1 − qk
∆tk

pk −H(pk, qk)

]

]

.

(11.5)
Note that Eq. (11.5) involves n integrations over qk but (n+ 1) integrations over pk.

Now we consider the limit n → ∞ and ∆t → 0. When the number of intermediate
points tk becomes infinitely large, one is motivated to introduce auxiliary functions
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11.3 Lagrangian path integrals

q(t), p(t) such that qk = q(tk) and pk = p(tk), and to replace the sum in Eq. (11.5) by
an integral over t,

lim
n→∞

n
∑

k=0

i

~
∆tk

[

qk+1 − qk
∆tk

pk −H(pk, qk)

]

=

∫ tf

t0

i

~
dt

[

dq(t)

dt
p(t) −H(p(t), q(t))

]

.

The integration over infinitely many intermediate values qk, pk in Eq. (11.5) is then
naturally interpreted as integration over all functions q(t), p(t) such that q(t0) = q0,
q(tf ) = qf . An integral of this kind is called a functional integral or a path integral.

In the limit n → ∞, the (2n + 1)-fold integration over dpk and dqk becomes an
infinite-dimensional integration measure which is symbolically denoted by DpDq,

DpDq ≡ lim
n→∞

[

n
∏

k=1

dqkdpk

2π~

]

dp0

2π~
. (11.6)

Then Eq. (11.5) is rewritten as

K (qf , q0; tf , t0) =

∫ q(tf )=qf

q(t0)=q0

DpDq exp

[

i

~

∫ tf

t0

(pq̇ −H(p, q)) dt

]

. (11.7)

This is the propagator in the path integral formalism. Note that the expression in the
exponential is the classical Hamiltonian action (2.22) and the boundary conditions for
q(t), p(t) are the same as those needed for the Hamiltonian action principle (Sec. 2.2.2).

The path integral is in fact a method of quantization since it defines2 the quantum-
mechanical amplitudes of transitions |q0, t0〉 → |qf , tf 〉 directly through the classical
Hamiltonian H(p, q), without need for the Schrödinger equation or the operators p̂, q̂.

Remarks:

•• A path integral expression always needs to be complemented by a specification of
the integration measure as a limit of a suitable finite-dimensional measure, such as
Eq. (11.6). Different finite-dimensional measures lead to different results in the con-
tinuous limit. Similarly, one must specify the way the action

R

(pq̇ − H)dt is rep-
resented by a finite sum (11.5). For instance, there is a difference between writing
H(pk, qk) and H(pk, qk+1) in Eq. (11.5).

• For systems with more than one degree of freedom, one needs to replace pq̇ by
P

j pj q̇j where j enumerates the generalized coordinates. If there are uncountably
many degrees of freedom, the sum over j becomes itself an integral.

11.3 Lagrangian path integrals

If the Hamiltonian is a quadratic function of the momentum, e.g.

H (p̂, q̂) =
p̂2

2m
+ V (q̂), (11.8)

2Formulating a rigorous definition of integration over all paths in Eq. (11.7) is an open mathematical
problem. We shall however ignore this issue and manipulate path integrals as if they are well-defined.
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11 Path integral quantization

the path integral has a simpler form (see Exercise 11.1). The integration over Dp can
be eliminated and the result is

K (qf , q0; tf , t0) =

∫ q(tf )=qf

q(t0)=q0

Dq exp

[

i

~

∫ tf

t0

L (q̇, q) dt

]

, (11.9)

where L (q̇, q) is the Lagrangian. This was the original form of the path integral intro-
duced by R. Feynman.

Exercise 11.1*
For the Hamiltonian (11.8), express the propagator as a path integral

〈qf | Û (tf , t0) |q0〉 =

Z q(tf )=qf

q(t0)=q0

Dq exp

„

i

~
S [q; tf , t0]

«

, (11.10)

where the functional S [q; tf , t0] is the classical Lagrangian action,

S [q; tf , t0] =

Z tf

t0

»

m
q̇2

2
− V (q)

–

dt,

and the integration measure Dq is defined by the following limit,

Dq = lim
n→∞

“ m

2πi~∆t

”
n+1
2

n
Y

k=1

dqk, ∆t ≡ tf − t0
n+ 1

. (11.11)

Hint: Substitute the Hamiltonian (11.8) into the path integral derived in the chapter and
explicitly evaluate the Gaussian integral over the momenta pk using the formula

Z +∞

−∞

exp

»

−ax
2

2
+ ibx

–

dx =

r

2π

a
exp

»

− b2

2a

–

.

(This identity holds also for complex a, b as long as the integral converges.)

If the Hamiltonian contains terms that are not quadratic in p, for example p4, then
the Lagrangian path integral (11.9) is impossible to derive. The Hamiltonian path
integral formulation (11.7) is the only one available in such cases.

So far we considered only systems with time-independent Hamiltonians, but the
path integral formalism also applies to time-dependent Hamiltonians.

Exercise 11.2
Derive the path integral expression for the propagator 〈qf | Û (tf , t0) |q0〉 for an explicitly

time-dependent Hamiltonian Ĥ(p̂, q̂, t).

Hint: Operators Ĥ(p̂, q̂, t) at different times t do not commute and one should manip-
ulate them more carefully. The explicit form (11.1) of the evolution operator which holds
only for time-independent Hamiltonians is not actually needed for the derivation of the
path integral; only the approximation (11.3) is important.
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12 Effective action

Summary: Green’s functions of a harmonic oscillator. Euclidean oscillator.
Euclidean path integrals. Effective action of a driven harmonic oscillator.
Calculating matrix elements from path integrals. Backreaction and the ef-
fective action. Backreaction of quantum fields on the metric. Polarization
of vacuum. Semiclassical gravity.

12.1 Green’s functions of a harmonic oscillator

In Chapter 3 we considered an oscillator driven by an external force J(t) which acts
only during the time interval 0 < t < T . The vacuum states |0in〉 at t ≤ 0 and |0out〉 at
t ≥ T are related by

|0in〉 = exp

(

−1

2
|J0|2 + J0â

†
out

)

|0out〉 ,

where J0 is defined by Eq. (3.5). For late times t ≥ T , we computed the expectation
value

〈0in| q̂ (t) |0in〉 =

∫ T

0

sinω(t− t′)

ω
J(t′)dt′ (12.1)

and the in-out matrix element

〈0out| q̂ (t) |0in〉
〈0out|0in〉

=
i

2ω

∫ T

0

e−iω(t−t′)J(t′)dt′. (12.2)

We have related these results to Green’s functions which will now be discussed in
greater detail.

12.1.1 Green’s functions

The standard use of Green’s functions is to express solutions to inhomogeneous linear
differential equations. For instance, the inhomogeneous equation describing a driven
oscillator,

d2

dt2
q (t) + ω2q (t) = J (t) , (12.3)

is solved for arbitrary J(t) by the following expression,

q (t) =

∫ +∞

−∞
J (t′)G (t, t′) dt′, (12.4)
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12 Effective action

where G(t, t′) is a Green’s function which satisfies

∂2

∂t2
G(t, t′) + ω2G(t, t′) = δ(t− t′). (12.5)

It is straightforward to verify that the formula (12.4) provides a solution to Eq. (12.3).
The Green’s function can be interpreted as the oscillator’s response to a sudden jolt,
that is to a force J(t) = δ(t − t′) acting only at time t = t′ and conferring a unit of
momentum to the oscillator.

Since Eq. (12.3) is second-order, its solution is specified uniquely if two conditions
are imposed on the function q(t). For instance, a typical problem is to compute the
response of an oscillator initially at rest to a force J(t) that is absent until a time
t = t0, i.e. J(t) = 0 for t < t0. In that case, the relevant conditions on q(t) are q(t0) =
q̇(t0) = 0. However, instead of specifying conditions on q(t), appropriate constraints
can be imposed on the function G(t, t′). In other words, the Green’s function can be
chosen such that the formula (12.4) will always yield solutions q(t) satisfying the
desired boundary conditions, for any J(t). Different boundary conditions will specify
different Green’s functions that are appropriate in various contexts.

The response of an oscillator at rest to an external force is described by the retarded
Green’s function Gret(t, t

′) which is defined as the solution of Eq. (12.5) with the
boundary condition Gret(t, t

′) = 0 for all t ≤ t′. If the driving force J(t) is absent
until t = t0, then Eq. (12.4) with G = Gret yields q(t) = 0 for all t ≤ t0, i.e. the
oscillator remains at rest until the force is switched on.

Exercise 12.1
Show that the retarded Green’s function Gret(t, t

′) for a harmonic oscillator is

Gret(t, t
′) = θ(t− t′)

sinω(t− t′)

ω
. (12.6)

The Feynman Green’s function,

GF (t, t′) =
i

2ω
e−iω|t−t′|, (12.7)

is the solution of Eq. (12.5) which is symmetric in t and t′, i.e. selected by the condition
GF (t, t′) = GF (t′, t).

Using these Green’s functions, we may rewrite the results (12.1)-(12.2) as

〈0in| q̂ (t) |0in〉 =

∫ +∞

−∞
Gret(t, t

′)J(t′)dt′, (12.8)

〈0out| q̂ (t) |0in〉
〈0out|0in〉

=

∫ +∞

−∞
GF (t, t′)J(t′)dt′. (12.9)

Note that these relations hold for all t and not only for t > T . Other matrix elements
can also be expressed through the Green’s functions (see Exercise 3.4 on p. 40).
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12.1 Green’s functions of a harmonic oscillator

Interpretation of Green’s functions

The retarded Green’s function describes the familiar causal effect of an external force
that influences the future evolution of the system but cannot change its behavior in
the past. The Feynman Green’s function, however, corresponds to a time-symmetric
effect, namely a perturbation δ(t − t′) at time t = t′ affects the future and the past
evolution of the system in equal measure. This acausal relation between perturbation
and response obviously does not occur in nature. If the Feynman Green’s function
were used to compute the influence of a force, one would arrive at an unphysical
“Feynman solution” qF (t) that is affected by a force even before that force is switched
on. Nevertheless, the fact that the Feynman Green’s function appears in quantum-
mechanical matrix elements between different states is not problematic since the “in-
out” matrix elements are unobservable quantities. On the other hand, expectation
values (which are observable) always involve the retarded Green’s function.

12.1.2 Wick rotation. Euclidean oscillator

Many calculations in quantum field theory are easier if one performs an analytic con-
tinuation in the time variable and considers pure imaginary times t = −iτ , where
τ is a real parameter. This procedure is called the Wick rotation, and τ is called the
Euclidean time. The picture is that of “rotating” the real axis in the complex t plane
by 90 degrees to transform it into the imaginary axis. Having obtained a solution
using the Euclidean time τ , one then performs the analytic continuation back to real
(Lorentzian) time t.

The names “Euclidean time” and “Lorentzian time” are motivated by the transfor-
mation of the Lorentzian metric

ds2 = dt2 − dx2

under the Wick rotation. If we substitute pure imaginary times t = −iτ , the metric
becomes

ds2 = −dτ2 − dx2,

which has a Euclidean signature (apart from an irrelevant overall sign).

The transition to complex time is motivated primarily by mathematical conve-
nience. Complex values such as t = − (4i) sec and the Euclidean time τ are intro-
duced formally and cannot be interpreted as moments of time; only real values of t
signify time.

In this chapter we study some basic applications of the Wick rotation, such as the
construction of the Euclidean action and Euclidean path integrals. To make the under-
lying ideas more transparent, we shall perform all calculations for a very simple sys-
tem, namely a driven harmonic oscillator with the equation of motion (in Lorentzian
time)

d2q

dt2
+ ω2q = J(t). (12.10)
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Assuming for the moment that the function J(t) is analytic in a sufficiently large
domain of the complex t plane, we can treat Eq. (12.10) as a differential equation
in complex time. Then q(t) and J(t) become complex-valued functions that satisfy
Eq. (12.10) for all complex t within the mentioned domain. Substituting pure imagi-
nary values t = −iτ (with real τ ), we thus obtain the equation of the Euclidean driven
oscillator,

−d
2q(τ)

dτ2
+ ω2q(τ) = J(τ). (12.11)

Since this equation does not explicitly involve complex numbers, one may consider
only real-valued J(τ) and q(τ). We call a real function q (τ) a Euclidean trajectory or
Euclidean path.

Remark: A real-valued function q(τ ) may become complex-valued after an analytic con-
tinuation back to the Lorentzian time t. Similarly, a real analytic function q (t) is in general
not real-valued at t = −iτ . Below we shall show that a Euclidean path q (τ ) cannot be
interpreted as an analytic continuation of the physically relevant solution q (t). For our
purposes, the path q (τ ) is a formally introduced real-valued function which will not enter
the final results.

As before, we assume that the driving force J(τ) is nonzero only for a finite period
of Euclidean time τ . In that case it is natural to require that the response q(τ) to that
force does not grow at large |τ |, i.e. that there exists a number C such that

|q(τ → ±∞)| < C <∞.

Since at sufficiently large |τ | there is no force and the solutions of the free equation are
exp(±ωτ), the only possibility for q(τ) to remain bounded is when q(τ) ∝ exp(∓ωτ)
for τ → ±∞. This is equivalent to the boundary condition

lim
τ→±∞

q(τ) = 0, (12.12)

which indicates that the Euclidean oscillator is in the “vacuum state” at large |τ |.
Thus, Eq. (12.12) is the natural boundary condition for Euclidean trajectories.

The general solution of Eq. (12.11) can be expressed through the Euclidean Green’s
function GE(τ, τ ′),

q(τ) =

∫ +∞

−∞
dτ ′GE(τ, τ ′)J(τ ′). (12.13)

To satisfy the boundary condition (12.12), the Euclidean Green’s function must be
selected by

lim
τ→±∞

GE(τ, τ ′) = 0.

This condition specifies GE(τ, τ ′) uniquely (see Exercise 12.2),

GE(τ, τ ′) =
1

2ω
e−ω|τ−τ ′|. (12.14)

With the above Green’s function, the solution (12.13) satisfies the boundary condi-
tion (12.12) for any force J(τ) acting for only a finite period of Euclidean time.
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Exercise 12.2
Derive the formula (12.14) by solving the equation

»

− ∂2

∂τ 2
+ ω2

–

GE(τ, τ ′) = δ(τ − τ ′) (12.15)

with the boundary conditions |GE(τ, τ ′)| → 0 at τ → ±∞.

Connection between GE and GF

The similarity between the Euclidean and the Feynman Green’s functions is apparent
from a comparison of Eqs. (12.7) and (12.14). Performing the substitution τ = it in
Eq. (12.13), one can verify that the analytic continuation of the solution q(τ) back to
real times t yields the unphysical solution qF (t) discussed in Sec. 12.1.1 (p. 143),

q(τ) =

∫ +∞

−∞
dτ ′GE(τ, τ ′)J(τ ′) τ=it−−−→ qF (t) =

∫ +∞

−∞
dt′GF (t, t′)J(t′).

Both the Feynman and the Euclidean Green’s functions are symmetric in their two
arguments. One might be tempted to say that they are analytic continuations of
each other, except for the fact that neither of the two Green’s functions GE(τ, τ ′) and
GF (t, t′) are analytic in t or t′. Strictly speaking, only the restrictions of GF (t, t′) to
t > t′ or to t < t′ are analytic functions such that GF (t, t′) for t > t′ is the analytic
continuation of iGE(τ, τ ′) for τ < τ ′ and vice versa.

Note that the retarded Green’s function GF (t, t′) is also not analytic. Generally, a
Green’s function cannot be an analytic function of t or t′ in the entire complex plane.
This can be explained by considering the requirements imposed on Green’s functions.
From physical grounds, we expect that if the force J(t) is active only during a finite
time interval 0 < t < T , then the influence of J(t) should not grow as |t| → ∞.
However, there are no nonzero analytic functions that remain uniformly bounded
for all complex t. Thus one has to consider only real t or only pure imaginary t and
determine suitable Green’s functions in each case.

12.2 Introducing effective action

Effective action is widely used in quantum field theory as a powerful method of cal-
culation. An extensive development of the formalism and applications of effective
action is far beyond the scope of this textbook. We employ effective action only as
a tool to describe the interaction of quantum systems with classical external fields
(backgrounds).

The method of effective action is based on Euclidean path integrals which we shall
now discuss, using a driven harmonic oscillator as the main example.
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12.2.1 Euclidean path integrals

In Chapter 11 we showed that the propagator for a quantized system can be written
as a path integral over trajectories q(t) connecting the initial and the final points,

K (qf , q0; tf , t0) =

∫ q(tf )=qf

q(t0)=q0

Dq eiS[q], (12.16)

where S[q] is the classical Lagrangian action (see Sec. 11.3). A driven harmonic oscil-
lator is described by the action

S [q] =

∫ tf

t0

dt

[

1

2
q̇2 − ω2

2
q2 + J(t)q

]

. (12.17)

If we perform the Wick rotation t = −iτ , the action (12.17) is expressed as the follow-
ing functional of the Euclidean path q(τ),

iS [q(t)]t=−iτ = −
∫ τf

τ0

dτ

[

1

2
q̇2 +

ω2

2
q2 − J(τ)q

]

≡ −SE [q(τ)] , (12.18)

where we have denoted q̇ ≡ dq/dτ . In a sense, the functional SE [q(τ)] is the analytic
continuation of the functional 1

iS [q(t)] to pure imaginary values of t; the factor (−i) is
introduced for convenience. One then considers the Euclidean path integral

∫ q(τf )=qf

q(τ0)=q0

Dq e−SE[q(τ)], (12.19)

in which the integration is performed over all real-valued Euclidean trajectories q(τ)
constrained by the specified boundary conditions at τ0 and τf . The expression (12.19)
can be viewed as the analytic continuation of the Lorentzian-time path integral (12.16).

One expects to obtain a useful result by computing the Euclidean path integral and
performing the analytic continuation back to the real time t. However, the correspon-
dence between the Lorentzian and the Euclidean path integrals is not a mathematical
equality because normally the integration contour in Eq. (12.17) cannot be deformed
from real t to the imaginary line. Also, the path integral involves trajectories q(τ)
that are not necessarily analytic functions. So a straightforward analytic continuation
back to the Lorentzian time cannot directly yield physical results. Below we shall see
how the expressions obtained from Euclidean calculations are related to the correct
answers found in Chapter 3.

Remark: While the path integral (12.16) involves a rapidly oscillating exponential, its Eu-
clidean analog (12.19) contains a rapidly decaying expression and can be expected to con-
verge better. In fact, a mathematically rigorous definition of functional integration is cur-
rently available only for Euclidean path integrals. It is also easier in practice to perform
calculations with the Euclidean action. These are the main reasons for introducing the
Wick rotation.
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12.2 Introducing effective action

Calculation of the Euclidean path integral

Unlike the Lorentzian action, the Euclidean action SE is often bounded from below1

and the minimum of the action is achieved at the classical Euclidean trajectory qcl(τ).
For instance, the action (12.18) of the Euclidean oscillator has a lower bound:

SE [q] =
1

2
q̇2 +

1

2
ω2q2 − Jq =

1

2
q̇2 +

1

2

(

ωq − J

ω

)2

− 1

2

J2

ω2
≥ −1

2

J2

ω2
.

Therefore the dominant contribution to the path integral in Eq. (12.19) comes from
paths q(τ) with the smallest value of the action. These are the paths near a solution
qcl(τ) of the classical Euclidean equation of motion,

δSE [q]

δq(τ)
= 0.

Evaluating the functional derivative of the action (12.18), we obtain

− d2

dτ2
qcl + ω2qcl = J(τ). (12.20)

This is of course the same as Eq. (12.11). We impose the natural boundary condi-
tions (12.12),

lim
τ→±∞

qcl(τ) = 0, (12.21)

and then the Euclidean classical path qcl(τ) is expressed by Eq. (12.13),

qcl(τ) =

∫ +∞

−∞
dτ ′GE(τ, τ ′)J(τ ′).

The path integral (12.19) contains contributions not only from qcl(τ) but also from
neighbor paths whose action SE is only slightly larger than the minimum value
SE [qcl]. To evaluate the path integral over all q(τ), it is convenient to split the function
q(τ) into the sum of qcl(τ) and a deviation q̃(τ),

q(τ) ≡ qcl(τ) + q̃(τ).

It is clear that the deviation q̃(τ) should satisfy the boundary conditions q̃ (±∞) = 0.
The path integral over all paths q(τ) can now be rewritten as an integral over all

paths q̃(τ), with
Dq = D [qcl(τ) + q̃(τ)] = Dq̃.

This operation can be visualized as follows. The measure Dq is the limit of a product
of the form dq(τ1) ... dq(τn). Each integration variable q(τk) can be shifted by a constant
amount qcl(τk), and then

dq(τk) = d [qcl(τk) + q̃(τk)] = dq̃(τk)

1This is not always the case. For instance, the Euclidean action for general relativity is bounded neither
from below nor from above.
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because qcl(τk) is a fixed number. In other words: the function q(τ), which is the
“variable” of path integration, is shifted by a fixed, q-independent function qcl(τ).

Thus we can rewrite Eq. (12.19) as

∫ q(+∞)=0

q(−∞)=0

Dq e−SE[q(τ)] =

∫ q̃(+∞)=0

q̃(−∞)=0

Dq̃ e−SE [qcl(τ)+q̃(τ)]. (12.22)

The action SE [qcl(τ) + q̃(τ)] is then transformed using integration by parts,

SE [qcl + q̃] =

∫ [

1

2

(

q̇cl + ˙̃q
)2

+
ω2

2
(qcl + q̃)

2 − (qcl + q̃)J

]

dτ

=

[

1

2
q̇clqcl + q̇clq̃

]+∞

−∞
+

1

2

∫

(

˙̃q2 + ω2q̃2
)

dτ −
∫

qclJdτ

+

∫

(

−q̈cl + ω2qcl − J
)

q̃dτ +

∫ [

−1

2
q̈clqcl +

ω2

2
q2cl

]

dτ

=
1

2

∫

(

˙̃q2 + ω2q̃2
)

dτ − 1

2

∫

qclJdτ.

The last line was obtained using the boundary conditions for q and q̃ as well as the
equation of motion (12.20) to eliminate q̈cl. The resulting expression is substituted
into Eq. (12.22) which yields

∫ qf (+∞)=0

q0(−∞)=0

Dq e−SE[q(τ)] = exp

(

1

2

∫

qclJdτ

)∫ q̃(+∞)=0

q̃(−∞)=0

Dq̃ e− 1
2

R

( ˙̃q2+ω2q̃2)dτ . (12.23)

Note that the remaining path integral in Eq. (12.23) is independent of J(τ) and is a
function only of ω. We shall denote that function by Nω; an explicit expression for Nω

will not be necessary since we are interested only in the effect of the external force J
on the oscillator. Therefore the final result is

∫ q(+∞)=0

q(−∞)=0

Dq e−SE [q(τ)] = Nω exp

[

1

2

∫ +∞

−∞
qcl(τ)J(τ)dτ

]

= Nω exp

[

1

2

∫

J(τ)J(τ ′)GE(τ, τ ′)dτdτ ′
]

. (12.24)

12.2.2 Definition of effective action

For a quantum system with a coordinate q̂ interacting with a classical field J (the
background), we define the Euclidean effective action as the functional ΓE [J(τ)] de-
termined by the relation

e−ΓE[J(τ)] =

∫ q(+∞)=0

q(−∞)=0

Dq e−SE[q(τ),J(τ)], (12.25)
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where SE [q, J ] is the Euclidean classical action for the variable q including its inter-
action with the background J . Note that ΓE [J ] is a functional of J but not of q. We
shall see below that the effective action Γ [J ] indirectly describes both the influence of
the background on the quantum system q̂ and the effect of the quantum fluctuations
of q̂ on the classical field J (the backreaction).

The effective action for the driven oscillator can be read off from Eq. (12.24):

ΓE [J(τ)] = −1

2

∫

J(τ)J(τ ′)GE(τ, τ ′)dτdτ ′ − lnNω. (12.26)

As we said before, a Euclidean quantity such as q(τ) has no direct relation to the
observable value of q(t). To obtain Lorentzian-time quantities, one needs to perform
an analytic continuation that involves replacing τ = it. The Lorentzian effective ac-
tion ΓL[J(t)] is defined as the analytic continuation of the Euclidean effective action
ΓE [J(τ)] with an extra factor i:

ΓL [J(t)] ≡ iΓE [J(τ)]τ=it . (12.27)

Formally, we may replace the Euclidean path integral in Eq. (12.25) by the correspond-
ing Lorentzian one and write

eiΓL[J(t)] =

∫ q(+∞)=0

q(−∞)=0

eiS[q(t),J]Dq. (12.28)

This equation should be understood merely a symbolic representation of the ana-
lytic continuation of the Euclidean path integral, since the Lorentzian path integral
is ill-defined. However, it is intuitively easier to manipulate the Lorentzian path in-
tegral (12.28) directly, as if it were well-defined; for instance, we may compute func-
tional derivatives of ΓL or change variables in the path integral. These operations
should be understood as the analogous manipulations on the Euclidean path integral,
followed by the analytic continuation to the Lorentzian time. Below we shall perform
such formal manipulations of Lorentzian path integrals without further comments.

To compute the Lorentzian effective action for the oscillator, we set dτdτ ′ = −dtdt′
and replace the Euclidean Green’s function GE in Eq. (12.26) by its analytic continu-
ation, 1

iGF . The result is

ΓL [J(t)] =
1

2

∫

J(t)J(t′)GF (t, t′)dtdt′ − i lnNω

=
i

2
|J0|2 +

∫

J(t)J(t′)
sinω |t− t′|

4ω
dt dt′ − i lnNω, (12.29)

where J0 is defined by Eq. (3.5).
We note that the expression

∫ q(+∞)=0

q(−∞)=0

Dq eiS[q(t),J] ≡ exp (iΓL [J ])
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almost coincides with the matrix element 〈0out|0in〉,

〈0out|0in〉 = exp

(

−1

2
|J0|2

)

,

up to a phase factor that can be absorbed into the definition of |0out〉, and a normal-
ization factor Nω (which is J-independent). So we conjecture that a matrix element
such as

〈0out| q̂ (t1) |0in〉
might be related to the path integral

∫ q(+∞)=0

q(−∞)=0

Dq q (t1) e
iS[q,J]. (12.30)

To test this conjecture, we now compute this path integral and compare the result
with the known expression (12.9).

Since the external field J enters linearly into the action,

S [q, J ] = S0 [q] +

∫

J(t)q(t)dt,

the functional derivative of S with respect to J(t1) is

δS [q, J ]

δJ (t1)
= q (t1) ,

and thus we may formally write
∫

Dq q (t1) e
iS[q,J] =

1

i

δ

δJ (t1)

∫

Dq eiS[q,J].

For brevity, we shall omit the boundary conditions q(±∞) = 0 that enter all path
integrals. Substituting the definition (12.28), we find

∫

q (t1) e
iS[q,J]Dq

∫

eiS[q,J]Dq =

1
i

δ
δJ(t1) exp (iΓL [J ])

exp (iΓL [J ])
=
δΓL [J ]

δJ (t1)
. (12.31)

For the driven oscillator, Eq. (12.29) yields

δΓL [J ]

δJ (t1)
=

∫

J(t)GF (t1, t) dt, (12.32)

where we used the symmetry of the Feynman Green’s function, GF (t, t′) = GF (t′, t).
Since Eq. (12.32) coincides with Eq. (12.9), the conjecture is confirmed; the relation
between the “in-out” matrix element and the Lorentzian effective action is

∫

q (t1) e
iS[q,J]Dq

∫

eiS[q,J]Dq =
δΓL [J ]

δJ (t1)
=

〈0out| q̂ (t1) |0in〉
〈0out|0in〉

. (12.33)

Below we shall see to what extent this relation can be generalized to other matrix
elements.

150



12.2 Introducing effective action

Effective action as a generating functional

Generating functions are a standard mathematical tool. For example, to compute
statistical averages 〈x〉,

〈

x2
〉

, ... with respect to some probability distribution of x, one
defines a generating function as a series in an auxiliary variable p,

g(p) ≡
∞
∑

n=0

(ip)n

n!
〈xn〉 =

〈

eipx
〉

.

Once the generating function is computed, one can evaluate all the averages as fol-
lows,

〈x〉 =
1

i

dg

dp

∣

∣

∣

∣

p=0

, ..., 〈xn〉 =
1

in
dn

dpn

∣

∣

∣

∣

p=0

g(p).

In case of many variables xi, the generating function depends on several arguments
pi, one for each xi. For uncountably many variables xt, where t is a continuous index,
one introduces a generating functional that depends on a function pt ≡ p(t) and uses
functional derivatives with respect to p(t).

This method can be applied to path integrals of the form

∫

q (t1) q (t2) q (t3) ...q (tn) eiS[q]Dq. (12.34)

We define the generating functional G[J ] by the path integral

G [J ] ≡
∫

exp
[

iS [q] + i
∫

q(t)J(t)dt
]

Dq, (12.35)

where J(t) is an auxiliary function. Functional derivatives of G[J ] with respect to
J(t) yield the required results, e.g.

∫

q (t1) q (t2) e
iS[q]Dq =

1

i

δ

δJ(t1)

1

i

δ

δJ(t2)

∣

∣

∣

∣

J(t)=0

G [J ] .

More generally, for arbitrary J(t) we have

∫

q (t1) q (t2) exp
[

iS [q] + i
∫

q(t)J(t)dt
]

Dq =
1

i

δ

δJ(t1)

1

i

δ

δJ(t2)
G [J ] .

Note that the action (12.17) of a driven oscillator is already in the form (12.35), where
J(t) is the external force. Thus the functional G[J ] ≡ exp (iΓL [J ]) can be viewed as
the generating functional for path integrals of the form (12.34).

12.2.3 The effective action “recipe”

Comparing Eqs. (12.8) and (12.9), we find that the only difference between the “in-
out” matrix element and the “in-in” expectation value is the presence of the retarded
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Green’s function Gret instead of GF . Replacing GF by Gret in the final expression for
the matrix element, we get

〈0in| q̂ (t) |0in〉 =
δΓL [J ]

δJ (t)

∣

∣

∣

∣

GF →Gret

. (12.36)

Note that the replacement GF → Gret is to be performed after computing the func-
tional derivative. The expression (12.36) is again a functional of J(t) as it should be
since the expectation value of q̂ depends on the force J . In this way the effective
action ΓL[J ] describes the influence of the external force on the quantum system q̂,
under the assumption that q̂ is initially in the vacuum state.

We formulate our findings as a recipe for computing “in-out” matrix elements and
“in-in” expectation values for a quantum system coupled to a classical background:

1. Perform the Wick rotation t = −iτ to determine the Euclidean action SE . Com-
pute the Euclidean effective action ΓE [J(τ)] from Eq. (12.25). The Euclidean
effective action will involve the Euclidean Green’s function GE .

2. By an analytic continuation to the Lorentzian time t according to Eq. (12.27),
obtain the Lorentzian effective action

ΓL [J(t)] = i ΓE [J(τ)]|τ=it ,

replacing the Euclidean Green’s function GE by the Feynman Green’s function,
namely GE → 1

iGF .

3. Using formal manipulations with the Lorentzian path integral, express the de-
sired matrix element as a combination of functional derivatives of ΓL[J ] with
respect to J . For example, if J enters linearly into the action as

∫

Jqdt and we
need a matrix element of q̂(t1), the required functional derivative is simply that
in Eq. (12.33).

4. Compute the functional derivatives, keeping the Feynman Green’s functionGF .
The result is the “in-out” matrix element. Then replaceGF by Gret to obtain the
“in-in” expectation value.

Remark: There is no known method to obtain expectation values directly from the effec-
tive action. Without replacing GF → Gret by hand, the analytic continuation from the
Euclidean time cannot be used to produce observable quantities.

Example: correlation functions of the oscillator

To test the recipe, we now compute the correlation function

〈0in| q̂ (t1) q̂ (t2) |0in〉 . (12.37)
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According to the effective action method, we first replace the “in-out” matrix element
by a path integral and then rewrite it using functional derivatives:

〈0out| q̂ (t1) q̂ (t2) |0in〉
〈0out|0in〉

→
∫

q (t1) q (t2) e
iS[q,J]Dq

∫

eiS[q,J]Dq (12.38)

= exp (−iΓL [J ])
1

i

δ

δJ (t1)

1

i

δ

δJ (t2)
exp (iΓL [J ])

=
δΓL

δJ (t1)

δΓL

δJ (t2)
− i

δ2ΓL

δJ (t1) δJ (t2)
. (12.39)

The functional derivatives are evaluated as in Eq. (12.32),

[∫

GF (t, t1)J(t)dt

] [∫

GF (t′, t2)J(t′)dt′
]

− iGF (t1, t2) . (12.40)

However, this result does not coincide with the answer of Exercise 3.4b (see p. 40) be-
cause of the J-independent term which should be proportional to exp (−iω(t1 − t2)),
while we computed it as

−iGF (t1, t2) =
1

2ω
exp (−iω |t1 − t2|) . (12.41)

Replacing GF by Gret in Eq. (12.40), we also obtain an expression which disagrees
with the “in-in” expectation value found in Exercise 3.4b in the J-independent term.
However, the J-dependent terms are correct.

Exercise 12.3*
Compute the expectation value 〈0in| â+(t)â−(t) |0in〉 using the path integral ratio

R

a+(t)a−(t)eiS[q,J]Dq
R

eiS[q,J]Dq

and the Lorentzian effective action ΓL [J ], by following the recipe described in the text.
Compare the results with Eq. (3.12).

Hint: First consider the (Lorentzian) action with two auxiliary external forces J±(t),

S
ˆ

q, J+, J−
˜

=

Z „

1

2
q̇2 − ω2

2
q2 + J+a+ + J−a−

«

dt.

Here a±(t) are the variables introduced in Sec. 3.1 and J− =
`

J+
´∗

are complex conju-
gates. An integration by parts transforms this action into S [q, J ] of this chapter with an
appropriately chosen J . The J-dependent terms should coincide with the result (3.12).

Why is are the results of these calculations not entirely correct? We note that the
path integral (12.38) is symmetric in t1 and t2, while the matrix element (12.37) cannot
be a symmetric function since q̂(t1) does not commute with q̂(t2). Thus one cannot
hope to compute the correct matrix element of a product such as q̂(t1)q̂(t2) by calcu-
lating a path integral. Sometimes one even finds divergent spurious terms (see Exer-
cise 12.3). However, the J-dependent terms are always correct. This phenomenon can
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12 Effective action

be informally explained as follows: The wrong terms are the result of neglecting the
quantum nature of the system q̂ manifested by the noncommuting operators. How-
ever, an interaction of q̂ with a classical external field J cannot depend on the order
of quantum operators; one may say that the classical field is “unaware” of the quan-
tum noncommutativity. Therefore one could expect to obtain the correct J-dependent
terms by this method. For the applications of the effective action considered in this
book, the J-dependent terms are the only important ones.

Remark: One can show that the result of using the path integral (12.38) is the vacuum
expectation value of the time-ordered product

T q̂ (t1) q̂ (t2) ≡


q̂ (t1) q̂ (t2) , t1 ≥ t2;
q̂ (t2) q̂ (t1) , t1 ≤ t2.

The letter T signifies the ordering of time-dependent operators by decreasing time. We
see from Eqs. (12.40)-(12.41) that the result obtained from the path integral calculation is
indeed time-ordered, with |t1 − t2| instead of (t1 − t2) in the exponential. The appear-
ance of the time-ordered product can be understood as follows. The path integral is a
representation of an infinite product of propagators for infinitesimal time intervals,

Z

eiS[q,J]Dq = lim
n→∞

Z

〈qf , tf | qn, tn〉... 〈q1, t1|q0, t0〉 dq1...dqn. (12.42)

It can be shown that

1

i

δ

δJ(tk)
〈qk+1, tk+1|qk, tk〉 = 〈qk+1, tk+1|q̂(tk)|qk, tk〉 .

Therefore, evaluating a functional derivative of both sides of Eq. (12.42) with respect to
J(tk) will insert the operator q̂(tk) at the k-th place in that expression,

1

i

δeiΓL

δJ (tk)
=

Z

〈qf , tf | qn, tn〉... 〈qk+1, tk+1|q̂(tk)|qk, tk〉 ... 〈q1, t1|q0, t0〉 dq1...dqn.

A second functional derivative with respect to J(tl) inserts the operator q̂(tl) at the l-th
place. It is clear that if tk > tl then q̂(tl) will appear to the right of q̂(tk). Now we can
remove the decompositions of unity and obtain
Z

q(tk)q(tl)e
iS[q,J]Dq =

1

i

δ

δJ(tk)

1

i

δ

δJ(tl)
eiΓL = 〈qf , tf | q̂(tk)q̂(tl) |q0, t0〉 , tk > tl.

If tk < tl, the sequence of the operators would be q̂(tl)q̂(tk), in accordance with the time
ordering prescription.

It follows that the effective action method applied to the correlation function (12.37)
actually yields 〈0in|T q̂(t1)q̂(t2) |0in〉. The difference between the time-ordered and the
usual products is precisely the deviation of the answer we obtained from the correct ex-
pression.

12.3 Backreaction

As we can see from the computation of matrix elements in the previous section, the
effective action allows one to compute the influence of an external classical force on
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a quantum system q̂, assuming that q̂ is initially in the vacuum state. Another impor-
tant application of the effective action is to determine the backreaction of the vacuum
fluctuations of q̂ on the classical background.

In realistic situations the background J(t) is itself a dynamical field described by a
classical action SB[J ]. In the absence of interactions between q̂ and J , the equation of
motion for the background would be

δSB [J ]

δJ (t)
= 0.

The combined classical action for the total system (q, J) is

Stotal = S [q, J ] + SB [J ] .

When the subsystem q is quantized while J remains classical, the modified dynamics
of J can be characterized by a “reduced action” Sred[J ] which is a functional only of J
that reflects the influence of the quantum variable q̂ (assuming that q̂ is in the vacuum
state).

If q were a classical system, the reduced action would be obtained by substituting
the vacuum trajectory q(t) into the total action. However, in the present case q̂ is a
quantum variable and its behavior in the vacuum state is not described by a single
trajectory. Therefore we are motivated to perform a path integration of exp(iS[q, J ])
over appropriate paths q(t) and to define the reduced action by the relation

exp (iSred [J ]) ≡
∫

Dq exp (iS [q, J ] + iSB [J ]) = exp (iΓL [J ] + iSB [J ]) ,

where ΓL[J ] is the effective action (12.28). Then the modified equation of motion for
the background is

δSred [J ]

δJ (t)
=
δΓL [J ]

δJ(t)

∣

∣

∣

∣

GF →Gret

+
δSB [J ]

δJ(t)
= 0. (12.43)

As explained in the previous section, the replacement GF → Gret is necessary to
obtain physically meaningful results.

The new equation of motion (12.43) describes the dynamics of the background J(t)
influenced by the backreaction of the quantum system q̂ in the “in” vacuum state.
Note that the choice of the “in” vacuum state has been implicit in our derivation of
the effective action, and the results would have to be modified if the subsystem q̂ is
in a different quantum state.

Remark: visualizing the backreaction. In the case of the driven oscillator, Eq. (12.36)
shows that the backreaction term in Eq. (12.43) is equal to the vacuum expectation value
〈q̂(t)〉. Classically, the background J interacts with q as Jq, which means that J is the
external force for the oscillator while q is the external force for the system J . Thus we
may interpret the backreaction term as the vacuum expectation value of the “backreaction
force” q̂.
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12.3.1 Gauge coupling

A similar picture of the backreaction holds for quantum fields interacting with clas-
sical gauge fields. For instance, a matter field ψ interacting with the U(1) gauge field
Aµ (the electromagnetic field) can be described by aU(1)-invariant action S(m)[ψ,Aµ].
The invariance with respect to local U(1) transformations (5.12) leads to the conser-
vation law for the classical current jµ,

jµ
,µ = 0, jµ ≡ −δS

(m)

δAµ
.

The dynamics of the electromagnetic field alone is determined by the action SEM [Aµ].
The functional derivative of the total classical action with respect to the fieldAµ yields
the Maxwell equations,

δSEM

δAµ
+
δS(m)

δAµ
= 0 ⇒ 1

4π
Fµν

,ν + jµ = 0, (12.44)

where Fµν = Aµ,ν −Aν,µ is the field strength tensor.

Assuming that the quantum field ψ̂ is in the vacuum state, we can compute the
effective action ΓL[Aµ] and write the modified classical equation of motion as

δSEM

δAµ
+
δΓL[Aµ]

δAµ

∣

∣

∣

∣

GF →Gret

= 0 ⇒ 1

4π
Fµν

,ν +
δΓL[Aµ]

δAµ

∣

∣

∣

∣

GF →Gret

= 0.

At the same time, the functional derivative of the effective action is related to the
vacuum expectation value of the current ĵ µ,

〈ĵ µ(x)〉 ≡ 〈0in| ĵ µ(x) |0in〉 =

∫

jµ(x) exp
(

iS(m) [ψ,Aµ]
)

Dψ
∫

exp
(

iS(m) [ψ,Aµ]
)

Dψ

∣

∣

∣

∣

∣

GF →Gret

= exp (−iΓL[Aµ])

(

−1

i

)

δ

δAµ(x)
exp (iΓL[Aµ]) = − δΓL[Aµ]

δAµ(x)

∣

∣

∣

∣

GF →Gret

.

This expectation value can be interpreted as the “effective current” contributed by

the quantum field ψ̂ due to the presence of the background Aµ; without the electro-

magnetic field, the expectation value of ĵ µ would vanish in the vacuum state. The

effective current is conserved, 〈ĵ µ〉,µ = 0, and acts as a source to the classical equation
of motion (12.44) for the background field Aµ,

Fµν
,ν = −4π〈ĵ µ〉.

This is the vacuum Maxwell equation modified by the backreaction of the quantum

field ψ̂. (Note that both sides of this equation involve only Aµ since 〈ĵ µ〉 is a func-
tional of Aµ.)
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12.3.2 Coupling to gravity

An important problem is to compute the backreaction of quantum fluctuations of

matter fields on gravitation. For a quantum field φ̂ in a curved spacetime, the metric
tensor gαβ plays the role of the classical background J . The backreaction of the field

φ̂ on the metric may be found using the effective action ΓL [gµν ],

exp (iΓL [gµν ]) ≡
∫

exp
(

iS(m) [gµν , φ]
)

Dφ,

where S(m)[gµν , φ] is the action for the matter field φ in the presence of gravitation.
If Sgrav[gµν ] is the Einstein-Hilbert action for gravity, then the vacuum Einstein equa-
tion (5.21),

δSgrav

δgαβ
= −

√−g
16πG

(

Rαβ − 1

2
gαβR

)

= 0,

is modified by a backreaction term in the following way,

δSgrav

δgαβ
+
δΓL [gµν ]

δgαβ
= −

√−g
16πG

(

Rαβ − 1

2
gαβR

)

+
δΓL [gµν ]

δgαβ
= 0. (12.45)

(Here and below the replacement of Feynman Green’s functions by retarded Green’s
functions is implied.) Using the formula (5.23) for the classical EMT,

Tαβ(x) =
2√−g

δSm [gµν , φ]

δgαβ(x)
,

we can express the vacuum expectation value of the quantum EMT through the ef-
fective action as

〈T̂αβ(x)〉 =

∫

Tαβ(x) exp (iS [g, φ])Dφ
∫

exp (iS [g, φ])Dφ

= exp (−iΓL)
2

i
√−g

δ

δgαβ(x)
exp (iΓL) =

2√−g
δΓL [gµν ]

δgαβ(x)
.

Then Eq. (12.45) is rewritten as the semiclassical Einstein equation,

Rαβ − 1

2
gαβR = 8πG〈T̂αβ〉. (12.46)

In other words, vacuum fluctuations of φ̂ contribute to gravitation by the expectation
value of the quantum EMT as if it were the EMT of a classical field. The semiclassical
Einstein equation approximately describes the backreaction of quantum fields on the
classical metric.
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12.3.3 Polarization of vacuum and semiclassical gravity

The presence of gravity changes the properties of the vacuum state of quantum fields.
Whether or not particles are produced, the local field observables such as the vacuum

expectation value 〈T̂µν(x)〉 of the EMT at a point x are different from their Minkowski
values. This modification of the vacuum state due to the influence of the classical
background is called the polarization of vacuum.

The standard measure of the vacuum polarization is the expectation value 〈T̂µν(x)〉
of the EMT of quantum fields. It is natural that the polarization of vacuum is de-
scribed by a local function of spacetime. We would like to constrast this with the
number density of produced particles, which is an essentially nonlocal quantity that
depends on the entire history up to the present time. The concept of “particle” in-
volves nonlocality, and it is impossible to define a generally covariant and local func-
tion of quantum fields that would correspond to the number density of particles at a
point.

The expectation value of the EMT also describes the backreaction of the quantum
fields on the metric via the semiclassical Einstein equation (12.46). Once the metric
changes due to this backreaction, the vacuum polarization also changes. So a self-
consistent theory of quantum fields in a curved spacetime may be formulated in the

following way. A quantum field φ̂ has a nonzero vacuum expectation of the EMT

induced by the metric. One computes the value of 〈T̂µν〉 in a fixed metric gµν(x)
and then requires that this gµν(x) should satisfy the semiclassical Einstein equation

sourced by the same effective EMT 〈T̂µν〉. The theory formulated in this way is known
as semiclassical gravity.

Solving the self-consistent equations of semiclassical gravity is a challenging task.
For instance, it is not straightforward to compute the EMT of a quantum field even in
simple spacetimes.2 Also, self-consistent solutions are not always physically relevant:
there are known cases of “runaway” solutions when gravity generates a large value

of 〈T̂µν〉 which gives rise to a more curved spacetime and to an even stronger vacuum
polarization, ad infinitum. Semiclassical gravity is an approximate theory applicable
only to weakly curved spacetimes where the vacuum polarization is small.

2Calculations of the EMT occupy much of the book by N. D. BIRRELL and P. C. W. DAVIES, Quantum
fields in curved space (Cambridge University Press, 1982).
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13 Functional determinants and heat
kernels

Summary: Euclidean effective action as a functional determinant. Zeta
functions and renormalization of determinants. Computation of ζ func-
tions using heat kernels.

The subject of this and the following chapters is the application of the method of
effective action to the description of a quantum scalar field in a gravitational back-
ground. In this chapter we introduce the formalisms of functional determinants and
heat kernels, which are powerful and elegant tools used in many branches of math-
ematics and physics. In Chapters 14 and 15 these tools will be applied to the task of
computing the generally covariant effective action.

Below we shall often work with spacetimes of dimension two and four, so for con-
venience we now denote the number of dimensions by 2ω. However, it will not be
assumed that ω is integer. The (Greek) spacetime indices, such as µ in “∂µφ”, range
from 0 to 2ω − 1.

13.1 Euclidean action for fields

We consider a scalar field φ described by the classical action

S [φ, gµν ] =
1

2

∫ √−gd2ωx
(

gµνφ,µφ,ν − V (x)φ2
)

, (13.1)

where gµν(x) is the spacetime metric and the potential V (x) is an external field that
plays the role of the effective mass of the field φ. (This general form of the action
can represent both minimally coupled and conformally coupled fields.) We assume
that the metric gµν(x) and the potential V (x) are fixed and known functions of the
spacetime.

It is convenient to rewrite the action as a quadratic functional of φ,

S [φ, gµν ] =
1

2

∫ √−gd2ωx
[

φ(x)F̂ φ(x)
]

, (13.2)

where F̂ is a suitable differential operator. An explicit form for F̂ is easy to derive
from Eq. (13.1) using integration by parts. Assuming that φ(x) → 0 sufficiently
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rapidly as x→ ∞, we omit the boundary terms and find

S [φ, gµν ] =
1

2

∫

d2ωx
[

φ
(√−g gµνφ,µ

)

,ν
−√−gV φ2

]

=
1

2

∫ √−gd2ωx [φ (−�g − V )φ] . (13.3)

This form of the action is reminiscent of Eqs. (4.3) and (4.5). Thus the operator F̂ is

F̂ = −�g − V (x),

where the symbol �g denotes the covariant D’Alembert operator for scalar fields in
the metric gµν ,

�gφ ≡ 1√−g∂µ

[√−g gµν∂νφ
]

.

The classical equation of motion for the field φ(x) can be written as

F̂ φ = [−�g − V (x)] φ(x) = 0.

13.1.1 Transition to Euclidean metric

We now perform an analytic continuation of the action (13.3) to the Euclidean time
τ = it. According to the general procedure outlined in Sec. 12.2.1, the Euclidean ac-

tion SE

[

φ(E), g
(E)
µν

]

is the functional of Euclidean trajectories φ(E)(τ,x) and g
(E)
µν (τ,x)

defined by

SE

[

φ(E), g(E)
µν

]

≡ 1

i
S [φ, gµν ]t=−iτ .

While the Euclidean scalar field φE is determined straightforwardly,

φ(E) (τ,x) = φ (t,x)|t=−iτ ,

the metric gµν (x) is a tensor and must be appropriately transformed under a change
of coordinates τ = it. Let us examine this transformation in a little more detail. To
simplify the problem, we first consider a purely real change of coordinates

x ≡ (t,x) → x̃ ≡
(

t̃,x
)

= (λt,x) , (13.4)

where λ is a real constant; we shall afterwards perform an analytic continuation in λ
and set λ = i, t̃ ≡ τ .

The transformed scalar field is

φ̃
(

t̃,x
)

= φ (λt,x) .

The components gµν of the metric tensor transform as

gαβ (t,x) = g̃µν

(

t̃,x
) ∂x̃µ

∂xα

∂x̃ν

∂xβ
=









λ2g̃00 λg̃01 λg̃02 λg̃03
λg̃10 g̃11 g̃12 g̃13
λg̃20 g̃21 g̃22 g̃23
λg̃30 g̃31 g̃32 g̃33









. (13.5)
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It is easy to see that the determinant g ≡ det gµν changes as g = λ2g̃ because one row
and one column of the matrix g̃µν are multiplied by λ. Since

d2ωx = λ−1dt̃ d2ω−1x = λ−1d2ω x̃,

the form of the covariant volume measure
√−gd2ωx remains unchanged under the

transformation (13.4),

√−gd2ωx = λ−1
√

−λ2g̃d2ωx̃ =
√

−g̃d2ω x̃,

at least for real λ. The action S[φ, gµν ] is a generally covariant scalar, therefore we can
write

S̃
[

φ̃, g̃µν

]

=
λ−1

2

∫

√

−λ2g̃d2ω x̃
[

φ̃ (−�g̃ − V ) φ̃
]

.

Setting λ = i and denoting t̃ ≡ τ , x̃µ ≡ x
(E)
µ , we now obtain the analytically

continued Euclidean field and metric,

φ(E) ≡ φ̃
∣

∣

∣

λ=i
, g(E)

µν ≡ g̃µν |λ=i ,
√−g =

√

g̃ =
√

g(E).

Thus the Euclidean action can be written as

SE

[

φ(E), g(E)
µν

]

=
1

i
S [φ, gµν ]t=−iτ =

1

2

∫

√

g(E)d2ωx(E)
[

φ(E)
(

�g(E) + V
)

φ(E)
]

.

(13.6)

The Euclidean field φ(E) and the Euclidean metric g
(E)
µν are now chosen to be real-

valued functions of x(E) despite the fact that the transformation (13.5) of a real metric
gµν with λ = i will generally yield complex-valued components g̃µν . As we already
remarked in Sec. 12.1.2, the real-valued Euclidean fields do not have a direct physical

interpretation. The Euclidean variables φ(E) and g
(E)
µν are introduced merely to obtain

the analytic continuation of the action functional to the Euclidean domain, S [...] =
−iSE [...].

Now we shall bring the Euclidean action to a more convenient form. In our sign
convention, the Lorentzian metric gµν (x) has the signature (+ −−−), and it is evi-

dent from Eq. (13.5) that the Wick rotation transforms gµν to a metric g
(E)
µν with the

signature (−−−−). For convenience, we now change the overall sign of the metric
and define a new metric variable,

γµν (τ,x) ≡ −g(E)
µν (τ,x) = − gµν (t,x)|t=−iτ .

The new metric γµν is positive-definite with the standard Euclidean signature, namely
(+ + ++). Under this last change of variables, we have γ = g(E) and �γ = −�g(E) ,
so the Euclidean action (13.6) is expressed through the new metric as

SE [φ, γµν ] =
1

2

∫ √
γd2ωx(E)

[

φ(E) (−�γ + V (x)) φ(E)
]

.

161



13 Functional determinants and heat kernels

In the next two chapters, we shall perform all calculations exclusively with the
Euclidean metric γµν , the field φ(E) and the coordinates x(E). Therefore it will be
convenient henceforth to denote the Euclidean quantities simply by gµν , φ and x. We
shall keep the symbol �g for the covariant Laplace operator,

�gφ =
1√
g
∂µ [

√
g gµν∂νφ] ,

as a reminder of the analytic continuation back to the Lorentzian time that shall be
eventually performed.

Thus the final form of the Euclidean action for the field φ is

SE [φ, gµν ] =
1

2

∫ √
gd2ωx [φ(x) (−�g + V (x)) φ(x)] , (13.7)

The Euclidean field φ(x) satisfies the equation of motion

[−�g + V (x)] φ(x) = 0. (13.8)

13.1.2 Euclidean action for gravity

To illustrate the construction of the Euclidean action on another example, we consider
the Einstein-Hilbert action (5.18) for pure gravity,

Sgrav [gµν ] = − 1

16πG

∫

(R+ 2Λ)
√−gd4x.

Performing the transformation xµ → x
(E)
µ , gµν → g

(E)
µν similarly to the previous sec-

tion, we compute the Euclidean action functional as

S
grav
E

[

g(E)
µν

]

=
1

16πG

∫

(

R(E) + 2Λ
)

√

g(E)d4x.

Now we express this functional through the positive-definite Euclidean metric γµν ≡
−g(E)

µν . When we flip the sign of the metric, the Christoffel symbol Γα
µν remains un-

changed, while the Riemann scalar changes sign,

RE
[

g(E)
µν

]

= −R [γµν ] .

Hence the Euclidean action for gravity is

S
grav
E [γµν ] =

1

16πG

∫

(−R [γ] + 2Λ)
√
γd4x.
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13.2 Effective action as a functional determinant

According to Sec. 12.2, the Euclidean effective action ΓE [gµν ] is found from

exp (−ΓE [gµν ]) =

∫

Dφ exp (−SE [φ, gµν ]) . (13.9)

It is not straightforward to define a suitable measure Dφ in the space of functions φ(x)
because the definition introduced in Sec. 11.3 is not generally covariant. One way to
define a generally covariant functional measure is to use expansions in orthogonal
eigenfunctions.

We consider the following eigenvalue problem (in Euclidean space),

[−�g + V (x)] φn(x) = λnφn(x), (13.10)

where φn(x) are eigenfunctions with eigenvalues λn. For mathematical convenience,
we impose boundary conditions on φ(x) at the boundary of a finite box, so that the
spectrum of eigenvalues λn is discrete (n = 0, 1, ...) and the operator −�g + V is
self-adjoint with respect to the natural scalar product

(f, g) ≡
∫ √

gd2ωx f(x)g(x). (13.11)

Under natural assumptions on gµν and V (x), one can show that the eigenvalues λn

are bounded from below and that the set of all eigenfunctions is normalized and
constitutes a complete orthonormal basis in the space of functions,

∫ √
gd2ωxφm(x)φn(x) = δmn.

Then an arbitrary function f(x) is expanded in this basis as

f(x) =

∞
∑

n=0

cnφn(x); (13.12)

cn =

∫ √
gd2ωx f(x)φn(x). (13.13)

The coefficients cn (which are real numbers) are the coordinates of the function f(x)
in the basis {φn}. There are infinitely many coordinates since the space of functions
is infinite-dimensional.

Substituting Eq. (13.12) into the action (13.7), we find a particularly simple expres-
sion,

SE [φ, gµν ] =
1

2

∫ √
gd2ωx

∑

m,n

cmcnλmφmφn =
1

2

∑

n

c2nλn.

This is to be expected since the action (13.7) is a quadratic functional of φ which is
diagonalized in the basis of eigenfunctions {φn}.
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13 Functional determinants and heat kernels

Once an orthonormal system of eigenfunctions {φn(x)} is chosen, the coefficients
cn are independent of the spacetime coordinates since Eq. (13.13) expresses cn in
terms of generally covariant integrals. The action is a function of cn and λn, and
the eigenvalues λn are also coordinate-independent quantities (eigenvalues of a gen-
erally covariant operator). Hence we are motivated to define the functional measure
in the path integral (13.9) through the quantities cn, for example Dφ =

∏

n f(cn)dcn
with some function f(c). The simplest choice for f(c) is a constant, and a comparison
with the usual path integral measure in flat space suggests the definition

Dφ =
∏

n

dcn√
2π
. (13.14)

Then the path integral (13.9) is evaluated as

∫

exp (−SE [φ, gµν ])Dφ =

∫ ∞
∏

n=0

dcn√
2π

exp

(

−1

2
λnc

2
n

)

=

[ ∞
∏

n=0

λn

]−1/2

.

It is well known that the product of all eigenvalues
∏

n λn of a finite-dimensional
operator is equal to its determinant. Assuming that a suitable generalization of the
determinant can be defined also for infinite-dimensional operators, we can formally
rewrite the Euclidean effective action as

ΓE [gµν ] =
1

2
ln

∞
∏

n=0

λn =
1

2
ln det [−�g + V ] . (13.15)

The task of computing an effective action is now reduced to the problem of calculat-
ing the determinant of a differential operator (a functional determinant ). However, it
is clear that a functional determinant is not a straightforwardly defined quantity. For
a differential operator such as −�g, the eigenvalues λn grow with n and their product
∏

n λn diverges. A finite result can be obtained only after an appropriate regulariza-
tion and renormalization of the determinant. Below by a “functional determinant”
we shall always mean “a renormalized functional determinant.”

13.3 Zeta functions and heat kernels

To compute the functional determinant of the operator −�g + V , we shall first re-
formulate the problem in terms of linear operators in an auxiliary Hilbert space. If a

Hermitian operator M̂ acting in some Hilbert space with vectors |ψ〉 is such that its

spectrum of eigenvalues {λ̃n} coincides with {λn},

M̂ |ψn〉 = λ̃n |ψn〉 , λ̃n = λn,

then it is clear that the determinant of M̂ is the same as the determinant of −�g + V .

Such a Hilbert space and an operator M̂ can be defined as follows. We postulate
an uncountable basis of “generalized vectors” |x〉, where the label x goes over the
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13.3 Zeta functions and heat kernels

2ω-dimensional (Euclidean) spacetime, exactly as the coordinate x in Eq. (13.10). The
basis is assumed to be complete and orthonormal in the distributional sense, so that

〈x|x′〉 = δ(x− x′),

where we use the ordinary, noncovariant δ function in 2ω dimensions. Vectors of the
Hilbert space are, by definition, integrals of the form

|ψ〉 =

∫

d2ωxψ(x) |x〉 .

The integration above is not covariant because x is simply a label. The function
ψ(x) specifies the coordinates of the vector |ψ〉 in the basis {|x〉}; it follows that
ψ(x) = 〈x|ψ〉 and 1̂ =

∫

d2ωx |x〉 〈x|. The “generalized vectors” |x〉 do not belong
to the Hilbert space because they do not have a finite norm. This construction is
completely analogous to the usual coordinate basis in the Hilbert space of quantum-
mechanical wave functions.

The scalar product of vectors |ψ1〉 and |ψ2〉 is defined by

〈ψ1|ψ2〉 = 〈ψ1|
(∫

d2ωx |x〉 〈x|
)

|ψ2〉 =

∫

d2ωxψ1(x)ψ2(x). (13.16)

Again, note the noncovariant integration.
From a comparison of Eqs. (13.11) and (13.16), one can see that the difference be-

tween the Hilbert space with vectors |ψ〉 represented by functions ψ(x) and the space
of functions φ(x) is only in the extra factor

√
g in the scalar product. This suggests

a one-to-one correspondence between functions φ(x) and vectors |ψ〉 in the auxiliary
Hilbert space according to the formula

φ(x) ↔ |ψ〉 such that ψ(x) = 〈x|ψ〉 ≡ g1/4φ(x). (13.17)

This mapping between functions φ(x) and vectors |ψ〉 preserves the scalar product: if
φ1(x) is mapped to |ψ1〉 and φ2(x) is mapped to |ψ2〉, then (φ1, φ2) = 〈ψ1|ψ2〉.

Using the map (13.17), the self-adjoint differential operator −�g + V can be trans-

formed into a Hermitian operator M̂ acting in the Hilbert space. The required opera-

tor M̂ must be such that for all vectors |ψ〉,

if |ψ〉 ↔ φ(x) then M̂ |ψ〉 ↔ (−�g + V )φ(x).

It follows from Eq. (13.17) that M̂ |ψ〉 is the vector with the coordinate function

〈x| M̂ |ψ〉 ≡ g1/4(x) (−�g + V )
[

g−1/4ψ(x)
]

. (13.18)

The operator M̂ is defined by Eq. (13.18) as a certain differential operator acting on
coordinate functions.

It is convenient to represent this operator by its matrix elements in the |x〉 basis:

〈x| M̂ |x′〉 = g1/4(x)
(

−�g(x) + V
)

[

g−1/4(x)δ(x − x′)
]

. (13.19)
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13 Functional determinants and heat kernels

This representation is easy to derive from Eq. (13.18) if we note that the vector |x′〉
has the coordinate function 〈x|x′〉 = δ(x−x′). One may use Eq. (13.19) as a definition

of the operator M̂ . (We wrote �g(x) in Eq. (13.19) with the subscript g(x) to show that
the derivatives implied by the symbol � are with respect to x and not x′.)

We have shown that the set of orthonormal eigenfunctions φn(x) of the differential
operator −�g + V is in a one-to-one correspondence with the set of orthonormal

eigenvectors |ψn〉 of the operator M̂ with the same eigenvalues λn. Thus we replaced
a problem involving a partial differential equation by an equivalent problem with
linear operators in a Hilbert space.

Remark: Hilbert space 6= quantum mechanics. The appearance of a Hilbert space and of
the Dirac notation does not mean that the vectors |ψ〉 are states of some quantum system.
We use the Hilbert space formalism because it makes calculations of renormalized deter-
minants easier. It is possible but much more cumbersome to derive the same results by
direct manipulations of the equivalent partial differential equations.

13.3.1 Renormalization using zeta functions

The method of zeta (ζ) functions can be used to compute renormalized determinants

of operators. For an operator M̂ with eigenvalues λn, we define the zeta function of

the operator M̂ , denoted ζM (s), by

ζM (s) ≡
∞
∑

n=0

(

1

λn

)s

. (13.20)

The function ζM (s) is similar to Riemann’s ζ function (10.9) except for the summa-
tion over the eigenvalues λn instead of the natural numbers. The sum in Eq. (13.20)
converges for large enough real s, and for all other s one obtains ζM (s) by an ana-
lytic continuation. Usually the resulting function ζM (s) is well-defined for almost all
complex values of s.

It follows from Eq. (13.20) that

dζM (s)

ds
=

d

ds

∑

n

e−s lnλn = −
∑

n

e−s ln λn lnλn,

and therefore

ln det M̂ = ln
∏

n

λn =
∑

n

lnλn = − dζM (s)

ds

∣

∣

∣

∣

s=0

. (13.21)

After an analytic continuation, the function ζM (s) is usually regular at s = 0, so
the derivative dζM/ds exists and is finite. Then the formula (13.21) is regarded as

a definition of the determinant det M̂ . Of course, this definition coincides with the
standard one for finite-dimensional operators.

The formula (13.21) is the main result of the ζ function method. We stress that
the derivations of Eqs. (13.15) and (13.21) are formal (i.e. not mathematically well-
defined) because we manipulated sums such as

∑

n lnλn as if these sums were finite.
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13.3 Zeta functions and heat kernels

Lacking a rigorous argument, one should use such formal calculations with caution
as tools with an unknown domain of validity. In practice, Eq. (13.21) has a wide area
of application and seems to always give physically reasonable results. In many cases,
the answers obtained from the ζ function method have been verified by other, more
direct regularization and renormalization procedures. For this reason the method of
ζ functions is considered a valid method of renormalization of divergences in QFT.

As an example, we compute the determinant of the Laplace operator M̂ = −∂2
x in

one-dimensional box of length L. (The minus sign is chosen to make the eigenvalues
positive.) The operator −∂2

x is self-adjoint in the space of square-integrable functions
f(x) satisfying the boundary conditions f(0) = f(L) = 0. The eigenvalues and the
eigenfunctions are

− ∂2

∂x2
fn = λnfn, fn(x) = sin

πnx

L
, λn =

π2n2

L2
, n = 1, 2, ...

The function ζM (s) is computed as

ζM (s) =
∞
∑

n=1

1

λs
n

=
L2s

π2s

∞
∑

n=1

1

n2s
=
L2s

π2s
ζ(2s),

where ζ(s) is Riemann’s zeta function. Therefore

det(−∂2
x) = − d

ds

∣

∣

∣

∣

s=0

ζM (s) = − d

ds

∣

∣

∣

∣

s=0

[

L2s

π2s
ζ(2s)

]

= ln(2L),

where we have used the properties (proved in the theory of the Riemann’s ζ function)

ζ(0) = −1

2
, ζ′(0) = −1

2
ln(2π).

Remark: another representation of ζ function. If the operator M̂−s is well-defined for

some s, then the spectrum of eigenvalues of M̂−s consists of {λ−s
n } and the ζ function of

the operator M̂ can be expressed through the trace of M̂−s as

ζM (s) =
X

n

(λn)−s = Tr (M̂−s). (13.22)

As long as Tr (M̂−s) is well-defined, Eq. (13.22) is equivalent to the definition (13.20).

13.3.2 Heat kernels

The definition (13.20) of the function ζM (s) requires one to know all eigenvalues λn

of the operator M̂ . In practice it is more convenient to compute the ζ function using
another mathematical construction called the heat kernel.

We assume that M̂ is a Hermitian operator with positive eigenvalues λn and a
complete basis of the corresponding orthonormal eigenvectors |ψn〉. The heat kernel
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13 Functional determinants and heat kernels

of the operator M̂ is the operator K̂M (τ) which is a function of a scalar parameter τ ,
defined by

K̂M (τ) ≡
∑

n

e−λnτ |ψn〉 〈ψn| . (13.23)

It is easy to see that K̂M (τ)|τ=0 = 1̂ and that the operator K̂M (τ) is well-defined for
τ > 0. The real parameter τ is sometimes called the “proper time” but has no im-
mediate physical significance as time. In the present context, the variable τ is purely
formal and will eventually disappear from calculations.

Now we shall show that the trace of the heat kernel, Tr K̂M (τ), is related to the ζ
function of the operator M̂ . The trace of an operator is the same in any basis, and

Tr K̂M (τ) is most easily expressed in the basis |ψn〉:

Tr K̂M (τ) =
∑

n

〈ψn| K̂M (τ) |ψn〉 =
∑

n

e−λnτ .

Rescaling the definition of Euler’s Γ function (see Appendix A.3) by a constant λ,

Γ(s) =

∫ ∞

0

e−ττs−1dτ = λs

∫ ∞

0

e−λττs−1dτ, Re s > 0,

one obtains the following representation for the function ζM (s),

ζM (s) =
∑

n

(λn)
−s

=
1

Γ(s)

∫ +∞

0

[

Tr K̂M (τ)
]

τs−1dτ. (13.24)

The integral converges for the same range of s for which the sum (13.20) converges.
Thus the ζ function of an operator can be computed if the trace of the corresponding
heat kernel is known.

At first it seems to be more difficult to compute K̂M (τ) than ζM (s), since Eq. (13.23)
requires one to know not only all the eigenvalues λn but also the eigenvectors |ψn〉.
However, the heat kernel has a useful property: it is a solution of an operator-valued
differential equation. Evaluating the derivative of the heat kernel with respect to τ ,
one finds

d

dτ
K̂M (τ) = −

∑

n

e−λnτλn |ψn〉 〈ψn| = −M̂K̂M . (13.25)

The formal solution of Eq. (13.25) with the initial condition K̂M (0) = 1̂ is

K̂M (τ) = exp(−τM̂). (13.26)

The trace of the heat kernel is therefore expressed as

Tr K̂M (τ) =

∫

d2ωx 〈x| exp(−τM̂) |x〉 .

In practice it is easier to solve the differential equation (13.25) in a conveniently cho-

sen basis than to evaluate the exponential of the operator M̂ .
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13.3 Zeta functions and heat kernels

As an example, we shall compute the heat kernel of the Laplace operator M̂ ≡ −∆
in one-dimensional space,

K̂M (τ) = exp(τ∆x) = exp(τ∂2
x).

The matrix element 〈x| K̂M (τ) |x′〉 ≡ K(x, x′, τ) is a solution of

d

dτ
K(x, x′, τ) = ∆xK(x, x′, τ) (13.27)

with the initial condition

K (x, x′, τ)|τ=0 = δ(x− x′).

A Fourier transform in x,

K(x, x′, τ) =

∫

dk

2π
eikxK̃(k, x′, τ); K̃(k, x′, τ) =

∫

dx e−ikxK(x, x′, τ),

yields the equation

d

dτ
K̃(k, x′, τ) = −k2K̃(k, x′, τ), K̃ (k, x′, τ)|τ=0 = e−ikx′

,

which has the solution

K̃(k, x′, τ) = e−τk2−ikx′ ⇒ K(x, x′, τ) =
1√
4πτ

exp

[

− (x− x′)2

4τ

]

.

The origin of the name “heat kernel” is that K̂M (τ) with M̂ = −∆ is a solution of
the heat equation (13.27) which describes the propagation of heat in a homogeneous
medium. However, the construction of the heat kernel has a much wider area of
application, from quantum statistical physics to differential topology.

Remark: exponentials of operators. Representations involving operator-valued exponen-
tials, such as Eq. (13.26), do not always help to obtain explicit solutions. For instance, it is
well known that the time-dependent Schrödinger equation cannot be explicitly solved for

general time-independent Hamiltonians Ĥ, although one always has the representation
of the solution in the form

|ψ(t)〉 = exp(−itĤ) |ψ(0)〉 .
Also, such representations are formal because the exponential of an operator is not always

well-defined. The convergence of the series for exp M̂ is certain only for finite-dimensional

spaces where all operators have bounded eigenvalues. Indeed, the operator exp M̂ ap-
plied to a vector |ψ〉 is equal to the series

eM̂ |ψ〉 ≡
∞
X

n=0

1

n!
M̂n |ψ〉

which is generally not guaranteed to converge. For example, the action of the operator
exp(−∆) = exp(−∂2

x) on the function φ(x) = exp
`

−x2
´

is undefined. In contrast, the
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action of exp(+∂2
x), which is the heat kernel for M̂ ≡ −∂2

x evaluated at τ = 1, is well-
defined on exp

`

−x2
´

. Moreover, this heat kernel has an integral representation

h

K̂M (τ )ψ
i

(x) = 〈x| K̂M (τ )

Z

dy |y〉ψ(y) =

Z

ψ (y) dy√
4πτ

exp

»

− (x− y)2

4τ

–

which is well-defined for all (not necessarily differentiable) square-integrable functions
ψ(x). Thus the exponential representation exp(τ∂2

x) is too restrictive for this operator.

Keeping in mind that the literal interpretation of exp M̂ as an infinite series may be
problematic, we shall nevertheless often write expressions such as exp(τ∆) as a symbolic
shorthand for the heat kernel and other similar operators.

13.3.3 The zeta function “recipe”

To summarize, we arrived at the following recipe for computing the renormalized
effective action ΓE [J ] for a classical background J interacting with a free quantum

field φ̂:

1. Write the classical Euclidean equations of motion for φ (at fixed J) as F̂ φ = 0

and formulate the eigenvalue problem, F̂φn(x) = λnφn(x), with the appropri-
ate boundary conditions.

2. Construct a Hermitian operator M̂ with the same spectrum of eigenvalues, act-
ing in a suitable Hilbert space.

3. Compute the heat kernel K̂M (τ) of the operator M̂ by solving Eq. (13.25). Find
the trace of the heat kernel.

4. Determine the zeta function ζM (s) from Eq. (13.24) and analytically continue to
s = 0.

5. Find the Euclidean effective action from the formula

ΓE [J ] =
1

2
ln det M̂ ≡ −1

2

dζM (s)

ds

∣

∣

∣

∣

s=0

.
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14 Calculation of heat kernel

Summary: Calculation of the trace of the heat kernel as a perturbative se-
ries. Comparison with the Seeley-DeWitt expansion.

We shall now perform a calculation of the heat kernel of a Euclidean scalar field in a
gravitational background. This is the first step toward computing the effective action
which is the subject of the next chapter. The calculation is long and will be presented
in detail.

According to the method developed in Chapter 13, the effective action is expressed

through the trace of the heat kernel K̂M (τ) ≡ exp(−τM̂) of the operator M̂ defined
by Eq. (13.19),

M̂ = g1/4(x) (−�g + V (x)) g−1/4(x),

where �g is the covariant Laplace operator corresponding to the metric gµν , and V (x)

is an external potential. It is difficult to compute the heat kernel K̂M (τ) for a general
metric gµν(x) and a general potential V (x). However, for small potentials |V | ≪ 1

and for metrics gµν that are almost flat, the operator M̂ is almost equal to −�, where
� is the Laplace operator in flat space (with the metric δµν). The heat kernel for the

flat space is easily found; below it will be denoted by K̂0(τ) and calculated explicitly.
Therefore we shall consider the case when the space is almost flat (weakly curved).

In that case, there exists a coordinate system in which one can decompose gµν into
a sum of the flat Euclidean metric δµν and a small perturbation hµν :

gµν(x) = δµν + hµν(x), gµν(x) = δµν + hµν(x). (14.1)

Note that hµν is the perturbation in gµν which is not the same as hµν with raised
indices, and in fact

gµαgµβ = (δµα + hµα)(δµβ + hµβ) = δα
β ⇒ hµν = −hαβδ

µαδµβ +O
[

(hαβ)2
]

.

The decomposition (14.1) is not generally covariant, i.e. it depends on the choice of
the coordinate system: since δµν is not a tensor but a fixed matrix, the components
of the perturbation hµν do not transform as components of a tensor under a change
of coordinates. The coordinate system must be chosen so that hµν(x) is everywhere
small; for an only slightly curved space, this choice is always possible. Assuming also

that |V | ≪ 1, we can represent the heat kernel K̂M (τ) as a sum of the flat-space kernel

K̂0(τ) and progressively smaller corrections,

K̂M (τ) = K̂0(τ) + K̂1(τ) + K̂2(τ) + ..., (14.2)
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14 Calculation of heat kernel

where K̂n(τ) are operators of n-th order in the small parameters hµν and V . We shall
compute the heat kernel in this way (i.e. perturbatively).

In the leading order, the curvature of the space is proportional to second derivatives
of hµν , so the perturbative expansion is meaningful if the curvature and the potential

V are small. We shall calculate only the initial term K̂0(τ) and the leading correction

K̂1(τ) which is of first order in hµν and V . Computations of higher-order corrections
are certainly possible but rapidly become extremely cumbersome.

14.1 Perturbative ansatz for the heat kernel

We begin with a calculation of the initial approximation to the heat kernel, K̂0(τ).
This operator satisfies

dK̂0

dτ
= �K̂0, K̂0(0) = 1̂, (14.3)

where � is the flat Laplace operator. The formal solution is K̂0(τ) = exp(τ�), and the

matrix element of K̂0(τ) can be written as

〈x| K̂0(τ) |y〉 = 〈x| eτ� |y〉 = eτ�xδ(x− y),

where �x indicates that the Laplace operator is acting on the x argument. (Recall that
|y〉 is a vector with the coordinate function ψ(x) = δ(x − y), and that the operator
exp(τ�) acts on coordinate functions ψ(x) by differentiating with respect to x.)

Now we use the Fourier representation of the δ function in 2ω dimensions,

δ(x− y) =

∫

d2ωk

(2π)2ω
eik·(x−y),

expand eτ�x in the power series and find

〈x| K̂0(τ) |y〉 = eτ�xδ(x− y) =

∫

d2ωk

(2π)2ω

[ ∞
∑

n=0

(τ�x)
n

n!

]

eik·(x−y)

=

∫

d2ωk

(2π)2ω

[ ∞
∑

n=0

(

−τk2
)n

n!

]

eik·(x−y) =

∫

d2ωk

(2π)2ω
e−τk2+ik·(x−y).

The resulting Gaussian integral is easily computed:

〈x| K̂0(τ) |y〉 =
1

(4πτ)ω
exp

[

− (x− y)2

4τ

]

. (14.4)

This expression also coincides with the Green’s function of the heat equation in 2ω
spatial dimensions.
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Perturbative expansion for K̂M (τ)

For a weakly curved space and small potentials |V | ≪ 1, the operator −M̂ can be
represented as a sum of the flat-space Laplace operator and a small correction which
we denote by ŝ [hµν , V ]:

−M̂ = � + ŝ [hµν , V ] .

The full heat kernel K̂M = K̂0 + K̂1 + ... is a solution of

d

dτ
K̂M = (� + ŝ) K̂M , K̂M (0) = 1̂. (14.5)

To find the first correction K̂1, we substitute K̂M (τ) = K̂0(τ) + K̂1(τ) into Eq. (14.5),
use Eq. (14.3), and get

d

dτ
K̂1 = (� + ŝ) K̂1 + ŝK̂0, K̂1(0) = 0.

The operator ŝ is considered to be a small perturbation, so we can neglect the higher-

order term ŝK̂1 and thus obtain the equation that determines K̂1(τ),

d

dτ
K̂1 = �K̂1 + ŝK̂0, K̂1(0) = 0. (14.6)

Similarly the second-order correction K̂2(τ) can be found from

d

dτ
K̂2 = �K̂2 + ŝK̂1, K̂2(0) = 0.

In this way one could in principle calculate all terms of the expansion (14.2) consecu-
tively.

The small parameters of the perturbative expansion are hµν and V . For conve-
nience, we shall denote them collectively by h, writing e.g. O(h) for terms which are
first-order in hµν and V .

Explicit form of ŝ

By combining Eqs. (13.19) and (14.1), the correction operator ŝ can be represented as
a sum of three terms,

ŝ = ĥ+ Γ̂ + P̂ , (14.7)

for which the following exercise derives the explicit formulae.

Exercise 14.1
The matrix elements of the operator M̂ in the coordinate basis |x〉 are

〈x| M̂
˛

˛x′
¸

= g1/4
`

−�g(x) + V
´

h

g−1/4δ(x− x′)
i

= −g1/4 1√
g

∂

∂xν

»

gµν√g ∂

dxµ

“

g−1/4δ(x− x′)
”

–

+ V (x)δ(x− x′).
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Using the expansion (14.1) for the metric, show that the operator M̂ may be rewritten as

−M̂ = � + ĥ+ Γ̂ + P̂ ,

where the operators �, ĥ, Γ̂, P̂ are defined by specifying their matrix elements as follows,

〈x|�
˛

˛x′
¸

≡ δµν∂µ∂νδ(x− x′), (14.8)

〈x| ĥ
˛

˛x′
¸

≡ hµν∂µ∂νδ(x− x′), (14.9)

〈x| Γ̂
˛

˛x′
¸

≡ hµν
,ν ∂µδ(x− x′), (14.10)

〈x| P̂
˛

˛x′
¸

≡ P (x)δ(x− x′). (14.11)

The partial derivatives are ∂µ ≡ ∂/∂xµ (not ∂/∂x′µ) and the auxiliary function P (x) is
defined by

P (x) ≡− 1

4
gµνgαβhαβ,µν − 1

4
gµνhαβ

,µ hαβ,ν

− 1

4
hµν

,ν g
αβhαβ,µ − 1

16
gµνgαβgκλhαβ,µhκλ,ν − V.

Hint: Use the identity (ln g),µ = gαβgαβ,µ.

Again we note that the decomposition of M̂ into � and ŝ is not covariant but de-

pends on the coordinate system. The operators �, ĥ, Γ̂, P̂ given by Eqs. (14.8)-(14.11)
are also not covariantly defined. Nevertheless, the final result will be brought to a
generally covariant form.

The first correction, K̂1(τ)

Since K̂0(τ) is already known, we can solve Eq. (14.6) by the standard method of

variation of constants, keeping in mind that the operators �, K̂0(τ), and ŝ do not

commute. We let K̂1(τ) = K̂0(τ)Ĉ(τ) where Ĉ(τ) is an unknown function, substitute
into Eq. (14.6) and find

K̂0(τ)
d

dτ
Ĉ(τ) = ŝK̂0(τ) ⇒ Ĉ(τ) =

∫ τ

0

dτ ′ K̂−1
0 (τ ′)ŝK̂0(τ

′). (14.12)

The integral is performed from τ ′ = 0 to satisfy the initial condition Ĉ(0) = 0. It
follows from Eq. (14.3) that

K̂0(τ)K̂0(τ
′) = K̂0(τ + τ ′), τ > 0, τ ′ > 0.

Therefore K̂−1
0 (τ) = K̂0(−τ) and the solution is

K̂1(τ) =

∫ τ

0

dτ ′ K̂0(τ − τ ′)ŝK̂0(τ
′). (14.13)

Remark: inverting the heat kernel. Note that Eq. (14.12) involves the inverse heat kernel

K̂−1
0 (τ ) = K̂0(−τ ) which is undefined on most functions. Indeed, from Eq. (14.4) one

finds that the operator K̂0(τ ) with τ < 0 can be applied to a function only if that function

decays extremely quickly at large |x|. However, the potentially problematic operator Ĉ(τ )

does not enter the final formula (14.13) which contains only K̂0(τ − τ ′) and K̂0(τ
′) with

τ − τ ′ ≥ 0 and τ ≥ 0.
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14.1 Perturbative ansatz for the heat kernel

Diagonal matrix element of K̂1

Our next task is to compute the trace of the operator (14.13) with ŝ given by Eq. (14.7).

Since K̂1 is linear in ŝ and ŝ = ĥ+ Γ̂ + P̂ , the result is also a sum that can be symboli-
cally written as

K̂1 = K̂h
1 + K̂Γ

1 + K̂P
1 .

To compute the trace of the operator K̂1, we need to determine the matrix element

〈x| K̂1 |x〉 = 〈x| K̂h
1 |x〉 + 〈x| K̂Γ

1 |x〉 + 〈x| K̂P
1 |x〉 .

We start with the term K̂P
1 because it is the simplest one. Using Eqs. (14.4) and (14.11),

one finds

〈x| K̂P
1 |x〉 =

∫ τ

0

dτ ′ 〈x| K̂0(τ − τ ′)P̂ K̂0(τ
′) |x〉

=

∫ τ

0

dτ ′ 〈x| K̂0(τ − τ ′)

∫

d2ωy |y〉 〈y| P̂
∫

d2ωz |z〉 〈z| K̂0(τ
′) |x〉

=

∫ τ

0

dτ ′
∫

d2ωy 〈x| K̂0(τ − τ ′) |y〉P (y) 〈y| K̂0(τ
′) |x〉

=

∫ τ

0

dτ ′
∫

d2ωy
exp

[

− (x−y)2

4(τ−τ ′) −
(x−y)2

4τ ′

]

[4π(τ − τ ′)]ω [4πτ ′]ω
P (y).

To convert the last integral to a more useful form, we use another mathematical trick.
Introducing the Fourier transform of the function P (y),

P (y) =

∫

d2ωk

(2π)ω
eik·yp(k),

we can evaluate the Gaussian integral over d2ωy (see Exercise 14.2),

〈x| K̂P
1 |x〉 =

∫ τ

0

dτ ′
∫

d2ωk d2ωy

(2π)ω

exp
[

− (x−y)2

4(τ−τ ′) −
(x−y)2

4τ ′
+ ik · y

]

[4π(τ − τ ′)]ω [4πτ ′]ω
p(k)

=
1

(4πτ)ω

∫ τ

0

dτ ′
∫

d2ωk

(2π)ω
exp

[

−τ
′(τ − τ ′)

τ
k2 + ik · x

]

p(k).

The result can be rewritten in an operator form which will be useful later:

〈x| K̂P
1 |x〉 =

1

(4πτ)ω

∫ τ

0

dτ ′ exp

[

τ ′(τ − τ ′)

τ
�x

]

P (x). (14.14)

As before, the flat Laplace operator �x contains derivatives with respect to the coordi-
nate x. Note that the operator exponential in Eq. (14.14) is to be understood formally,
i.e. as a shorthand representation of the corresponding integral operator; the function
P (x) does not need to be infinitely differentiable.
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14 Calculation of heat kernel

Exercise 14.2
Verify the following Gaussian integral over the 2ω-dimensional Euclidean space:

Z

d2ω
x exp

ˆ

−A |x − a|2 −B |x − b|2 + 2c · x
˜

=
πω

(A+B)ω
exp

»

−AB |a − b|2
A+B

+
2c · (Aa +Bb) + |c|2

A+B

–

.

Here A > 0, B > 0 are constants and a, b, c are fixed 2ω-dimensional vectors. The scalar
product of 2ω-dimensional vectors is denoted by a · b.

Nondiagonal matrix element of K̂P
1

We shall see shortly that the remaining terms K̂Γ
1 and K̂h

1 can be expressed through

the nondiagonal matrix element 〈x| K̂P
1 |y〉. It is not difficult to compute this matrix

element by the same method as we used for 〈x| K̂P
1 |x〉. The calculation leading to

Eq. (14.14) needs to be modified:

〈x| K̂P
1 |y〉 =

∫ τ

0

dτ ′ 〈x| K̂0(τ − τ ′)P̂ K̂0(τ
′) |y〉 (14.15)

=

∫ τ

0

dτ ′
∫

d2ωz
exp

[

− (x−z)2

4(τ−τ ′) −
(z−y)2

4τ ′

]

[4π(τ − τ ′)]ω [4πτ ′]ω
P (z)

=
exp

[

− (x−y)2

4τ

]

(4πτ)ω

∫ τ

0

dτ ′
∫

d2ωk

(2π)ω
exp

[

−τ
′(τ − τ ′)

τ
k2

+
1

τ
ik · (xτ ′ + y(τ − τ ′))

]

p(k). (14.16)

In the limit y → x we recover Eq. (14.14), as expected.

Remaining terms

We now consider the term K̂Γ
1 ,

K̂Γ
1 (τ) ≡

∫ τ

0

dτ ′K̂0(τ − τ ′)Γ̂K̂0(τ
′),

where the operator Γ̂ is defined by Eq. (14.10). The matrix element 〈x| K̂Γ
1 (τ) |y〉 can

be transformed as follows,

〈x| K̂Γ
1 (τ) |y〉 =

∫ τ

0

dτ ′
∫

d2ωz 〈x| K̂0(τ − τ ′) |z〉hµν
,ν (z)

∂

∂zµ
〈z| K̂0(τ

′) |y〉

= − ∂

∂yµ

∫ τ

0

dτ ′
∫

d2ωz 〈x| K̂0(τ − τ ′) |z〉hµν
,ν (z) 〈z| K̂0(τ

′) |y〉 .
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14.2 The trace of the heat kernel

In the last line, we used the fact that 〈z| K̂0(τ) |y〉 is a function only of (z − y) and τ
to replace the derivative ∂z by −∂y. The formula we obtained is quite similar to the

expression (14.15) for the matrix element 〈x| K̂P
1 (τ) |y〉, except for the function hµν

,ν (z)
instead of P (z) inside the integral. Therefore we can use Eq. (14.16) to find

〈x| K̂Γ
1 (τ) |x〉 = − lim

y→x

∂

∂yµ
〈x| K̂P

1 (τ) |y〉
∣

∣

∣

∣

P (z)→hµν
,ν (z)

= − 1

(4πτ)ω

∫ τ

0

dτ ′ exp

[

τ ′(τ − τ ′)

τ
�x

]

τ − τ ′

τ
hµν

,µν(x).

The diagonal matrix element of the operator K̂h
1 is computed in a similar way.

Exercise 14.3
Verify the following expression for the matrix element 〈x| K̂h

1 (τ ) |x〉,

〈x| K̂h
1 (τ ) |x〉 =

Z τ

0

dτ ′
exp

h

τ ′(τ−τ ′)
τ

�x

i

(4πτ )ω

(

− δµνh
µν(x)

2τ
+

„

τ − τ ′

τ

«2

hµν
,µν(x)

)

.

Hint: Follow the computation of 〈x| K̂Γ
1 |y〉 in the text.

14.2 The trace of the heat kernel

The trace of the heat kernel in the current approximation is

Tr K̂(τ) =

∫

d2ωx 〈x|
(

K̂0 + K̂1

)

|x〉 +O
(

h2
)

.

Now the full expression for the first-order correction K̂1 can be put together,

〈x| K̂1(τ) |x〉 =
1

(4πτ)ω

∫ τ

0

dτ ′ exp

[

τ ′(τ − τ ′)

τ
�x

]

×
{

P (x) − 1

2τ
δµνh

µν(x) − τ ′(τ − τ ′)

τ2
hµν

,µν(x)

}

, (14.17)

where we can ignore terms of higher order in h and set

P (x) =
1

4
δµν�hµν(x) − V (x) +O

(

h2
)

.

The exponential is expanded in series,

exp

[

τ ′(τ − τ ′)

τ
�x

]

= 1̂ +

∞
∑

n=1

1

n!

(

τ ′(τ − τ ′)

τ
�x

)n

,

177



14 Calculation of heat kernel

and yields terms such as �nhµν and �nV with prefactors that can be integrated term
by term over dτ ′. After some algebra, we rewrite the expansion (14.17) as

〈x| K̂1(τ) |x〉 =
1

(4πτ)ω

{

P (x)τ − 1

2
δµνh

µν(x) − 1

6
τhµν

,µν(x)

+
τ

6
�P − τ

12
δµν�hµν(x) − τ

30
�hµν

,µν(x) + �2 (...)
}

=
1

(4πτ)ω

{

−1

2
δµνh

µν(x) − τV (x) +
τ

6

[

δµν�hµν(x) − hµν
,µν(x)

]

+ � (...)

}

,

where the omitted terms collected under the last Laplace operator � (...) are functions
of x that contain at least a second derivative of hµν .

The covariant volume factor
√
g and the Ricci scalar R are related to hµν by

√
g = 1 − 1

2
δµνh

µν +O
(

h2
)

, R = δµν�hµν − hµν
,µν +O

(

h2
)

. (14.18)

Exercise 14.4
Derive the relations (14.18) for the metric (14.1).

The formulae (14.18) yield

〈x| K̂1(τ) |x〉 =

√
g

(4πτ)ω

[

−τV (x) +
τ

6
R(x) + � (...) +O(h2)

]

.

Adding the initial term K̂0, we compute the trace of the heat kernel to first order in h,

Tr K̂ =

∫

d2ωx 〈x|
(

K̂0 + K̂1

)

|x〉

=
1

(4πτ)ω

∫

d2ωx
√
g

[

1 +

(

R

6
− V

)

τ +O
(

h2
)

]

. (14.19)

The terms we denoted earlier by � (...) are total divergences and vanish after the
integration over d2ωx. The disregarded terms O(h2) involve R2, V 2, V R, and higher-
order expressions. Equation (14.19), which has a manifestly covariant form, is the
main result of this chapter.

14.3 The Seeley-DeWitt expansion

Equation (14.19) provides the first two terms of the trace of the heat kernel as an ex-
pansion in the curvature. There also exists an expansion of the heat kernel in powers
of τ , called the Seeley-DeWitt expansion or the proper time expansion,

〈x| K̂(τ) |x〉 =

√
g

(4πτ)ω

[

1 + a1(x)τ + a2(x)τ
2 +O

(

τ3
)]

. (14.20)
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14.3 The Seeley-DeWitt expansion

Here the Seeley-DeWitt coefficients ai(x) are local, scalar functions of the curvature
Rκλµν and V (x). The Seeley-DeWitt expansion is derived without assuming that the
curvature is small.

Although we cannot present a derivation of Eq. (14.20) here, we note that the inte-
grand of Eq. (14.19) coincides with the Seeley-DeWitt expansion in its first two terms;
the terms O(h2) in Eq. (14.19) are also of order O(τ2). The first Seeley-DeWitt coeffi-
cient is therefore

a1(x) =
1

6
R(x) − V (x).

The heat kernel enters Eq. (13.24) where we need to integrate from τ = 0 to τ = ∞.
The Seeley-DeWitt expansion (14.20) is valid only for small τ and so cannot be used
to compute the zeta function. The behavior of the heat kernel at small τ corresponds
to the ultraviolet limit of quantum field theory. This can be informally justified by
noting that τ has dimension of x2 and therefore small values of τ correspond to small
distances. Effects of QFT at small distances, i.e. local effects, include the vacuum
polarization. On the other hand, large values of τ correspond to the infrared limit
which is related to particle production effects.

To obtain the infrared behavior of the heat kernel, one needs a representation valid
uniformly for all τ , such as the expansion (14.19). It is possible to compute further
terms of this expansion, although the formulae rapidly become complicated at higher
orders. The second-order terms were found by Barvinsky and Vilkovisky.1 We state
their result without proof:

Tr K̂(τ) =

∫

d2ωx
√
g

(4πτ)ω

{

1 + τ

[

R

6
− V

]

+
τ2

2

[

V − R

6

]

f1 (−τ�g)V + τ2V f2 (−τ�g)R

+ τ2Rf3 (−τ�g)R+ τ2Rµνf4 (−τ�g)R
µν +O

(

R3, V 3, ...
)

}

, (14.21)

where the auxiliary functions fi(ξ) are

f1(ξ) ≡
∫ 1

0

e−ξu(1−u)du, f2(ξ) ≡ −f1(ξ)
6

− f1(ξ) − 1

2ξ
, (14.22)

f4(ξ) ≡
f1(ξ) − 1 + 1

6ξ

ξ2
, f3(ξ) ≡

f1(ξ)

32
+
f1(ξ) − 1

8ξ
− f4(ξ)

8
. (14.23)

Since the functions fi(ξ) are analytic and have Taylor expansions that converge uni-
formly for all ξ ≥ 0, the application of functions fi(ξ) to operators, such as fi(−τ�g),
is well-defined. Expressions such as fi(−τ�g)V (x) can be also rewritten as certain
integrals of V (x), but we shall not need explicit forms of these nonlocal expressions.

Note that nonlocal terms such as f1(−τ�g)V contain all (nonnegative) powers of
τ . The Seeley-DeWitt coefficients can be reproduced by expanding these terms in τ ,

1A. O. BARVINSKY and G. A. VILKOVISKY, Nucl. Phys. B333 (1990), p. 471.
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14 Calculation of heat kernel

up to total derivative terms which vanish under the integration over all x. Neglecting
the terms of order O(τ3), one finds

Tr K̂(τ) =

∫

d2ωx
√
g

(4πτ)ω

{

1 + τ

[

R

6
− V

]

+ τ2

[

1

2
V 2 − 1

6
V R+

1

120
R2 +

1

60
RµνR

µν

]

+O
(

τ3, R3, V 3, ...
)

}

. (14.24)

This agrees with the second-order Seeley-DeWitt expansion, up to a total divergence.

Exercise 14.5
To derive the coefficients at τ 2 in the above formula, show that

f1(0) = 1, f2(0) = − 1

12
, f3(0) =

1

120
, f4(0) =

1

60

for the functions (14.22)-(14.23).
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15 Results from effective action

Summary: Divergences in the effective action. Renormalization of con-
stants. Nonlocal terms in the renormalized action. Polyakov action in 1+1
dimensions. Conformal anomaly.

The goal of this final chapter of the book is to complete the calculation of the effective
action for a scalar field in a weakly curved background and to interpret the results. As
we have seen in Chapter 12, the effective action describes both the influence of gravity
on the quantum field (the polarization of vacuum, characterized by the expectation

value 〈T̂µν〉) and the backreaction of the vacuum fluctuations on the metric. We shall
explore both effects after we learn how to remove the divergences that appear in the
effective action.

15.1 Renormalization of effective action

In the previous chapter we computed the trace of the heat kernel Tr K̂M (τ) as a per-
turbative expansion in the curvature. According to the method of Chapter 13, the
renormalized effective action is obtained by an analytic continuation of the suitable
zeta function,

ΓE [gµν ] = −1

2

d

ds

∣

∣

∣

∣

s=0

ζM (s) ,

ζM (s) ≡ 1

Γ (s)

∫ ∞

0

τs−1Tr K̂M (τ) dτ. (15.1)

Without analytic continuation, the above integral diverges at s = 0. The procedure
of analytic continuation provides a finite value for the effective action but does not
justify the removal of the divergences.

In this section we present a qualitative analysis of the divergent parts of the effec-
tive action and motivate the procedure of renormalization. More rigorous treatments
are possible but require much more cumbersome computations.

15.1.1 Leading divergences

To be specific, we consider a minimally coupled massless field (V = 0) in the four-
dimensional Euclidean space (ω = 2). The zeta function is obtained by substituting
the expression (14.21) into Eq. (15.1). The large-τ behavior of the heat kernel is such
that the integral (15.1) converges at the upper limit; thus the divergences are found

181



15 Results from effective action

only at τ → 0. The small-τ (ultraviolet) behavior of the integral can be analyzed with
help of the simpler Seeley-DeWitt expansion (14.24) which is valid only for small τ ,
instead of using the full expression (14.21). To perform this analysis, we artificially
truncate the integral at large τ by a cutoff at τ = τ1 and find at s = 0 the following
expression,

ζ(s) =
1

(4π)2Γ(s)

∫

d4x
√
g

[∫ τ1

0

τs−3dτ +
R

6

∫ τ1

0

τs−2dτ

+

(

1

120
R2 +

1

60
RµνR

µν

)∫ τ1

0

τs−1dτ + (finite terms)

]

. (15.2)

The divergences we can study at this point arise at the τ = 0 limit of integration when
we set s = 0. Further terms of the expansion in τ contain τs+n with n ≥ 0 and are
finite at τ = 0.

To examine the behavior of the divergences in Eq. (15.2), we introduce a cutoff
τ = τ0 at the lower limit and denote the resulting integrals for brevity by

A (τ0) ≡
∫ τ1

τ0

τs−3dτ, B (τ0) ≡
∫ τ1

τ0

τs−2dτ, C (τ0) ≡
∫ τ1

τ0

τs−1dτ.

The leading divergences of the ζ function at τ0 → 0 are

ζ(s) =
1

Γ(s)

∫

d4x
√
g

(4π)2

[

A (τ0) +
R

6
B (τ0)

+

(

1

120
R2 +

1

60
RµνR

µν

)

C (τ0) + (finite terms)

]

.

The leading behavior of the auxiliary functions A, B, C at s = 0 and τ0 → 0 is easily
derived,

A (τ0) ∼
1

2
τ−2
0 , B (τ0) ∼ τ−1

0 , C (τ0) ∼ |ln τ0| .

The Γ function factor at s = 0 has the expansion (A.25),

1

Γ(s)
= s+O

(

s2
)

.

Therefore the effective action can be written as

ΓE [gµν ] = − 1

2

dζ

ds

∣

∣

∣

∣

s=0

= −
∫

d4x
√
g

32π2

[

1

2τ2
0

+
1

6τ0
R

+

(

1

120
R2 +

1

60
RµνR

µν

)

|ln τ0| + (finite terms)

]

. (15.3)

This is a regularized form of the effective action that becomes infinite if the cutoff
parameter τ0 is set to 0.

The divergent terms in the Lorentzian effective action ΓL [gµν ] are a straightfor-
ward analytic continuation of Eq. (15.3). Since no Green’s functions are present in the
divergent terms, we only need to replace

√
g by

√−g.
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15.1 Renormalization of effective action

15.1.2 Renormalization of constants

The backreaction of the quantum field on the gravitational background causes a mod-
ification of the Einstein equation. The total action for the gravitational background
is a sum of the free gravitational action (5.18) and the (Lorentzian) effective action
ΓL [gµν ] induced by the quantum field. However, the effective action is divergent and
we need to renormalize it to obtain a finite total action.

The free action of general relativity, Sgrav [gµν ], contains the cosmological constant
term Λ and the curvature termR that are similar to the divergent terms from Eq. (15.3).
One possibility of renormalization is to assume that the free gravitational action con-
tains certain infinite terms that cancel the infinities in the effective action, so that the
total action is finite. This renormalization procedure is implemented as follows.

We postulate that the free gravitational action (without backreaction of quantum
fields) has different constants and contains terms quadratic in the curvature,

S
grav
bare [gµν ] =

∫

d4x
√−g

[

−R+ 2ΛB

16πGB
+ αB

(

R2

120
+
RµνR

µν

60

)]

. (15.4)

Here ΛB , GB , and αB are called the bare coupling constants of the theory; these con-
stants are never observable since the quantum field is always present and its backre-
action cannot be “switched off.” The modified action for gravity is the sum of the free
action and the effective action,

S
grav
bare [gµν ] + ΓL [gµν ] =

∫

d4x
√−g

{[

− ΛB

8πGB
− A (τ0)

32π2

]

−
[

1

16πGB
+
B (τ0)

192π2

]

R+

[

αB − C (τ0)

32π2

] [

R2

120
+
RµνR

µν

60

]

+ (finite terms)

}

.

If the bare constants were finite, the presence of the divergent factors A (τ0), B (τ0),
and C (τ0) would make the total action infinite in the limit τ0 = 0. The renormaliza-
tion procedure postulates that the bare constants are functions of τ0 chosen to cancel
the divergences in the effective action, so that the remaining terms coincide with the
usual action (5.18). It is easy to see that with the choices

ΛB

8πGB
=

Λ

8πG
− A (τ0)

32π2
,

1

16πGB
=

1

16πG
− B (τ0)

192π2
, αB =

C (τ0)

32π2
,

we obtain a finite total gravitational action at τ0 = 0. After setting τ0 = 0 (remov-
ing the cutoff), the renormalized constants are equal to the observed cosmological
constant Λ and Newton’s constant G.

The “bare” gravitational action (15.4) differs from the standard Einstein-Hilbert
action (5.18) by two extra terms that are quadratic in the curvature. These terms are
necessary to renormalize the backreaction of matter fields on gravity. If the curvature
is small, R ≪ 1 (in Planck units), the extra terms are insignificant in comparison
with Sgrav which is linear in R. In this limit Einstein’s general relativity is a good
approximation that agrees with the available experiments. When the curvature is
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15 Results from effective action

large,R & 1, the extra terms may become significant. However, we expect that in that
regime some as yet unknown effects of quantum gravity dominate and the theory of
quantum fields in classical spacetime breaks down.

Remark: “bare” constants and renormalization. The terms “bare constants” and “bare ac-
tion” are motivated by the following consideration. The free gravitational action S

grav
bare [gµν ]

describes the gravitational field that does not interact with any other fields. However, vac-
uum fluctuations of various quantum fields are always present and their backreaction on
the gravitational background cannot be suppressed. Hence, the observed gravitational
field is always determined by the total (“dressed”) action and not by the “bare” action. So
the bare constants can have arbitrary values or be arbitrary functions of the cutoff param-
eter as long as the dressed constants agree with the experimental data.

The backreaction of the quantum field on the metric is described by the effective action
ΓL [gµν ] which has divergences. Therefore the theory needs to be renormalized. One starts
with a Lagrangian containing bare coupling constants and introduces a cutoff parameter
to make the interesting quantities finite (regularization). The cutoff becomes a parameter
of the theory. The bare coupling constants are not directly observable, so one postulates
that the bare constants are certain functions of the cutoff. These functions are chosen to
cancel the divergences appearing in the results (renormalization), so that the cutoff may
be removed. The renormalized (“dressed”) values of the coupling constants are fixed by
the experimental data.

A field theory that does not lead to divergent quantities and does not involve cutoffs
would be more satisfying; however, such a theory is presently unavailable. Currently, the
most successful theory of fundamental interactions is QFT combined with renormaliza-
tion.

The divergences found in Eq. (15.3) result from the backreaction of one scalar field.
Other fields will give similar contributions, differing only in the numerical coeffi-
cients at the terms R2 and RµνR

µν . Therefore in general we need to introduce four
independent bare constants into the bare gravitational action, controlling the terms 1,
R, R2, and RµνR

µν .
In dimensions other than four, the divergences contain other powers of τ0; the lead-

ing divergence is
∫ τ1

τ0

dτ

(4πτ)ω
τs−1

∣

∣

∣

∣

s=0

∼ τ−ω
0

and therefore in 2ω dimensions we expect to find ω+ 1 divergent terms: τ−ω
0 , ..., τ−1

0 ,
and |ln τ0|.

15.2 Finite terms in the effective action

We have found that the theory of quantum fields in a classical curved spacetime in-
cludes a formally infinite backreaction of the quantum fields in their vacuum state.
This divergent backreaction would be present even in an almost flat spacetime such
as the one we live in. It is clear that the divergence must be removed to obtain physi-
cally relevant results. To make the divergences disappear, we introduced some extra
terms into the bare gravitational action and renormalized the coupling constants. The
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15.2 Finite terms in the effective action

resulting renormalized action is the standard Einstein-Hilbert action with some addi-
tional finite terms that describe the actually observable backreaction. In the previous
section we have studied the structure of the divergences, and now we examine the
finite terms.

15.2.1 Nonlocal terms

The Seeley-DeWitt expansion is not adequate for extracting the finite terms because
it is not valid for large τ . Therefore we employ the expansion (14.21) with V = 0 and
find

ζ(s) =
1

(4π)ωΓ(s)

∫

d2ωx
√
g

{∫ τ

0

dτ τs−1−ω

[

1 +
τ

6
R

+τ2Rf3 (−τ�g)R+ τ2Rµνf4 (−τ�g)R
µν

]}

. (15.5)

First we consider the two-dimensional spacetime (ω = 1). In two dimensions, the
Ricci tensor is always proportional to the metric:

Rµν =
1

2
gµνR. (15.6)

Remark: The Einstein equation (in vacuum) is identically satisfied in two dimensions due
to Eq. (15.6). To obtain a nontrivial theory of gravity, the Einstein-Hilbert action needs to
be modified. The renormalized effective action provides one such modification.

We have seen that the renormalization of the effective action has the effect of re-
moving the first two terms in Eq. (15.5). Simplifying the resulting expression with
help of Eq. (15.6), we get

ζ(s) =
1

4πΓ(s)

∫

d2x
√
g

∫ ∞

0

dτ τsR

[

f3 (−τ�g) +
1

2
f4 (−τ�g)

]

R.

The renormalized effective action is then found as

ΓE [gµν ] = −1

2

dζ

ds

∣

∣

∣

∣

s=0

= − 1

8π

∫

d2x
√
g R

∫ ∞

0

dτ

[

f3 (−τ�g) +
1

2
f4 (−τ�g)

]

R.

To compute the integral, we formally change the variable τ to ξ = −τ�g and obtain1

the following expression,

ΓE [gµν ] =
1

8π
I0

∫

d2x
√
gR�−1

g R,

1This rather unorthodox “change of the variable” can be justified by a more rigorous calculation which
we omit.
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where I0 is a constant computed in Exercise 15.1,

I0 ≡
∫ ∞

0

dξ

[

f3(ξ) +
1

2
f4(ξ)

]

=
1

12
.

The resulting functional is called the Polyakov action:

ΓE [gµν ] =
1

96π

∫

d2x
√
gR�−1

g R (15.7)

≡ 1

96π

∫

d2x
√

g(x) d2y
√

g(y)R(x)R(y)GE(x, y),

where GE is the (Euclidean) Green’s function of the Laplace operator �g. Since �−1
g

is an integral operator, the Polyakov action is a nonlocal functional of gµν (x).

Exercise 15.1*
Verify the definite integral

I0 ≡
Z ∞

0

dξ

»

f3(ξ) +
1

2
f4(ξ)

–

=
1

12
,

where the auxiliary functions f3(ξ) and f4(ξ) are defined by Eqs. (14.22)-(14.23).
Hint: Rewrite I0 as a double integral over ξ and u, regularize the integral over ξ by the

factor exp(−aξ) with a > 0, exchange the order of integration and take the limit a → 0 at
the end of calculation.

Remark: the four-dimensional result. In the four-dimensional case (ω = 2), we omit the
calculations and only quote the result,

ΓE [gµν ] ∼
Z

d4x
√
g R ln

„

−�g

µ2

«

R+ terms with Rµν ln

„

−�g

µ2

«

Rµν ,

where µ is a mass scale introduced for dimensional reasons (the operator �g has dimen-
sion m2). The logarithm of the Laplace operator is defined by

ln

„

−�g

µ2

«

=

Z +∞

0

d
`

m2
´

»

1

µ2 +m2
− 1

−�g +m2

–

,

where the second term in the brackets is the Green’s function of the operator −�g +m2.
Note that the parameter µ is introduced formally for dimensional reasons. A change

in the parameter µ, for example µ → µ̃ = µ/b, would add a term (ln b)R2 to the action.
However, the bare action already contains the R2 term with a bare coupling constant fixed
by the renormalization of the action. A different choice of the parameter µ can be com-
pensated by adding a finite term to this bare constant to remain in agreement with the
observable (“dressed”) value of the coupling constant. The actual value of µ needed to
obtain specific predictions in this theory must be found from an experiment measuring
the coefficient at R2 at a certain energy.
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15.2.2 EMT from the Polyakov action

Using the effective action (15.7), we can compute the vacuum expectation value of
the energy-momentum tensor of the quantum field.

The general procedure is to perform the analytic continuation of ΓE [gµν ] back to
the Lorentzian time and to substitute the Feynman Green’s function instead of the
Euclidean one. The result will be the Lorentzian effective action ΓL[gµν ]. After this,
the vacuum expectation value of the EMT will be expressed as

〈0in| T̂µν(x) |0in〉 =
2

√

−g(x)
δΓL

δgµν(x)

∣

∣

∣

∣

GF →Gret

.

Before showing the detailed calculations, we quote the final expression,2

〈0in| T̂µν |0in〉 =
1

48π

{

−2∇µ∇ν

(

�−1
g R

)

+ ∇µ

(

�−1
g R

)

∇ν

(

�−1
g R

)

+

[

2R− 1

2
∇λ
(

�−1
g R

)

∇λ

(

�−1
g R

)

]

gµν

}

. (15.8)

In the above equation, the operator �−1
g represents the retarded Green’s functionGret(x, y),

so that for any scalar f(x)

(

�−1
g f

)

(x) ≡
∫

d2y
√−g f(y)Gret(x, y).

The expression (15.8) is nonlocal and contains information about particle produc-
tion as well as the complete description of the vacuum polarization at all points.
A similar technique has been applied to study spherically symmetric modes of the
Hawking radiation.3

Derivation of Eq. ( 15.8)

First we need to convert the Euclidean effective action ΓE [gµν ] to the Lorentzian
one, ΓL [gµν ]. We recall that the Euclidean metric gµν entering the effective action
ΓE [gµν ] is, in the notation of Sec. 13.1.1, the positive-definite metric γµν related to the
Lorentzian metric by an analytic continuation with an additional sign change:

γµν = −g(E)
µν = − gµν |t→−iτ .

Therefore we need to return to the original Euclidean variable g
(E)
µν before performing

the analytic continuation. The replacement γµν = −g(E)
µν entails

√
γ =

√

g(E), R[γ] = −R[g(E)], �γ = −�g(E) , (15.9)

2This expression agrees with the Barvinsky-Vilkovisky paper but the derivation in Sec. 15.3 produces an
extra minus sign. The reason for this mismatch is not yet clear to the authors!

3See the paper by V. F. MUKHANOV, A. WIPF, and A. I. ZEL’NIKOV, Phys. Lett. B332 (1994), p. 283.
This method originates from the paper by A. O. BARVINSKY and G. A. VILKOVISKY, Nucl. Phys. B333
(1990), p. 471.
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and it is easy to see that the action (15.7) also changes the sign,

ΓE [γµν ] =
1

96π

∫

d2x
√
γR [γ] �−1

γ R [γ]

= − 1

96π

∫

d2x(E)
√

g(E)R[g(E)]�−1
g(E)R[g(E)].

After the analytic continuation we have d2x(E) = id2x and
√

g(E) =
√−g, where x

and gµν are now the Lorentzian quantities. Following the recipe outlined in Sec. 12.2.3,
we replace the Euclidean Green’s function GE by the Feynman function 1

iGF and ob-
tain the Lorentzian effective action,

ΓL [gµν ] = iΓE

[

g(E)
µν

]

τ=it

= −i 1

96π

∫

id2x1

∫

id2x2

√

−g(x1)R(x1)
1

i
GF (x1, x2)

√

−g(x2)R(x2)

=
1

96π

∫

d2x
√−gR�−1

g R, (15.10)

where the symbol �−1
g in the last line involves the Feynman Green’s function GF of

the D’Alembert operator in the Lorentzian metric gµν .
It remains to compute the variation of the Lorentzian effective action (15.10) with

respect to the metric gµν . The following exercises provide a derivation of the re-
sult (15.8).

Exercise 15.2*
(a) Verify the formula for the variation of the Christoffel symbol,

δΓα
µν =

1

2
gαβ (∇µδgβν + ∇νδgβµ −∇βδgµν) .

(b) Show that the variation of �gφ, where φ is a scalar function, is

δ�gφ = (δgµν)∇µ∇νφ− gµν `δΓα
µν

´

∇αφ,

while the variation of the inverse D’Alembert operator is

δ�−1
g φ = −�

−1
g (δ�g) �

−1
g φ. (15.11)

(c) Derive the variation of the Riemann tensor in the form

δRα
βµν = ∇µδΓ

α
βν −∇νδΓ

α
µβ . (15.12)

Hint: perform all calculations in a locally inertial frame where Γα
µν = 0, and then gen-

eralize to arbitrary coordinates.

Exercise 15.3*
Compute the variation of the Polyakov action (15.10) with respect to gµν and derive

Eq. (15.8).
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15.3 Conformal anomaly

Although the trace of the EMT vanishes for a classical conformally coupled field,

Tµνg
µν = 0, the vacuum expectation value of the trace 〈T̂µν〉gµν for a quantum field

is in general nonzero. This phenomenon is called the conformal anomaly or trace
anomaly.

Trace of the classical EMT

For any classical field with a conformally invariant action, e.g. for conformally cou-
pled scalar fields or for the electromagnetic field, the trace of the EMT identically
vanishes, gµνTµν ≡ 0.

This can be shown by a simple calculation. If the action S [φ, gµν ] of a generally
covariant theory is invariant under conformal transformations,

S [φ, gµν ] = S [φ, g̃µν ] , gµν(x) → g̃µν(x) = Ω2(x)gµν(x),

where Ω(x) 6= 0 is an arbitrary smooth function, then the variation of the action with
respect to an infinitesimal conformal transformation must vanish. An infinitesimal
conformal transformation with Ω(x) = 1 + δΩ(x) yields

δgµν(x) = 2gµν(x)δΩ(x). (15.13)

Using Eq. (5.23), we find

0 = δS =

∫

d2ωx
δS

δgµν(x)
δgµν(x) =

∫

d2ωx
√−gTµνg

µνδΩ. (15.14)

This relation should hold for arbitrary functions δΩ(x), therefore the integrand must
vanish for all x,

T µ
µ (x) ≡ Tµν(x)gµν(x) ≡ 0.

The conclusion holds for any classical generally covariant and conformally invari-
ant field theory, but (as a rule) fails for quantum fields.

Trace of the quantum EMT

Now we compute the vacuum expectation value of the trace of the EMT of a quantum
field.

For simplicity, we work in two dimensions (ω = 1). First, we can obtain the vacuum

expectation value 〈0in| gµν T̂µν |0in〉 directly from Eq. (15.8) . Using the identities

gµν∇µ∇ν

(

�−1
g R

)

= �g

(

�−1
g R

)

= R,

gµνgµν = 2ω = 2,

one finds

〈0| gµν T̂µν(x) |0〉 = −R(x)

24π
= −a1(x)

4π
, (15.15)
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15 Results from effective action

where a1 is the first Seeley-DeWitt coefficient.4 It is clear that the trace of the EMT
does not vanish if R 6= 0.

Remark: The reason for conformal symmetry to be broken can be understood from the
path integral formulation of QFT. The quantum theory would be conformally invariant if
a path integral such as

Z

Dφ e−SE[φ,gµν ]

were invariant under conformal transformations. However, this is impossible because one
cannot choose the integration measure Dφ to be conformally invariant and at the same
time generally covariant. For instance, the generally covariant integration measure (13.14)
is not conformally invariant since the eigenvalues and the eigenfunctions are not pre-
served by conformal transformations.

We conclude this chapter by presenting a more detailed derivation of the conformal
anomaly in two dimensions. The idea is to compute the variation of the effective
action under an infinitesimal conformal transformation (15.13) and to show that the
result is related to the expectation value of T̂µνg

µν .
We shall perform all calculations with Euclidean quantities and convert the result

to the Lorentzian time at the end. The effective action is expressed through the zeta

function ζg(s) of the operator M̂g,

ΓE [gµν ] = −1

2

dζg
ds

∣

∣

∣

∣

s=0

.

The operator M̂g and its zeta function are given by Eqs. (13.18) and (13.22),

M̂g |ψ〉 = g−1/4∂µ

[√
ggµν

(

∂νg
−1/4 |ψ〉

)]

,

ζg(s) = Tr
[

M̂−s
g

]

.

Under an infinitesimal conformal transformation (15.13), the combination
√
ggµν is

invariant (see Eq. (8.11) on p. 106) while the operator M̂g becomes M̂Ω2g :

M̂Ω2g = Ω−1M̂gΩ
−1 = (1 − δΩ)M̂g(1 − δΩ) +O

(

δΩ2
)

= M̂g − δΩM̂g − M̂gδΩ +O
(

δΩ2
)

.

The transformed zeta function is, up to terms O
(

δΩ2
)

,

ζg+δg(s) = Tr

[

(

M̂g − δΩM̂g − M̂gδΩ
)−s

]

= Tr
[

M̂−s
g + sM̂−s−1

g

(

δΩM̂g + M̂gδΩ
)]

= TrM̂−s
g + 2sTr

[

δΩM̂−s
g

]

.

4The connection with the Seeley-DeWitt coefficients is notable because in four dimensions the trace
anomaly involves the second coefficient a2.
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(The order of operators can be cyclically permuted under the trace, as long as all the
traces are finite.) Therefore the transformed effective action is

ΓE [gµν + δgµν ] = −1

2

dζg+δg

ds

∣

∣

∣

∣

s=0

= − lim
s→0

Tr
(

δΩM̂−s
)

+ ΓE [gµν ] .

Note that the limit s → 0 is be evaluated after computing the trace. We use the coor-
dinate representation of operators to get

Tr
(

δΩM̂−s
)

=

∫

d2xd2y 〈x| δΩ |y〉 〈y| M̂−s |x〉

=

∫

d2x δΩ(x) 〈x| M̂−s |x〉 .

The matrix element is computed with the help of the Seeley-DeWitt expansion (14.20),

〈x| M̂−s |x〉 =
1

Γ(s)

∫ +∞

0

dτ τs−1 〈x| K̂(τ) |x〉

=

√
g

4πΓ(s)

∫ +∞

0

dτ τs−2
[

1 + a1(x)τ + a2(x)τ
2 +O

(

τ3
)]

. (15.16)

At first glance, the integral in Eq. (15.16) diverges at both the upper and the lower
limits. However, the upper limit divergence is spurious. The Seeley-DeWitt expan-
sion is only valid for small τ and does not show that in fact the heat kernel decays at
large τ and that the integral converges at τ → +∞. The most important contributions
to the integral come from small τ , so the Seeley-DeWitt expansion actually provides
enough information to obtain the results. To simulate the correct behavior of the in-
tegrand, we artificially truncate the integration at large τ . Thus the procedure is to
multiply the integrand by exp(−ατ) with α > 0, compute the limit s → 0 at fixed
α, and then set α → 0. The divergences at τ = 0 are renormalized by the analytic
continuation in s using the gamma function, namely we replace

∫ ∞

0

dτ τs−2e−ατ → α1−sΓ(s− 1).

Then the terms of the expansion are

1

Γ(s)

∫ +∞

0

dτ τs−2e−ατ =
α1−sΓ(s− 1)

Γ(s)
=
α1−s

s− 1
;

a1

Γ(s)

∫ +∞

0

dτ τs−1e−ατ = a1α
−s;

a2

Γ(s)

∫ +∞

0

dτ τse−ατ = a2sα
−s−1.

When s → 0 at fixed α > 0, only the first two terms in Eq. (15.16) give nonvanishing
contributions. Of these, the first term is proportional to α1−s and vanishes as α → 0.
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Hence

lim
α→+0

(

lim
s→+0

〈x| M̂−s |x〉
)

=
1

4π

√
g a1(x) =

√
g

24π
R [g] ,

where R[g] is the Ricci scalar corresponding to the (Euclidean) metric gµν .
The final result is that the variation of the effective action after an infinitesimal

conformal transformation is

δΓE = ΓE [gµν + δgµν ] − ΓE [gµν ] = − 1

24π

∫

d2x
√
g δΩ(x)R(x). (15.17)

Since Eq. (15.17) does not contain any Green’s functions, the analytic continuation to
the Lorentzian regime is straightforward. Thus the variation of the Lorentzian effec-
tive action under a conformal transformation is

δΓL = − 1

24π

∫

d2x
√−gδΩ(x)R(x). (15.18)

On the other hand, the expectation value of the EMT is related to δΓL by

δΓL =

∫

d2x
δΓL

δgµν(x)
δgµν(x) =

∫

d2x
√−g〈T̂ µ

µ 〉δΩ(x). (15.19)

Comparing Eqs. (15.18) and (15.19), we obtain the result (15.15),

〈T̂ µ
µ 〉 = − R

24π
.
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A Mathematical supplement

A.1 Functionals and distributions (generalized
functions)

This appendix is an informal introduction to functionals and distributions.

Functionals

A functional is a map from a space of functions into numbers. If a functional S maps
a function q(t) into a number a, we write S [q] = a or S [q(t)] = a. This notation is
intended to show that the value S [q] depends on the behavior of q(t) at all t, not only
at one particular t.

Some functionals can be written as integrals,

A [q(t)] =

∫ t2

t1

F (q(t)) dt,

where F (q) is an ordinary function applied to the value of q. For example, the func-
tional

A [q(t)] =

∫ 1

0

[q(t)]2 dt

yields A [tn] = (2n+ 1)−1 and A [sin t] = 1
2 − 1

4 sin 2.
A functional may not be well-defined on all functions. For example, the above

functional A [q] can be applied only to functions q(t) that are square-integrable on
the interval [0, 1]. Together with a functional one always implies a suitable space
of functions on which the functional is well-defined. Functions from this space are
called base functions of a given functional.

Distributions

Not all functionals are expressible in the form of an integral. For example, the delta
function denoted by δ(t − t0) is by definition a functional that returns the value of a
function at the point t0, i.e.

δ(t− t0) [f(t)] ≡ f(t0).

This functional cannot be written as an integral because there exists no function
F (t, f) such that for any continuous function f(t),

f (t0) =

∫

F (t, f(t)) dt.
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However, it is very convenient to be able to represent such functionals as integrals.
So one writes

δ (t− t0) [f(t)] = f (t0) ≡
∫ +∞

−∞
f(t)δ (t− t0) dt (A.1)

even though δ(t− t0) is not a function with numeric values (it is a “generalized func-
tion”) and the integration is purely symbolic. This notation is a convenient shorthand
because one can manipulate expressions linear in the δ function as if they were nor-
mal functions; for instance,

∫

[a1δ (x− x1) + a2δ (x− x2)] f (x) dx = a1f (x1) + a2f (x2) .

However, expressions such as
√

δ(t) or exp [δ(t)] are undefined.
Note that the functional δ (t− t0) is well-defined only on functions that are contin-

uous at t = t0. If we need to work with these functionals, we usually restrict the base
functions to be everywhere continuous.

As an example, consider the functional

B [q(t)] ≡ 3
√

q(1) + sin [q(2)] ,

where q(1) and q(2) are the values of the function q(t). This functional depends only
on the values of q(t) at t = 1 and t = 2 and can be written in an integral form as

B [q(t)] = 3
√

q(1) + sin [q(2)]

=

∫ +∞

−∞
dt
{

3δ(t− 1)
√

q(t) + δ(t− 2) sin [q(t)]
}

. (A.2)

Generalized function and distribution are other names for “a linear functional on
a suitable space of functions.” A functional is linear if

S [f(t) + cg(t)] = S [f ] + cS [g]

for arbitrary base functions f , g and an arbitrary constant c. It is straightforward to
verify that δ (t− t0) is a linear functional.

The application of a linear functional A to a function f(x) is written symbolically
as an integral

A [f ] ≡
∫

f(x)A(x)dx, (A.3)

where A(x) is the integration kernel which represents the functional. Note that there
may be no actual integration in Eq. (A.3) because A(x) is not necessarily an ordinary
function. For instance, there is no real integration performed in Eqs. (A.1) and (A.2).

Remark: The δ function is sometimes “defined” by the conditions δ(x) = 0 for x 6= 0 and
δ(0) = +∞, while

R

δ(x)dx = 1. However, these contradictory requirements cannot be
satisfied by any function with numeric values. It is more consistent to say that δ (x− x0)
is not really a function of x and to treat Eq. (A.1) as a purely symbolic relation.
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Distributions defined on a certain space of base functions build a linear space. An
ordinary function a(x) naturally defines a functional

a [f(x)] ≡
∫

a(x)f(x)dx

and thus also belongs to the space of distributions if the integral converges for all
base functions f(x). For example, the function a(x) ≡ 1 defines a distribution on the
base space of integrable functions on [−∞,+∞], although a(x) itself does not belong
to the base space.

Distributions can be multiplied by ordinary functions, and the result is a distribu-
tion. For example, suppose A(x) is a distribution and a(x) is an ordinary function,
then the action of Aa on a base function f(x) is

A(x)a(x) [f ] ≡
∫

A(x)a(x)f(x)dx ≡ A(x) [af ] .

Sometimes two distributions can be multiplied, e.g. δ(x − x0)δ(y − y0) is defined on
continuous functions f(x, y) and yields the value f(x0, y0).

Two distributions are equal when they give equal results for all base functions. For
instance, one can easily show that in the space of distributions (x− x0) δ (x− x0) = 0
when applied to continuous base functions.

Derivatives of the δ function are defined as functionals that yield the value of the
derivative of a function at a fixed point. If δ(x − x0) were a normal function, one
would expect the following identity to hold,

∫

f(x)δ′ (x− x0) dx = −
∫

f ′(x)δ (x− x0) dx = −f ′ (x0) .

Therefore one defines the distribution δ′(x− x0) as the functional

δ′ (x− x0) [f(x)] ≡ −f ′(x0).

More generally,
dnδ (x− x0)

dxn
[f ] = (−1)n dnf

dxn

∣

∣

∣

∣

x=x0

.

Derivatives of the δ function are functionals defined on sufficiently smooth base func-
tions.

Principal value integrals

Not all distributions arise from combinations of δ functions. Another important ex-
ample is the principal value integral.

If the space of base functions includes all continuous functions, then the distribu-
tion

a(x) =
1

x− x0
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is undefined on some base functions because the integral with a function f(x) di-
verges at the pole x = x0 if f (x0) 6= 0. The Cauchy principal value prescription helps
to define a [f ] in such cases.

Definition

For integrals
∫ B

A
F (x)dx where F (x) has a pole at x = x0 within the interval (A,B),

one defines the principal value denoted by P
∫

as

P
∫ B

A

F (x)dx ≡ lim
ε→+0

[

∫ x0−ε

A

F (x)dx +

∫ B

x0+ε

F (x)dx

]

,

when the limit exists. The idea is to cut out a neighborhood of the pole symmetrically
at both sides. If the integrand contains several poles, the same limit procedure is ap-
plied to each pole separately; if there are no poles, the usual integration is performed.
For example,

P
∫ +∞

−∞

dx

x3
= 0; P

∫ M

0

dx

x2 − 1
=

1

2
ln
M − 1

M + 1
, M > 1.

We write

P 1

x− x0

to denote the distribution that acts by applying the principal value prescription to the
integral, i.e.

(

P 1

x− x0

)

[f(x)] ≡ P
∫ B

A

f(x)dx

x− x0
.

This integral converges in a neighborhood of x = x0 if f(x) is continuous there.
It is almost always the case that one cannot use the ordinary function 1/x as a

distribution and must use P 1
x instead, because the base functions are typically such

that the ordinary integral
∫

dx
x f(x) would diverge.

Example calculation with residues

A typical example is the principal value integral

P
∫ +∞

−∞

e−ikx

x
dx ≡ lim

ε→+0

[∫ −ε

−∞

e−ikx

x
dx+

∫ +∞

ε

e−ikx

x
dx

]

. (A.4)

Since the indefinite integral
∫

e−ikx

x
dx (A.5)

cannot be computed, we need to use the method of residues. First we assume that
Re k > 0 and consider the contour C in the complex x plane that goes around the pole
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x

ε−ε

C

0

Figure A.1: The integration contour C for Eq. (A.4).

at x = 0 along a semicircle of radius ε (see Fig. A.1). The contour may be closed in the
lower half-plane since Re k > 0. The integral around the contour C is found from the
residue at x = 0 which is equal to 1, so

∮

C

e−ikx

x
dx = −2πi.

This integral differs from that of Eq. (A.4) only by the contribution of the semicircle.
The function near the pole is nearly equal to 1/x and one can easily show by an
explicit calculation that in the limit ε→ +0 the integral around the semicircle is equal
to −πi times the residue (a half of the integral over the full circle). Therefore,

P
∫ +∞

−∞

e−ikx

x
dx = −2πi− (−πi) = −πi, Re k > 0.

Analogous calculations give the opposite sign for k < 0 and the final result is

P
∫ +∞

−∞

e−ikx

x
dx = −iπ sign k.

We could have chosen another contour instead of C; a very similar calculation
yields the same answer for the contour with the semicircle in the opposite direction.
We would like to emphasize that the choice of a contour is a purely technical issue
inherent in the method of residues. The principal value integral is well-defined re-
gardless of any integration in the complex plane; one would not need to choose any
contours if we could compute the indefinite integral (A.5) or if there existed another
method for evaluating the two integrals in Eq. (A.4) separately.
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Convergence in the distributional sense

The δ function may be approximated by certain sequences of functions, for example
(here n = 1, 2, ...)

fn(x) =

{

0, |x| > 1
2n ,

n, |x| < 1
2n ;

gn(x) =

√

n

π
exp

[

−nx2
]

;

hn(x) =
1

π

sinnx

x
.

The sequences fn and gn converge pointwise to zero at x 6= 0, while the sequence hn

does not have any finite pointwise limit at any x. At first sight these three sequences
may appear to be very different. However, one can show that for any integrable
function q(x) continuous at x = 0, the identity

lim
n→∞

∫ +∞

−∞
dx fn(x)q(x) = q(0)

and the analogous identities for gn(x) and hn(x) hold. This statement suggests that
all three sequences in fact converge to δ(x). The mathematical term is convergence in
the sense of distributions.

A sequence of functionals Fn, n = 1, 2, ..., converges in the distributional sense if
the limit

lim
n→∞

Fn [q]

exists for all base functions q(x). It is clear from our example that a sequence of
functions may converge in the distributional sense even if it has no pointwise limits.

Various statements concerning the δ function can (and should) be verified by calcu-
lations with explicit sequences of ordinary functions that converge to the δ function
in the distributional sense.

The Sokhotsky formula

Another example of convergence to a distribution is the family of functions

aε(x) ≡
1

x+ iε
, ε > 0.

As ε→ 0, the functions aε(x) converge pointwise to 1/x everywhere except at x = 0.

The Sokhotsky formula is the limit (understood in the distributional sense)

lim
ε→+0

1

x+ iε
= −iπδ(x) + P 1

x
. (A.6)
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This formula is derived by integrating aε(x)f(x), where f(x) is an arbitrary continu-
ous base function,

∫ +∞

−∞

1

x+ iε
f(x)dx =

∫ +∞

−∞

xf(x)dx

x2 + ε2
− i

∫ +∞

−∞

ε f(x)dx

x2 + ε2
, (A.7)

and showing that in the limit ε→ 0 the two terms in the RHS converge to

P
∫ +∞

−∞

f(x)

x
dx− iπf(0).

We omit the detailed proof.

Distributional convergence of integrals

The concept of convergence in the distributional sense applies also to integrals. For
example, consider the ordinarily divergent integral

a(x) ≡
∫ +∞

0

dk sinkx. (A.8)

If we take Eq. (A.8) at face value as an equality of functions, then a(x) would be
undefined for any x except x = 0 where a(0) = 0. However, if we interpret Eq. (A.8)
in the distributional sense, it yields a certain well-defined distribution a(x).

To demonstrate this, we attempt to define the functional

a [f ] ≡
∫

dx f(x)a(x) =

∫

dx f (x)

∫ +∞

0

dk sin kx.

This expression is meaningless because of the divergent integral over k. If we now
formally reverse the order of integrations, we get a meaningful formula

a [f ] ≡
∫ +∞

0

dk

∫

dx f(x) sin kx. (A.9)

The integrations performed in this order do converge as long as f(x) is sufficiently
well-behaved (continuous and decaying at infinity). Therefore it is reasonable to de-
fine the functional a[f ] by Eq. (A.9).

We can now reduce the well-defined functional a[f ] to a simpler form. To transform
the expression (A.9), it is useful to be able to interchange the order of integrations.
However, this can be done for uniformly convergent integrals, while the double in-
tegral (A.9) converges non-uniformly. Therefore we temporarily introduce a cutoff
into the integral over dk at the upper limit (large k). At the end of the calculation we
shall remove the cutoff and obtain the final result. Now we show the details of this
procedure for the functional (A.9).
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A simple way to introduce a cutoff is to multiply the integrand by exp(−αk) where
α > 0 is a real parameter; the original integral is restored when α = 0. It is clear that
for any sufficiently well-behaved function f(x),

lim
α→+0

∫ +∞

0

dk

∫

dx f(x)e−αk sin kx =

∫ +∞

0

dk

∫

dx f(x) sin kx ≡ a [f ] .

The double integral
∫ +∞

0

dk

∫

dx f(x)e−αk sin kx

converges uniformly in k and x, so we can reverse the order of integrations before
evaluating the limit α→ 0. In the inner integral we obtain the family of functions

aα(x) ≡
∫ +∞

0

dk sin kx exp(−αk) =
x

α2 + x2
.

At this point we can impose the limit α→ 0, use Eqs. (A.6)-(A.7) and find

a [f ] = lim
α→+0

∫

dx aα(x)f(x) = lim
α→+0

∫

xf(x)dx

x2 + α2
= P

∫

dx
f(x)

x
.

This holds for any base function f(x), therefore we obtain the following equality of
distributions,

a(x) ≡
∫ +∞

0

dk sinkx = lim
α→+0

aα(x) = P 1

x
. (A.10)

We may say that the integral (A.8) diverges in the usual sense but converges in the
distributional sense.

The distributional limit of a divergent integral is usually found by regularizing the
integral with a convenient factor such as exp(−αk) and by removing the cutoff after
the integration. The way to introduce the cutoff in k is of course not unique. For in-
stance, we could multiply the integrand by exp

(

−αk2
)

or simply replace the infinite
upper limit in Eq. (A.8) by a parameter kmax and then evaluate the limit kmax → +∞.
The calculations are somewhat less transparent in that case but the result is the same.
We are free to choose a cutoff in any form, as long as the cutoff allows us to reverse
the order of integration.

Remark: We should keep in mind that there must be some base functions f(x) to which
both sides of Eq. (A.10) are applied as linear functionals. Only then the manipulations with
the artificial cutoff become well-defined operations in the space of distributions. Although
it is tempting to treat a(x) as an ordinary function equal to 1/x, it would be an abuse of
notation since e.g.

a(2) =

Z +∞

0

dk sin 2k =
1

2
???

is a meaningless statement. Expressions such as Eq. (A.8) usually appear as inner integrals
in calculations, for example,

Z +∞

−∞

dx

Z +∞

0

dk xe−x2

sin kx,
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which looks like an application of the distribution a(x) to the base function xe−x2

. In such
cases we are justified to treat the inner integral as the distribution (A.10).

Fourier representations of distributions

A well-known integral representation of the δ function is

δ (x− x0) =

∫ +∞

−∞

dk

2π
eik(x−x0). (A.11)

The integral in Eq. (A.11) diverges for all x and must be understood in the distribu-
tional sense, similarly to the integral (A.8).

Distributions often turn up in calculations when we use Fourier transforms. If f̃(k)
is a Fourier transform of f(x), so that

f(x) =

∫

f̃(k)eikxdk,

then f̃(k) may well be a distribution since the only way it is connected with real
functions is through integration. We shall see examples of this in Appendix A.2.

Solving equations for distributions

Distributions may be added together, multiplied by ordinary functions, or differenti-
ated to yield other distributions. For example, the distribution P 1

x2 multiplied by the
function 2x yields the distribution P 2

x . Although such calculations are in most cases
intuitively obvious, they need to be verified more formally by analyzing explicit dis-
tributional limits.

A curious phenomenon occurs when solving algebraic equations that involve dis-
tributions, e.g.

(x− x0) a(x) = 1. (A.12)

Note that (x− x0) δ (x− x0) = 0. So the solution of Eq. (A.12) in terms of distribu-
tions is

a(x) = P 1

x− x0
+Aδ (x− x0) ,

where the constant A is an arbitrary number. This shows that one should be careful
when doing arithmetic with distributions. For instance, dividing a distribution by x
is possible but the result contains the term Aδ(x) with an arbitrary constant A.
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A.2 Green’s functions, boundary conditions, and
contours

Green’s functions are used to solve linear differential equations. The typical problem

involves a linear differential operator L̂x such as

L̂x =
d2

dx2
+ a2. (A.13)

A Green’s function of the operator L̂ is a distributionG(x, x′) that solves the equation

L̂xG(x, x′) = δ(x− x′). (A.14)

Because of this relation which can be symbolically represented by L̂xĜ = 1̂, the

Green’s function is frequently written as the “inverse” of the operator L̂x, i.e. Ĝ =

L̂−1
x . However, one should keep in mind that this notation is symbolic and the oper-

ator such as L̂x does not actually have an inverse operator.
The Green’s function must also satisfy a set of boundary conditions imposed usu-

ally at |x| = ∞ or perhaps at some finite boundary points, according to the particular
problem. For example, the causal boundary condition in one dimension (real x) is

Gret(x, x
′) = 0 for x < x′. (A.15)

This condition specifies the retarded Green’s function.
Green’s functions can be used to solve equations of the form

L̂xf(x) = s(x),

where s(x) is a known “source” function. The general solution of the above equation
can be written as

f(x) = f0(x) +

∫

G(x, x′)s(x′)dx′,

where f0(x) is a general solution of the homogeneous equation, L̂f0 = 0.
Equation (A.14) defines a Green’s function only up to a solution of the homoge-

neous equation. Boundary conditions are needed to fix the Green’s function uniquely.
Green’s functions obtained with different boundary conditions differ by a solution of
the homogeneous equation.

Using Fourier transforms

To find a Green’s function, it is often convenient to use Fourier transforms, especially
when G(x, x′) = G(x − x′). In that case we can use the Fourier representation in n
dimensions,

G(x− x′) ≡ G(∆x) =

∫

dnk

(2π)n
g(k)eik·∆x. (A.16)
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However, it often turns out that the Fourier transform of a Green’s function is a dis-
tribution and not an ordinary function.

As an example, we consider the Green’s function G(x− x′) of the one-dimensional
operator (A.13). The Fourier image g(k) of G(∆x) defined by Eq. (A.16) satisfies

(

a2 − k2
)

g(k) = 1. (A.17)

Here we are forced to treat g(k) as a distribution because the ordinary solution

G(∆x) =

∫ +∞

−∞

dk

2π

1

a2 − k2
eik∆x ???

involves a meaningless divergent integral. In the space of distributions, the general
solution of Eq. (A.17) is

g(k) = P 1

a2 − k2
+ g1δ(k − a) + g2δ(k + a), (A.18)

with arbitrary complex constants g1,2. Then the general form of the Green’s function
is found from Eq. (A.16) with n = 1,

G(∆x) = P
∫ +∞

−∞

dk

2π

eik∆x

a2 − k2
+
g1
2π
eia∆x +

g2
2π
e−ia∆x.

The constants g1,2 describe the general solution of the homogeneous equation,

L̂x

(

g1e
ia∆x + g2e

−ia∆x
)

= 0.

These constants can be found from the particular boundary conditions after com-
puting the principal value integral. We find, for instance, that the boundary condi-
tions (A.15) require

g1,2 = ± π

2ia
(A.19)

(see Eq. (D.31) in the solution to Exercise 12.2) and the retarded Green’s function is
expressed by Eq. (D.32).

Contour integration and boundary conditions

We have shown that the boundary condition for G(x, x′) determines the choice of the
constants g1,2 which parametrize the general solution of the homogeneous oscillator
equation, while the nontrivial part of Green’s function (a special solution of the inho-
mogeneous equation) is equal to a certain principal value integral. Instead of using
the principal value prescription, we could select a contour C in the complex k plane
and express the Green’s function as

G(∆x) =

∫

C

dk

2π

eik∆x

a2 − k2
+
g̃1
2π
eia∆x +

g̃2
2π
e−ia∆x. (A.20)
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In effect we replaced the principal value prescription P
∫

by a certain choice of the
contour. This alternative prescription adds some residue terms at the poles k = ±a,
so the constants g̃1,2 differ from those in Eq. (A.19). The resulting Green’s function is
of course the same because the change in the constants g1,2 → g̃1,2 cancels the extra
residue terms.

Example calculation with a contour

Let us select the contour C shown in Fig. A.2, where both semicircles are arbitrarily
chosen to lie in the upper half-plane. The contour C must be closed in the lower
half-plane if ∆x < 0 and in the upper half-plane if ∆x > 0. The integral along each
semicircle is equal to −πi times the residue at the corresponding pole. Therefore the
integral along the contour C is

∫

C

eik∆x

a2 − k2
dk =

{

0, ∆x > 0;
2π
a sin(a∆x), ∆x < 0.

To satisfy the boundary conditions (A.15), we must choose the constants as

g1,2 = ± π

ia
.

Note that this differs from Eq. (A.19). The resulting Green’s function is

Gret(∆x) = θ(x − x′)
sin a∆x

a
,

which coincides with Eq. (D.32). The same result is obtained from any other choice of
the contour in Eq. (A.20) when the constants g1,2 are chosen correctly.

Choosing the contour as in Fig. A.2 is equivalent to considering the limit

lim
ε→+0

∫ +∞

−∞

dk eik∆x

a2 − k2 − ikε
,

since a replacement k → k + 1
2 iε under the integral corresponds to shifting the inte-

gration line upwards.
We could choose the contour of integration in a clever way to make g1,2 = 0. This

is achieved if both semicircles in Fig. A.2 are turned upside-down. This is the cal-
culation often presented in textbooks, where one is instructed to rewrite the integral
as

lim
ε→+0

∫ +∞

−∞

dk eik∆x

a2 − k2 ± iε
or lim

ε→+0

∫ +∞

−∞

dk eik∆x

a2 − k2 ± ikε
(A.21)

with small real ε > 0 and to take the limit ε→ +0. As we have seen, such limits with
a prescription for inserting ε into the denominator are equivalent to particular choices
of contours in the complex k plane. It is difficult to remember the correct prescription

of the contour or the specific ansatz with ε that one needs for each operator L̂x and
for each set of boundary conditions. These tricks are unnecessary if one treats the
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C

k

0 a−a

Figure A.2: Alternative integration contour for Green’s function, Eq. (A.20).

Fourier image g(k) as a distribution with unknown constants, as in Eq. (A.18). One
is then free to choose either a principal value prescription or an arbitrary contour in
the complex k plane, as long as one determines the relevant constants from boundary
conditions.

So far we considered only one-dimensional examples. In higher-dimensional spaces,
one often obtains integrals such as

∫

d3k

(2π)3
eik·x

k2 −m2

in which the kernel 1/(k2 −m2) must be understood as a distribution and rewritten
as

“
1

k2 −m2
” = P 1

k2 −m2
+ h (k) δ

(

k2 −m2
)

,

where h (k) is an arbitrary function of the vector k. To obtain an explicit principal
value formulation of such integrals, one first separates the divergent integration over
a scalar variable (in this case over dk),

P
∫

d3k

(2π)3
eik·x

k2 −m2
=

∫ π

0

dθ sin θP
∫ +∞

0

k2dk

(2π)2
eikx cos θ

k2 −m2
,

and then uses the principal value prescription. (In this particular case the integration
over dθ can be performed first.) The relevant arbitrary parameters such as h (k) must
be determined from the appropriate boundary conditions.

A.3 Euler’s gamma function and analytic
continuations

Euler’s gamma function Γ(x) is a transcendental function that generalizes the fac-
torial n! from natural n to complex numbers. We shall now summarize some of its
standard properties.
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The usual definition is

Γ(x) =

∫ +∞

0

tx−1e−tdt. (A.22)

The integral (A.22) converges for real x > 0 (and also for complex x such that Rex >
0) and defines an analytic function. It is easy to check that Γ(n) = (n− 1)! for integer
n ≥ 1; in particular, Γ(1) = 1. The gamma function can be analytically continued to
all complex x.

Analytic continuations

If an analytic function f(x) is defined only for some x, an analytic continuation can
be used to obtain values for other x.

A familiar case of analytic continuation is the geometric series,

f(x) =
∞
∑

n=0

xn, |x| < 1.

The series converges only for |x| < 1. One can manipulate this series and derive the
formula

f(x) =
1

1 − x
, |x| < 1, (A.23)

which defines the function f(x) for all x 6= 1 and coincides with the old definition for
|x| < 1. Therefore, Eq. (A.23) provides the analytic continuation of f(x) to the entire
complex plane (except for the pole at x = 1).

If a function f(x) is defined by an integral relation such as

f(x) =

∫

F (x, y)dy,

where the integral converges only for some x, one might be able to transform the spe-
cific integral until one obtains some other formula for f(x) that is valid for a wider
range of x. According to a standard theorem of complex calculus, two analytic func-
tions that coincide in some region of the complex plane must coincide in the entire
plane (perhaps after branch cuts). Therefore any formula for f(x) defines the same
analytic function. The hard part is to obtain a better formula out of the original defini-
tion. Unfortunately, there is no general method to perform the analytic continuation.
One has to apply tricks that are suitable to the problem at hand.

The gamma function for all x

The analytic continuation of Γ(x) can be performed as follows. Integrating Eq. (A.22)
by parts, one obtains the identity

xΓ(x) = Γ(x+ 1), x > 0. (A.24)
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This formula determines Γ(x) for Rex > −1, because Γ(x+1) is well-defined and one
can write

Γ(x) ≡ Γ(x+ 1)

x
, Rex > −1.

The point x = 0 is clearly a pole of Γ(x), but at x 6= 0 the function is finite. Subse-
quently we define Γ(x) for Rex > −2 by

Γ(x) ≡ Γ(x+ 2)

x(x + 1)
, Rex > −2,

for Rex > −3 and so on. (Thus Γ(x) has poles at x = 0, −1, −2, ...) The resulting
analytic function coincides with the original integral for Rex > 0.

Series expansions

One can expand the gamma function in power series as

Γ(1 + ε) = 1 − γε+O
(

ε2
)

,

where

γ ≡ −
∫ +∞

0

dt e−t ln t ≈ 0.5772

is Euler’s constant. From the above series it is easy to deduce the asymptotic behavior
at the poles, for instance

Γ(x→ 0) =
Γ(x+ 1)

x
=

1

x
− γ +O(x). (A.25)

Product identity

A convenient identity connects Γ(x) and Γ(1 − x):

Γ(x)Γ(1 − x) =
π

sinπx
. (A.26)

This identity holds for all (complex) x; for instance, it follows that Γ
(

1
2

)

=
√
π. One

can also obtain the formula

Γ(ix)Γ(−ix) = |Γ(ix)|2 =
π

x sinhπx
. (A.27)

Finally, Eq. (A.26) allows one to express Γ(x) for Rex ≤ 0 through Γ(1 − x), which is
another way to define the analytic continuation of Γ(x) to all complex x.
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A Mathematical supplement

Derivation of Eq. ( A.26). We first derive the identity for 0 < Rex < 1. Using
Eq. (A.22), we have

Γ(x)Γ(1 − x) =

∫ +∞

0

ds

∫ +∞

0

dt sx−1t−xe−(s+t),

where the integrals are convergent if 0 < Rex < 1. After a change of the variables
(s, t) → (u, v),

u ≡ s+ t, v ≡ ln
s

t
, ds dt =

uev

(ev + 1)2
du dv,

where 0 < u < +∞ and −∞ < v < +∞, the integral over u is elementary and we get

Γ(x)Γ(1 − x) =

∫ +∞

−∞

evxdv

ev + 1
.

The integral converges for 0 < Rex < 1 and is evaluated using residues by shifting
the contour to v = 2πi+ ṽ which multiplies the integral by exp(2πix). The residue at
v = iπ is equal to − exp(iπx). We find

(

1 − e2πix
)

Γ(x)Γ(1 − x) = −2πieπix,

from which Eq. (A.26) follows for 0 < Rex < 1.
To show that the identity holds for all x, we use Eq. (A.24) to find for integer n ≥ 1

Γ(x− n)Γ (1 − (x− n)) =
Γ(x)Γ(1 − x)

(x− 1)...(x− n)
(1 − x)...(n− x)

= (−1)n π

sinπx
=

π

sinπ(x− n)
, 0 < Rex < 1.

Expressing integrals through the gamma function

Some transcendental integrals such as

∫ +∞

0

xs−1e−bxdx (A.28)

are expressed through the gamma function after a change of variable y = bx,

∫ +∞

0

xs−1e−bxdx = b−sΓ(s).

However, complications arise when s and b are complex numbers, because of the
ambiguity of the phase of b. For example, ii is an inherently ambiguous expression
since one may write

ii =

[

exp

(

iπ

2
+ 2πin

)]i

= exp
(

−π
2
− 2πn

)

, n ∈ Z.
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A.3 Euler’s gamma function and analytic continuations

We consider Eq. (A.28) with a complex b such that Re b > 0. (The integral diverges
if Re b < 0, converges conditionally when Re b = 0, b 6= 0, and 0 < Re s < 1, while
for other s the limit Re b → +0 may be taken only in the distributional sense.) The
integrand is rewritten as

xs−1e−bx = exp [−bx+ (s− 1) lnx] .

The contour of integration may be rotated to the half-line x = eiφy, with a fixed angle
|φ| < π

2 , and y varying in the interval 0 < y < +∞. Therefore, if Re s > 0 we can
change the variable bx ≡ y as long as Re b > 0. Then we should select the branch of
the complex logarithm function covering the region −π

2 < φ < π
2 ,

ln(A+ iB) ≡ ln |A+ iB| + i (signB) arctan
|B|
A
, A > 0. (A.29)

With this definition of the logarithm, the integral (A.28) is transformed to

∫ +∞

0

xs−1e−bxdx = b−s

∫ +∞

0

ys−1e−ydy = exp(−s ln b)Γ(s). (A.30)

In the calculations for the Unruh effect (Sec. 8.2.4) we encountered the following
integral,

F (ω,Ω) ≡
∫ +∞

−∞

du

2π
exp

(

iΩu+ i
ω

a
e−au

)

.

This integral can be expressed through the gamma function. Changing the variable
to x ≡ e−au, we obtain

F (ω,Ω) =
1

2πa

∫ +∞

0

dxx−
iΩ
a
−1e

iω
a

x (A.31)

which is of the form (A.28) with

b = − iω
a
, s = − iΩ

a
.

Since Re s = 0, the integral in Eq. (A.31) diverges at x = 0. To obtain the distributional
limit of this integral, we need to take the limit of s having a vanishing positive real
part. Since b also must satisfy Re b > 0, we choose

b = − iω
a

+ ε, s = − iΩ
a

+ ε, ε > 0,

and take the limit of ε→ +0. Then we can use Eq. (A.30) in which we must evaluate

ln b = lim
ε→+0

ln

(

− iω
a

+ ε

)

= ln
∣

∣

∣

ω

a

∣

∣

∣− i
π

2
sign

(ω

a

)

.

Substituting into Eq. (A.30), we find

F (ω,Ω) =
1

2πa
exp

[

iΩ

a
ln
∣

∣

∣

ω

a

∣

∣

∣+
πΩ

2a
sign

(ω

a

)

]

Γ

(

− iΩ
a

)

.
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A Mathematical supplement

Now it is straightforward to obtain the relation

F (ω,Ω) = F (−ω,Ω) exp

(

πΩ

a

)

, ω > 0, Ω > 0.

Finally, we derive an explicit formula for the quantity

|βωΩ|2 =
Ω

ω
|F (−ω,Ω)|2

which is related to the mean particle number by Eq. (8.28). Using Eq. (A.27), we get

|βωΩ|2 =
Ω

4π2a2ω
exp

(

−πΩ

a

) ∣

∣

∣

∣

Γ

(

− iΩ
a

)∣

∣

∣

∣

2

=
1

2πωa

[

exp

(

2πΩ

a

)

− 1

]−1

.
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B Adiabatic approximation for
Bogolyubov coefficients

In this Appendix we present a method for computing the Bogolyubov coefficients in
the adiabatic approximation. This method has been widely used in calculations of
particle production by classical fields. We shall use the notation of Chapter 6.

The mode function v(η) for a mode χk of a quantum field is a solution of Eq. (6.18),

v′′(η) + ω2(η)v(η) = 0, (B.1)

where for brevity we omitted the index k in vk and ωk. The adiabatic approxima-
tion can be applied to Eq. (B.1) if the effective frequency ω(η) is a slowly-changing
function, i.e. when the adiabaticity condition (6.45) holds,

|ω′(η)| ≪ |ω(η)|2 . (B.2)

We shall assume that the function ω(η) satisfies this condition. In that case, the mode
function v1(η) describing the adiabatic vacuum at a time η = η1 is approximately
expressed by the WKB ansatz (6.44),

v1(η) ≈
1

√

ω(η)
exp

[

i

∫ η

η1

ω(η)dη

]

. (B.3)

The problem at hand is to compute the Bogolyubov coefficients relating the adiabatic
vacua defined at two different times η = η1 and η = η2.

First we shall try to use the WKB approximation (B.3). The adiabatic vacuum
|η10ad〉 at η = η1 is described by the mode function v1(η) satisfying the conditions

v1 (η1) =
1

√

ω (η1)
,

dv1
dη

∣

∣

∣

∣

η=η1

=
1√
ω

(

iω − 1

2

ω′

ω

)∣

∣

∣

∣

η=η1

,

and a similar set of conditions specifies the mode function v2(η) of the vacuum |η20ad〉.
However, the ansatz (B.3) exactly satisfies both conditions. Therefore both mode func-
tions v1(η) and v2(η) are expressed by the same formula (B.3) within the accuracy of
the WKB approximation. Since in fact v1(η) 6= v2(η), we conclude that the WKB
approximation is insufficiently precise to distinguish between the vacua |η10ad〉 and
|η20ad〉. It can be also shown that the Bogolyubov coefficients relating the instanta-
neous vacua |η10〉 and |η20〉 cannot be correctly computed using Eq. (B.3).

A more accurate approximation is based on perturbation theory. We shall consider
a simpler problem of computing the Bogolyubov coefficients between the instanta-
neous vacua |η10〉 and |η20〉. Essentially the same calculation can be applied also to
adiabatic vacua.
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B Adiabatic approximation for Bogolyubov coefficients

As we have seen in Sec. 6.2.2, the instantaneous vacuum |η0〉 defined at an interme-
diate time η > η1 is a squeezed state with respect to |η10〉. Let the functions α(η) and
β(η) be the “instantaneous Bogolyubov coefficients” relating the initial vacuum |η10〉
and the state |η0〉. These coefficients can be expressed through v(η) using Eq. (6.30)
where we need to replace ωk ≡ ω, vk ≡ v(η), and choose uk(η) according to the
conditions (6.40) for the mode function at time η. After some algebra we find

α(η) =
−v∗′ + iωv∗

2i
√
ω

, β(η) =
v∗′ + iωv∗

2i
√
ω

.

It is convenient to introduce the function ζ(η) instead of v(η) as follows,

ζ(η) ≡ β∗(η)

α∗(η)
= −v

′(η) − iω(η)v(η)

v′(η) + iω(η)v(η)
.

The function ζ(η) satisfies the first-order equation

dζ

dη
+ 2iωζ =

(

1 − ζ2
) ω′

2ω
(B.4)

which straightforwardly follows from Eq. (B.1). Since v′(η1) = iω(η1)v(η1), the initial
condition is ζ(η1) = 0 and then it can be shown using Eqs. (B.2) and (B.4) that ζ(η)
always remains small (of order ω′/ω2). The advantage of introducing the variable
ζ is that its smallness facilitates applying perturbation theory to Eq. (B.4). To a first
approximation we may replace 1 − ζ2 by 1 and obtain the equation

dζ(1)

dη
+ 2iωζ(1) =

ω′

2ω
, ζ(1)

∣

∣

η=η1
= 0,

which can be solved in the form of an integral

ζ(1)(η) =

∫ η

η1

dη′
1

2ω(η′)

dω(η′)

dη′
exp

[

−2i

∫ η

η′

ω(η′′)dη′′
]

.

Further approximations are computed similarly, for example ζ(2)(η) is the solution of

dζ(2)

dη
+ 2iωζ(2) =

(

1 − ζ2
(1)

) ω′

2ω
, ζ(2)

∣

∣

η=η1
= 0.

The first approximation, ζ(1)(η), is usually sufficiently precise in the adiabatic regime.
Using Eq. (6.25), the Bogolyubov coefficients are expressed through ζ(η) as

β(η) =
ζ∗(η)

√

1 − |ζ(η)|2
, α(η) =

1
√

1 − |ζ(η)|2
.

This is the result of using the method of adiabatic approximation.
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C Mode expansions cheat sheet

We present a list of formulae relevant to mode expansions of free, real scalar fields.
This should help resolve any confusion about the signs k and −k or similar techni-
calities.

All equations (except commutation relations) hold for operators as well as for clas-
sical quantities. The formulae for a field quantized in a box are obtained by replacing
the factors (2π)3 in the denominators with the volume V of the box. (Note that this
replacement changes the physical dimension of the modes φk.)

φ (x, t) =

∫

d3k eik·x

(2π)3/2
φk(t); φk(t) =

∫

d3x e−ik·x

(2π)3/2
φ (x, t)

a−k (t) =

√

ωk

2
[φk +

i

ωk
πk]; a+

k (t) =

√

ωk

2
[φ−k − i

ωk
π−k]

φk(t) =
a−k (t) + a+

−k(t)√
2ωk

; πk(t) =

√

ωk

2

a−k (t) − a+
−k(t)

i

Time-independent creation and annihilation operators â±k are defined by

â±k (t) ≡ â±k exp (±iωkt)

Note that all a±k below are time-independent.

φ†(x) = φ(x); (φk)
†

= φ−k;
(

a−k
)†

= a+
k

π (x, t) =
d

dt
φ (x, t) ; πk(t) =

d

dt
φk(t)

[

φ̂ (x, t) , π̂ (x′, t)
]

= iδ (x − x′)
[

φ̂k(t), π̂k′(t)
]

= iδ (k + k′)
[

â−k , â
+
k′

]

= δ (k − k′)

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2ωk

[

â−k e
−iωkt+ik·x + â+

k e
iωkt−ik·x]

Mode expansions may use anisotropic mode functions vk(t). Isotropic mode ex-
pansions use scalar k instead of vector k because vk ≡ vk for all |k| = k.

φ̂ (x, t) =

∫

d3k

(2π)3/2

1√
2

[

â−k v
∗
k(t)eik·x + â+

k vk(t)e−ik·x]
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C Mode expansions cheat sheet

(Note: the factor
√

2 and the choice of v∗k instead of vk are for consistency with litera-
ture. This could have been chosen differently.)

v−k = vk 6= v∗k; v̈k + ω2
k(t)vk = 0; v̇kv

∗
k − vkv̇

∗
k = 2i

φk(t) =
1√
2

[

a−k v
∗
k(t) + a+

−kvk(t)
]

; πk(t) =
1√
2

[

a−k v̇
∗
k(t) + a+

−kv̇k(t)
]

Here the a±k are time-independent although vk and φk, πk depend on time:

a−k =
1

i
√

2
[v̇k(t)φk(t) − vk(t)πk(t)] ; a+

k =
i√
2

[v̇∗k(t)φ−k(t) − v∗k(t)π−k(t)]

Free scalar field mode functions in the flat space:

vk(t) =
1√
ωk
eiωkt.

Bogolyubov transformations

Note: â±k are defined by vk(η) and b̂±k are defined by uk(η).

v∗k(η) = αku
∗
k(η) + βkuk(η); |αk|2 − |βk|2 = 1

b̂−k = αkâ
−
k + β∗

kâ
+
−k, b̂+k = α∗

kâ
+
k + βkâ

−
−k

αk = α−k, βk = β−k

â−k = α∗
kb̂

−
k − β∗

kb̂
+
−k, â+

k = αkb̂
+
k − βkb̂

−
−k
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D Solutions to exercises

Chapter 1

Exercise 1.1 (p. 6)

Given φ(x), the mode φk is

φk =

∫

d3x

(2π)3/2
e−ik·xφ (x) .

Substituting into Eq. (1.9), we get

I =

∫

d3xd3yd3k

(2π)3
eik·(y−x)φ (x)φ (y)

√

k2 +m2.

Therefore

K (x,y) =

∫

d3k

(2π)3
eik·(y−x)

√

k2 +m2.

This integral does not converge and should be understood in the distributional sense
(see Appendix A.1). Compare

∫

d3k

(2π)3
eik·x = δ (x) ;

∫

d3k

(2π)3
keik·x = −i∇δ (x) .

Exercise 1.2 (p. 7)

We substitute the Fourier transform of φ(x) into the integral over the cube-shaped
region,

φL =
1

L3

∫

L3

φ (x) d3x =
1

L3

∫

L3

d3x

∫

d3k

(2π)3/2
eik·xφk.

The integral over d3x can be performed explicitly using the formula

∫ L/2

−L/2

dx eikxx =
2

kxL
sin

kxL

2
≡ f (kx) .

Then the expectation value of φ2
L is

〈

φ2
L

〉

=

∫

d3kd3k′

(2π)3
〈φkφk′〉 f (kx) f (ky) f (kz) f (k′x) f

(

k′y
)

f (k′z) . (D.1)
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D Solutions to exercises

If δφk is the given typical amplitude of fluctuations in the mode φk, then the expecta-
tion value of 〈φkφk′〉 in the vacuum state is

〈φkφk′〉 = (δφk)
2
δ (k + k′) .

So the integral over k,k′ in Eq. (D.1) reduces to a single integral over k,

〈

φ2
L

〉

=

∫

d3k

(2π)3
(δφk)2 [f (kx) f (ky) f (kz)]

2 . (D.2)

The function f(k) is of order 1 for |kL| . 1 but very small for |kL| ≫ 1. Therefore
the integration in Eq. (D.2) selects the vector values k of magnitude |k| . L−1 in all
directions. As a qualitative estimate, we may take δφk to be constant throughout the
effective region of integration in k and obtain

〈

φ2
L

〉

∼
∫

|k|<L−1

d3k (δφk)
2 ∼ k3 (δφk)

2
∣

∣

∣

k=L−1
.

Exercise 1.3 (p. 10)

The problem is similar to the Schrödinger equation with a step-like potential barrier
between two free regions. The general solution in the tunneling region 0 < t < T is

q(t) = A coshΩ0t+B sinh Ω0t. (D.3)

The matching condition at t = 0 selects A = 0 andB = q1ω0/Ω0. The general solution
in the region t > T is

q(t) = q2 sin [ω0(t− T ) + α] .

The constant q2 is determined by the matching conditions at t = T . The values q(T ),
q̇(T ) must match q2 sinα and q2ω0 cosα. Therefore we can find q2 from

q22 = [q(T )]
2

+

[

q̇(T )

ω0

]2

.

Substituting the values from Eq. (D.3), we find

q22 = q21

[

1 +

(

1 +
ω2

0

Ω2
0

)

sinh2 Ω0T

]

. (D.4)

For Ω0T ≫ 1 we can approximate this exact answer by

q2 ≈ q1
exp (Ω0T )

2

√

1 +
ω2

0

Ω2
0

.
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Exercise 1.4 (p. 10)

The “number of particles” is formally estimated using the energy of the oscillator. A
state with an amplitude q0 has energy E = 1

2

(

q̇2 + ω2
0q

2
)

= 1
2q

2
0ω

2
0 . Therefore the

number of particles is related to the amplitude by

n =
q20ω0 − 1

2
. (D.5)

If the oscillator was initially in the ground state, then q1 = ω
−1/2
0 and Eq. (D.4) gives

n =
1

2

(

1 +
ω2

0

Ω2
0

)

sinh2 Ω0T.

There are no produced particles if T = 0; the number of particles is exponentially
large in Ω0T .

Exercise 1.5 (p. 11)

To find the strongest currently available electric field, one can perform an Internet
search for descriptions of Schwinger effect experiments. The electric field of strongest
lasers available in 2003 was ∼ 1011V/m. There is a proposed X-ray laser experiment
where the radiation is focused, yielding peak fields of order 1017–1018V/m. (See A.
Ringwald, Phys. Lett. B510 (2001), p. 107; also arxiv.org/abs/hep-ph/0103185
on the Web.)

Rewriting Eq. (1.13) in the SI units, we get

P = exp

(

−mec
3

~eE

)

.

The result for the electric field of a laser, E = 1011V/m, is

P ≈ exp

(

−
(

9.11 · 10−31
)2 (

3.00 · 108
)3

(1.05 · 10−34) (1.60 · 10−19) (1011)

)

∼ e−107

.

Thus, even a strong laser field gives no measurable particle production. For the pro-
posed focusing experiment, P is between 10−11 and 10−2, and some electrons could
be observed.

Exercise 1.6 (p. 12)

We need to express all quantities in the SI units. The equation T = a/(2π) becomes

kT =
~

c

a

2π
.

Here k ≈ 1.38 · 10−23J/K is Boltzmann’s constant. The boiling point of water is T =
373K. The required acceleration is a ∼ 1022m/s2 which is clearly beyond any practical
possibility.
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D Solutions to exercises

Chapter 2

Exercise 2.1 (p. 14)

We choose the general solution of Eq. (2.7) as

q(t) = A cosω (t− t1) +B sinω (t− t1) .

The initial condition at t = t1 gives A = q1. The final condition at t = t2 gives

B =
q2 − q1 cosω (t2 − t1)

sinω (t2 − t1)
.

The classical trajectory exists and is unique if sinω (t2 − t1) 6= 0. Otherwise we need
to consider two possibilities: either q1 = q2 or not. If q1 6= q2, the value ofB is formally
infinite; this indicates that the action does not have a minimum (there is no classical
trajectory). If q1 = q2, the value ofB remains undetermined (there are infinitely many
classical trajectories).

Exercise 2.2 (p. 17)

The first functional derivative is

δS

δq (t1)
=
∂L

∂q
− d

dt

∂L

∂q̇

∣

∣

∣

∣

q(t1)

= −
[

q̈ (t1) + ω2q (t1)
]

. (D.6)

As expected, it vanishes on-shell. To evaluate the second functional derivative, we
need to rewrite Eq. (D.6) as an integral of some function over time, e.g.

q̈ (t1) + ω2q (t1) =

∫

[

q̈(t) + ω2q(t)
]

δ (t− t1) dt. (D.7)

For an expression of the form
∫

q(t)f(t)dt, the functional derivative with respect to
q (t2) is f (t2). We can rewrite Eq. (D.7) in this form:

q̈ (t1) + ω2q (t1) =

∫

[

δ′′ (t− t1) + ω2δ (t− t1)
]

q(t)dt.

Therefore
δ2S

δq (t1) δq (t2)
= −δ′′ (t2 − t1) − ω2δ (t2 − t1) .

Exercise 2.3 (p. 20)

a) The Hamilton action functional

S [q(t), p(t)] =

∫

[pq̇ −H(p, q)] dt
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is extremized when
δS

δq(t)
= 0,

δS

δp(t)
= 0.

Computing the functional derivatives, we obtain the Hamilton equations [Eq. (2.19)].
When computing δS/δp(t) we did not have to integrate by parts because S does not

depend on ṗ. Therefore the variation δp(t) is not constrained. However, to compute
δS/δq(t) we need to integrate by parts and we obtain a boundary term

p(t)δq(t)|t2t1 ,

which must vanish. Therefore the appropriate extremization problem is to specify
either q (t1) and q (t2) without restricting p(t), or to specify p (t1) = 0 and fix q (t2), or
vice versa.

b) A simple calculation using Eq. (2.19) gives

dH

dt
=
∂H

∂q
q̇ +

∂H

∂p
ṗ = 0.

c) The Hamiltonian H is defined as pq̇ − L where q̇ is replaced by a function of p
that follows from Eq. (2.13). This equation is equivalent to the first of the Hamilton
equations (2.19). Therefore the function pq̇ −H is equal to L on the classical paths.

Exercise 2.4 (p. 21)

We use the identity
[A,BC] = B [A,C] + [A,B]C. (D.8)

Compute first the commutator

[

q̂, p̂2
]

= [q̂, p̂] p̂+ p̂ [q̂, p̂] = 2i~p̂.

Then we obtain
q̂p̂2q̂ − p̂2q̂2 =

[

q̂, p̂2
]

q̂ = 2i~p̂q̂.

Exercise 2.5 (p. 21)

a) See the solution for Exercise 2.4. First we find that

[q̂, p̂n] = i~p̂n−1 + p̂
[

q̂, p̂n−1
]

.

Then we use induction to prove that

[q̂, p̂n] = i~np̂n−1

for n = 1, 2, ... The statement of the problem follows since [q̂, q̂m] = 0.
The analogous relation with p̂ is obtained automatically if we switch q̂ ↔ p̂ and

change the sign of the commutator (i~ to −i~).

221



D Solutions to exercises

b) We can generalize the result of part a) to terms of the form q̂ap̂bq̂c by using
Eq. (D.8),

[

q̂, q̂ap̂bq̂c
]

= i~bq̂ap̂b−1q̂c ≡ i~
∂

∂p
q̂ap̂bq̂c. (D.9)

Here we imply that the derivative ∂/∂p should act only on p̂ where it appears in the
expression; the operator ordering should remain unchanged. To prove Eq. (D.9), it
is enough to demonstrate that for any two terms f (p̂, q̂) and g (p̂, q̂) of this form that
already satisfy Eq. (2.27), the product fg also satisfies this equation.

An analytic function f(p, q) is expanded into a sum of terms of the form ...q̂ap̂bq̂cp̂d...
and the relation of Eq. (D.9) can be generalized to terms of this form. Each term of
the expansion of f (p̂, q̂) satisfies the relation; therefore the sum will also satisfy the
relation.

Exercise 2.6 (p. 22)

Note that q̂ does not commute with dq̂/dt (coordinates cannot be measured together
with velocities). So the time derivative of e.g. q̂3 must be written as

d

dt
q̂3 = q̂2 ˙̂q + q̂ ˙̂qq̂ + ˙̂qq̂2.

It is easy to show that for any operators Â, B̂, Ĥ (not necessarily Hermitian) that
satisfy

∂

∂t
Â = [Â, Ĥ ],

∂

∂t
B̂ = [B̂, Ĥ],

it follows that

∂

∂t
(Â+ B̂) = [Â+ B̂, Ĥ];

∂

∂t
(ÂB̂) =

∂Â

∂t
B̂ + Â

∂B̂

∂t
= [ÂB̂, Ĥ ].

By induction, starting from p̂ and q̂, we prove the same property for arbitrary terms of
the form ...q̂ap̂bq̂cp̂d... and their linear combinations. Any observable A(p, q) that can
be approximated by such polynomial terms will satisfy the same equation [Eq. (2.28)].

Exercise 2.7 (p. 30)

We insert the decomposition of unity,
∫

|q〉 〈q| dq, into the normalization condition
〈p1|p2〉 = δ (p1 − p2) and obtain

δ (p1 − p2) =

∫

〈p1|q〉 〈q|p2〉 dq. (D.10)

Since from our earlier calculations we know that

〈p|q〉 = C exp

(

ipq

~

)

,
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we now substitute this into Eq. (D.10) and find the condition for C,

δ (p1 − p2) = |C|2
∫ +∞

−∞
dq exp

[

i (p1 − p2) q

~

]

= 2π~ |C|2 δ (p1 − p2) .

From this we obtain |C| = (2π~)−1/2. Note that C is defined up to an irrelevant phase
factor.

Chapter 3

Exercise 3.1 (p. 34)

The differential equation
dy

dx
= f(x)y + g(x)

with the initial condition y (x0) = y0 has the following solution,

y(x) = y0 exp

(∫ x

x0

f(x′)dx′
)

+

∫ x

x0

dx′g(x′) exp

(∫ x

x′

f(x′′)dx′′
)

.

The solution for the driven harmonic oscillator is a special case of this formula with
f(x) = −iω and g(x) = J .

Exercise 3.2 (p. 34)

The result follows by simple algebra.

More generally, if Â(t) and B̂(t) are operators satisfying the equation

d

dt
Â = [Â, B̂]

and Â (t0) is a c-number, i.e. Â (t0) = A01̂, then Â(t) = A01̂ for all other t. [This
follows because all derivatives dnÂ/dtn, n ≥ 1, vanish at t = t0.] Therefore it is
enough to compute the commutator [â−(t), â+(t)] at one value of t.

Exercise 3.3 (p. 37)

Compute the matrix element

0 = 〈nout| â−in |0in〉 = 〈nout| â−in

( ∞
∑

k=0

Λk |kout〉
)

;

since â−in = â−out − C and â−out |kout〉 =
√
k |k − 1out〉, we obtain

0 = −CΛn +
√
n+ 1Λn+1.
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D Solutions to exercises

Exercise 3.4 (p. 40)

(a) Expanding q̂ (t1) for t1 ≥ T in the “in” creation and annihilation operators â±in, we
find

q̂ (t1) =
1√
2ω

(

â−ine
−iωt1 + â−ine

−iωt1 + 2Re
(

J0e
−iωt1

))

and then we obtain

〈0in| q̂ (t1) q̂ (t2) |0in〉 =
1

2ω
eiω(t2−t1) +

2

ω
Re
(

J0e
−iωt1

)

Re
(

J0e
−iωt2

)

.

The first term is the expectation value without the external force. The second term
can be written as a double integral of J(t) as required, since

J0 =
i√
2ω

∫ T

0

eiωtJ(t)dt.

(b) To compute this matrix element, we expand q̂ (t1) in the “out” operators â±out

and q̂ (t2) in the “in” operators. Then we need to compute the following matrix ele-
ments:

〈0out| â−out |0in〉 = J0 〈0out|0in〉 ,

〈0out| â−outâ
+
in |0in〉 =

(

1 − |J0|2
)

〈0out|0in〉 .

The final result is

〈0out| q̂ (t1) q̂ (t2) |0in〉
〈0out|0in〉

=
1

2ω
eiω(t2−t1) +

1

2ω
J2

0 e
−iω(t1+t2).

Again, the last term
1

2ω
J2

0 e
−iω(t1+t2)

is rewritten as a double integral as required.

Chapter 4

Exercise 4.1 (p. 41)

From linear algebra it is known that a positive-definite symmetric matrix Mij can be
diagonalized using an orthogonal basis vi

α with positive eigenvalues ω2
α, α = 1, ..., N .

In other words, there exists a nondegenerate matrix viα such that

∑

i

Mijviα = ωαvjα,
∑

i

viαviβ = δαβ .

Here we do not use the Einstein summation convention but write all sums explicitly.
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Transforming qi into a new set of variables q̃α by

qi ≡
∑

α

viαq̃α,

we find that the quadratic form in the action becomes
∑

ij

qiMijqj =
∑

αβij

q̃αviαMijvjβ q̃β =
∑

αβ

ωβδαβ q̃αq̃β =
∑

α

ωαq̃
2
α.

This provides the required diagonalized form of the action.

Exercise 4.2 (p. 43)

We compute the action of the transformed field φ̃(x) after a Lorentz transformation
with a matrix Λµ

ν . Since the determinant of Λ is equal to 1, we may change the vari-
ables of integration d4x to the transformed variables d4x̃ and the Jacobian is 1. The
action [Eq. (4.4)] has two terms, one with φ2 and the other with derivatives of φ. The

field values φ (x) do not change, therefore the integral over d4x̃ of φ̃2 is the same as
the integral in the old coordinates. But the field derivatives ∂µφ change,

∂µφ→ Λν
µ∂νφ.

The action contains the scalar term m2φ2 that does not change, and also the term

ηµν (∂µφ) (∂νφ)

that transforms according to the Lorentz transformation of the field derivatives,

ηµν (∂µφ) (∂νφ) → ηµνΛµ′

µ (∂µ′φ) Λν′

ν (∂ν′φ) .

But the Lorentz transformation leaves the metric unchanged [see Eq. (4.6)]. Therefore
this term in the action is unchanged as well. We obtain the invariance of the action
under Lorentz transformations.

Exercise 4.3 (p. 43)

Solution with explicit variation. From the action of Eq. (4.4) we obtain the varia-
tion δS with respect to a small change δφ(x) of the field, assuming that δφ vanishes at
spatial and temporal infinities:

δS =

∫

d4x
[

ηµν (∂µφ) (∂νδφ) −m2φδφ
]

=

∫

d4x
[

−ηµν (∂ν∂µφ) −m2φ
]

δφ

(the second line follows by Gauss’s theorem). The expression in square brackets must
vanish for the action to be extremized, so the equation of motion is

−ηµν (∂ν∂µφ) −m2φ = −φ̈+ ∆φ−m2φ = 0.
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D Solutions to exercises

Solution with functional derivatives. The equation of motion is δS/δφ = 0. To
compute the functional derivative, we rewrite the action in an explicit integral form
with some function M(x, y),

S [φ] =
1

2

∫

d4xd4yφ(x)φ(y)M(x, y). (D.11)

(The factor 1/2 is for convenience.) Integrating by parts, we find

M(x, y) = −m2δ(x− y) + ηµν ∂

∂xµ

∂

∂yν
δ(x − y). (D.12)

The functional derivative of the action (D.11) is

δS

δφ(x)
=

∫

d4yφ(y)M(x, y).

Substituting M from Eq. (D.12), we find

δS

δφ(x)
= −m2φ(x) − ηµν ∂2

∂xµ∂xν
φ(x)

as required.

Exercise 4.4 (p. 44)

If φ (x) is a real function, then

(φk)
∗

=

∫

d3x

(2π)3/2
eik·xφ (x) = φ−k.

Exercise 4.5 (p. 46)

We use the relations

φ̂k =
1√
2ωk

(

â−k e
−iωkt + â+

−ke
iωkt
)

, π̂k = i

√

ωk

2

(

â+
−ke

iωkt − â−k e
−iωkt

)

.

(Here â±k are time-independent operators.) Then we find

1

2

(

π̂kπ̂−k + ω2
kφ̂kφ̂−k

)

=
ωk

2

(

â−k â
+
k + â+

−kâ
−
−k

)

.

When we integrate over all k, the terms with −k give the same result as the terms
with k. Therefore

Ĥ =

∫

d3k
ωk

2

(

â+
k â

−
k + â−k â

+
k

)

.
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Chapter 5

Exercise 5.1 (p. 59)

The computation is split into three parts: (1) the variation of the determinant
√−g

with respect to gαβ ; (2) the variation of the action with respect to Γλ
ρσ ; (3) the variation

of the action with respect to gαβ .
1. To find the variation of the determinant

√−g, we need to compute the derivative
of g ≡ det gαβ with respect to a parameter. We can use the matrix identity (for finite-
dimensional matrices A)

detA = exp (Tr lnA) .

Choosing A ≡ A(s) as a matrix that depends on some parameter s, we get

d

ds
detA =

d

ds
exp (Tr lnA) = (detA)Tr

(

A−1 dA

ds

)

.

Here A−1 is the inverse matrix. We now set A ≡ gµν (the covariant metric tensor in
some basis) and s ≡ gαβ with fixed α and β. Then

∂g

∂s
≡ ∂g

∂gαβ
= g gµν ∂gµν

∂gαβ
= g gµνδα

µδ
β
ν = g gαβ.

The derivative with respect to components of the inverse matrix gµν is computed
quickly if we recall that the determinant of gµν is g−1:

∂g

∂gαβ
= −g gαβ;

∂
√−g
∂gαβ

= −1

2

√−ggαβ . (D.13)

(Note that
√−g√−g = −g > 0.) We may also consider

√

−g(x′) with fixed x′ to be a
functional of gαβ(x). Its functional derivative is

δ
√

−g(x′)
δgαβ(x)

=
∂
√−g
∂gαβ

δ(x − x′) = −
√−g

2
gαβδ(x− x′).

As a by-product, we also find the spatial derivatives of the determinant:

∂µg = g gαβ,µg
αβ ; ∂µ

√−g =

√−g
2

gαβgαβ,µ. (D.14)

2. To compute δS/δΓλ
ρσ , we rewrite the action as an integral of Γλ

ρσ times some
function. This requires some reshuffling of indices and integrations by parts. For
example,

∫ √−gd4x gαβΓµ
αβ,µ = −

∫

d4xΓλ
ρσ

(√−ggρσ
)

,λ
,

−
∫ √−gd4x gαβΓµ

αµ,β =

∫

d4xΓλ
ρσ(

√−ggρβδσ
λ),β .
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D Solutions to exercises

The functional derivatives of these terms with respect to Γλ
ρσ is read off from these

integrals. The terms bilinear in Γ need to be rewritten twice, with Γλ
ρσ at the first

place or at the second place:

Γµ
αβΓν

µν = Γλ
ρσΓν

λνδ
ρ
αδ

σ
β = Γρ

αβΓλ
ρσδ

σ
λ ,

Γν
αµΓµ

βν = Γλ
ρσΓσ

βλδ
ρ
α = Γσ

αλΓλ
ρσδ

ρ
β .

The functional derivatives of these terms are then computed by omitting Γλ
ρσ from

the above expressions:

δ

δΓλ
ρσ

(∫

Γµ
αβΓν

µν

√−ggαβd4x

)

=
√−ggαβ

(

Γν
λνδ

ρ
αδ

σ
β + Γρ

αβδ
σ
λ

)

,

δ

δΓλ
ρσ

(

−
∫

Γν
αµΓµ

βν

√
−ggαβd4x

)

= −
√
−ggαβ

(

Γσ
βλδ

ρ
α + Γσ

αλδ
ρ
β

)

.

Therefore the equation of motion for Γλ
ρσ is

0 =
δS

δΓλ
ρσ

= −
(√−ggρσ

)

,λ
+ (

√−ggρβδσ
λ),β

+
(

Γν
λνg

ρσ + Γρ
αβg

αβδσ
λ − Γρ

αλg
σα − Γσ

αλg
ρα
)√−g.

It is now convenient to convert the upper indices ρ, σ into lower indices µ, ν by mul-
tiplying both parts by gµρgνσ (before doing this, we rename the mute index ν above
into α). The derivatives of

√−g are found in Eq. (D.14). The common factor
√−g

cancels. We obtain the following equation for Γµ
αβ :

Γα
λαgµν + Γρ

αβgµρgλνg
αβ − Γρ

νλgµρ − Γσ
µλgνσ

=
1

2
gλνg

αβ (2gαµ,β − gαβ,µ) +
1

2
gµνg

αβgαβ,λ − gµν,λ.

This is a complicated (although linear) equation that needs to be solved for Γ. One
way is to separate the terms on both sides by their index symmetry and by their
dependence on gαβ . To make the symmetry in the indices easier to use, we lower the
index µ in Γµ

αβ to obtain the auxiliary quantity Γµ.αβ defined by

Γµ
αβ ≡ gµνΓν.αβ

(the period after ν is merely a typographical separator). Then we find

gλνg
αβΓµ.αβ + gµνg

αβΓβ.λα − (Γµ.νλ + Γν.µλ)

=
1

2
gλνg

αβ (2gαµ,β − gαβ,µ) +
1

2
gµνg

αβgαβ,λ − gµν,λ. (D.15)

Now we note that there are three pairs of terms at each side: terms with free gλν ,
terms with free gµν , and terms without any free (undifferentiated) g. We notice that
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the second and the third pair of terms are symmetric in µ, ν. Therefore the first pair
of terms, which is not symmetric under µ ↔ ν, must match separately:

gλνg
αβΓµ.αβ =

1

2
gλνg

αβ (2gαµ,β − gαβ,µ) .

This equation is obviously solved by

Γµ.αβ =
1

2
(gαµ,β + gβµ,α − gαβ,µ) , (D.16)

and this is equivalent to Eq. (5.20). [Here we identically rewrote

2gαβgαµ,β = gαβ (gαµ,β + gβµ,α) ,

to make Γµ.αβ symmetric in α, β.] Then we need to check that the other two pairs of
terms also cancel. With the above choice of Γµ.αβ we find

Γµ.νλ + Γν.µλ = gµν,λ,

gαβΓβ.λα =
1

2
gαβgαβ,λ.

Therefore Eq. (5.20) is a solution.
Finally, we must show that this solution is unique. If there are two solutions Γµ.αβ

and Γ′
µ.αβ , their differenceDµ.aβ satisfies the homogeneous equation

gλνg
αβDµ.αβ + gµνg

αβDβ.λα − (Dµ.νλ +Dν.µλ) = 0. (D.17)

We need to show that this equation has no solutions except Dµ.αβ = 0 when gαβ is a
non-degenerate matrix. First we antisymmetrize in µ, ν and find gλ[νDµ].αβg

αβ = 0. If

we define dµ ≡ Dµ.αβg
αβ and raise the index λ, we find that dµ satisfies δλ

νdµ = δλ
µdν .

The only solution of this is dµ = 0 (take ν = λ 6= µ to prove this). So the first term
of Eq. (D.17) vanishes. Then we contract Eq. (D.17) with gµν and find gαβDβ.λα = 0.
Therefore Eq. (D.17) is reduced to Dµ.νλ + Dν.µλ = 0. But a tensor Dµ.νλ which
is antisymmetric in the first two indices but symmetric in the last two indices must
necessarily vanish. Therefore the solution Γµ.αβ of Eq. (D.15) is unique.

3. The variation of R
√−g with respect to gαβ is now easy to find. We write

R
√−g = gµνRµν

√−g,

whereRµν is treated as independent of gαβ since it is a combination of the Γ symbols.
Then

δ

δgαβ

(∫

gµνRµν

√−gd4x

)

= Rαβ

√
−g +

∫

gµνRµν
δ
√

−g(x′)
δgαβ(x)

d4x′ =

(

Rαβ − 1

2
gαβR

)√
−g.

The last line gives the required expression.
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D Solutions to exercises

Remark: other solutions. Here we solved for Γµ
αβ straightforwardly by extremizing the

action, without choosing a special coordinate system. Another way to obtain the Einstein
equation is to vary the action directly with respect to gµν ; calculations are very cumber-
some unless one uses a locally inertial coordinate system.

Chapter 6

Exercise 6.1 (p. 64)

Since a(η) depends only on time, ∆a(η) = 0 and

a

(

φ′′ + 2
a′

a
φ′
)

= (aφ)′′ − a′′φ = χ′′ − a′′

a
χ.

The required equation follows.

Exercise 6.2 (p. 64)

We use the spacetime coordinates (x, η) and note that
√−g = a4 and gαβ = a−2ηαβ .

Then

√−gm2φ2 = m2a2χ2,
√−g gαβφ,αφ,β = a2

(

φ′2 − (∇φ)2
)

.

Substituting φ = χ/a, we get

a2φ′2 = χ′2 − 2χχ′ a
′

a
+ χ2

(

a′

a

)2

= χ′2 + χ2 a
′′

a
−
[

χ2 a
′

a

]′
.

The total time derivative term can be omitted from the action, and we obtain the
required expression.

Exercise 6.3 (p. 65)

The standard result dW/dt = 0 follows if we use the oscillator equation to express
ẍ1,2 through x1,2,

d

dt
(ẋ1x2 − x1ẋ2) = ẍ1x2 − x1ẍ2 = ω2x1x2 − x1ω

2x2 = 0.

The solutions x1(t) and x2(t) are linearly dependent if there exists a constant λ such
that x2(t) = λx1(t) for all t. It immediately follows that W [x1, x2] = ẋ1λx1 −x1λẋ1 =
0. Conversely, W [x1, x2] = 0 means that the matrix

(

ẋ1(t) x1(t)
ẋ2(t) x2(t)

)
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is degenerate for each t. Thus, at a fixed time t = t0 there exists λ0 such that x2 (t0) =
λ0x1 (t0) and ẋ2 (t0) = λ0ẋ1 (t0). The solution of the Cauchy problem with initial
conditions x (t0) = λ0x1 (t0), ẋ (t0) = λ0ẋ1 (t0) is unique, one such solution is x2(t)
and another is λ0x1(t), therefore x2(t) = λ0x1(t) for all t.

Exercise 6.4 (p. 68)

We compute the commutation relations between χ̂ (x, η) and π̂ (x, η) using the mode
expansion of Eq. (6.31) and the commutation relations for â±k , to find

[χ̂ (x, η) , π̂ (y, η)] =

∫

d3k

(2π)3
v′kv

∗
k − vkv

′∗
k

2
eik·(x−y).

From the known relation

δ (x − y) =

∫

d3k

(2π)3
eik·(x−y)

it follows that Eq. (6.22) must hold for all k.

Exercise 6.5 (p. 69)

We suppress the index k for brevity and write the normalization condition for u(η),

u∗u′ − uu′∗ = 2i.

Expressing u through v as given, we obtain

(

|α|2 − |β|2
)

(v∗v′ − vv′∗) = 2i.

The required relation follows from the normalization of v(η).

Exercise 6.6 (p. 70)

The relation between the mode functions is

v∗k = αku
∗
k + βkuk.

From the identities vk = v−k, uk = u−k one has α−k = αk, β−k = βk. We use the rela-

tions
(

â−k
)†

= â+
k , α−k = αk, β−k = βk and rewrite the Bogolyubov transformations

as
b̂−k = αkâ

−
k + β∗

kâ
+
−k, b̂+−k = βkâ

−
k + α∗

kâ
+
−k.

Now we solve this system of equations for â−k . Using |αk|2 − |βk|2 = 1, we find

â−k = α∗
kb̂

−
k − β∗

kb̂
+
−k.
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D Solutions to exercises

Exercise 6.7 (p. 70)

First we consider the quantum state of one mode φ̂k. The b-vacuum
∣

∣

(b)0k,−k

〉

is
expanded as the linear combination

∣

∣

(b)0k,−k

〉

=

∞
∑

m,n=0

cmn

∣

∣

(a)mk, n−k

〉

, (D.18)

where the state
∣

∣

(a)mk, n−k

〉

is the result of acting on the a-vacuum state with m

creation operators â+
k and n creation operators â+

−k,

∣

∣

(a)mk, n−k

〉

=

(

â+
k

)m (
â+
−k

)n

√
m!n!

∣

∣

(a)0k,−k

〉

. (D.19)

The unknown coefficients cmn may be found after a somewhat long calculation by
substituting Eq. (D.18) into

(

αkâ
−
k

+ β∗
kâ

+
−k

) ∣

∣

(b)0k,−k

〉

= 0,
(

αkâ
−
−k + β∗

kâ
+
k

) ∣

∣

(b)0k,−k

〉

= 0.

}

(D.20)

Here is a faster and more elegant method. Equation (D.19) implies that the b-
vacuum state is a result of acting on the a-vacuum by a combination of the creation
operators. We denote this combination by f

(

â+
k , â

+
−k

)

where f(x, y) is an unknown

function. Then from Eq. (D.20) we get two equations for f̂ ,

(

αkâ
−
k + β∗

kâ
+
−k

)

f̂
∣

∣

(a)0k,−k

〉

= 0, (D.21)
(

αkâ
−
−k

+ β∗
kâ

+
k

)

f̂
∣

∣

(a)0k,−k

〉

= 0. (D.22)

We know from Exercise 2.5b (p. 21) that the commutator
[

â−
k
, f̂
]

is equal to the

derivative of f̂ with respect to â+
k . Therefore Eq. (D.21) gives

(

αk

∂f̂

∂a+
k

+ β∗
kâ

+
−kf̂

)

∣

∣

(a)0k,−k

〉

= 0.

Since the function f̂ contains only creation operators, it must satisfy

αk

∂f̂

∂a+
k

+ β∗
kâ

+
−kf̂ = 0.

This differential equation has the general solution

f
(

â+
k , â

+
−k

)

= C
(

â+
−k

)

exp

(

−β∗
k

αk

â+
k â

+
−k

)

,
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where C is an arbitrary function of â+
−k. To determine this function, we use Eq. (D.22)

to derive the analogous relation for ∂f/∂a+
−k and find that C must be a constant.

Therefore the b-vacuum is expressed as

∣

∣

(b)0k,−k

〉

= C

∞
∑

n=0

(

−β∗
k

αk

)n
∣

∣

(a)nk, n−k

〉

.

The value of C is fixed by normalization,

〈(b)0k,−k

∣

∣

(b)0k,−k

〉

= 1 ⇒ C =

√

1 − |βk|2

|αk|2
=

1

|αk|
.

Since |βk| < |αk|, the value of C as given above is always real and nonzero. The final
expression for the b-vacuum state is

∣

∣

(b)0k,−k

〉

=
1

|αk|

∞
∑

n=0

(

−β∗
k

αk

)n
∣

∣

(a)nk, n−k

〉

.

The vacuum state
∣

∣

(b)0
〉

is the tensor product of the vacuum states
∣

∣

(b)0k,−k

〉

of all

modes. Since each pair φ̂k, φ̂−k is counted twice in the product over all k, we need to
take the square root of the whole expression:

|0〉 =

[

∏

k

1

|αk|

∞
∑

n=0

(

−β∗
k

αk

)n
(

â+
k â

+
−k

)n

n!

]1/2

|0〉

=
∏

k

1
√

|αk|a
exp

(

− β∗
k

2αk

â+
k â

+
−k

)

|0〉 .

Exercise 6.8 (p. 73)

Similarly to the calculation in Sec. 4.2, we perform a Fourier transform to find

Ĥ =
1

2

∫

d3k
(

χ̂′
kχ̂

′
−k + ω2

k(η)χ̂kχ̂−k

)

.

Now we expand the operators χ̂k through the mode functions and use the identity
vk(η) = v−k(η) and Eq. (6.31). For example, the term χ̂′

kχ̂
′
−k gives

1

2

∫

d3kχ̂′
kχ̂

′
−k =

∫

d3k

4

(

v′∗k â
−
k + v′kâ

+
−k

) (

v′∗k â
−
−k + v′kâ

+
k

)

=

∫

d3k

4

[

v′2k â
+
k â

+
−k + (v′∗k )

2
â−k â

−
−k + |v′k|

2 (
â−k â

+
k + â+

−kâ
−
−k

)

]

.

Since we are integrating over all k, we may exchange k and −k in the integrand. After
some straightforward algebra we obtain the required result.
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Chapter 7

Exercise 7.1 (p. 81)

Using the mode expansion and the commutation relations for â±k , we find

〈0| χ̂ (x, η) χ̂ (y, η) |0〉 = 〈0|
∫

d3k

(2π)3
1

2
eik·(x−y)v∗kvk |0〉

=

∫ ∞

0

k2dk

4π2

∫ 1

−1

d(cos θ)eikL cos θ |vk(η)|2
2

=
1

4π2

∫ ∞

0

k2dk |vk(η)|2 sin kL

kL
.

Exercise 7.2 (p. 86)

We need to compute the mode function v
(in)
k (η) at η > η1 and represent it as a sum

of v
(out)
k and v

(out)∗
k . To simplify the notation, we rename v

(in)
k ≡ vk and v

(out)
k ≡ uk.

The mode function and its derivative vk, v′k need to be matched at points η = 0 and
η = η1. To simplify the matching, we use the ansatz

f(t) = A cosω (t− t0) +
B

ω
sinω (t− t0)

to match f (t0) = A, f ′ (t0) = B. We find for 0 < η < η1,

vk(η) =
1√
ωk

cosΩkη +
i
√
ωk

Ωk
sin Ωkη.

Then the conditions at η = η1 are

vk (η1) =
1√
ωk

cosΩkη1 +
i
√
ωk

Ωk
sin Ωkη1,

v′k (η1) = − Ωk√
ωk

sinΩkη1 + i
√
ωk cosΩkη1.

So for η > η1 the mode function is

vk(η) =
eiωk(η−η1)

√
ωk

[

cosΩkη1 +
i

2

(

ωk

Ωk
+

Ωk

ωk

)

sin Ωkη1

]

+
e−iωk(η−η1)

√
ωk

(

ωk

Ωk
− Ωk

ωk

)

i sinΩkη1
2

=α∗
k

eiωk(η−η1)

√
ωk

+ β∗
k

e−iωk(η−η1)

√
ωk

.

The required expressions for αk and βk follow after a regrouping of the complex ex-
ponentials.
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Exercise 7.3 (p. 88)

The energy density is given by the integral

ε0 = m4
0

∫ kmax

0

4πk2dk
√

m2
0 + k2

∣

∣

∣sin η1
√

k2 −m2
0

∣

∣

∣

2

|k4 −m4
0|

.

For convenience, we introduce the dimensionless variable s ≡ k/m0 and obtain

ε0
m4

0

= 4π

∫ smax

0

s2ds

∣

∣sinA
√
s2 − 1

∣

∣

2

|s2 − 1|
√

1 + s2
, (D.23)

where A ≡ m0η1 ≫ 1 is a dimensionless parameter. The integral in Eq. (D.23) con-
tains the contributions from the intervals 0 < s < 1 and from 1 < s < smax,

ε0
m4

0

= 4π

∫ 1

0

s2ds
sinh2A

√
1 − s2

(1 − s2)
√

1 + s2
+ 4π

∫ smax

1

s2ds
sin2A

√
s2 − 1

(s2 − 1)
√

1 + s2
. (D.24)

The integrand in the first term in Eq. (D.24) is exponentially large for most s,

sinh2A ≈ 1

4
exp(2A),

while the second term gives only a power-law growth in A,

sin2A
√
s2 − 1

s2 − 1
≤ A2, s ≥ 1.

(Note that
∣

∣

sin x
x

∣

∣ ≤ 1 for all x ≥ 0.) This suggests that the first term is the asymptot-
ically dominant one for A ≫ 1. Now we consider the two integrals in Eq. (D.24) in
more detail and obtain their asymptotics for A→ ∞.

1) The first integral in Eq. (D.24) can be asymptotically estimated in the following
way. We rewrite the integrand as a product of quickly-varying and slowly-varying
functions,

4π

∫ 1

0

s2ds
sinh2A

√
1 − s2

(1 − s2)
√

1 + s2

= π

∫ 1

0

ds
[

s2e2A
√

1−s2
] 1 − 2e−2A

√
1−s2

+ e−4A
√

1−s2

(1 − s2)
√

1 + s2
. (D.25)

The quickly-varying expression in the square brackets has the maximum at s = s0
where

s20A =
√

1 − s20 ⇒ s0 ≈ 1√
A

≪ 1.

This maximum gives the dominant contribution to the integral. Near s = s0 the
slowly-varying factor is of order 1 + O

(

A−1
)

and can be neglected in the calculation
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D Solutions to exercises

of the leading asymptotic. By changing the variable s
√
A = u we find

∫ 1

0

s2ds exp
(

2A
√

1 − s2
)

= e2A

∫ 1

0

s2ds e−As2+O(s4)

= A−3/2e2A

∫

√
A

0

u2e−u2

du
(

1 +O
(

A−1
))

=

√
π

4
A−3/2e2A

(

1 +O
(

A−1
))

.

In the last integral we have approximated

∫

√
A

0

u2e−u2

du ≈
∫ ∞

0

u2e−u2

du =

√
π

4
,

since the difference is exponentially small, of order exp
(

− const
A

)

, whereas we have
already neglected terms of order A−1. Therefore the first contribution to ε0 is

m4
0

4

(

π

m0η1

)3/2

e2m0η1

(

1 +O

(

1

m0η1

))

.

2) It remains to prove that the first integral in Eq. (D.24) gives the dominant contri-
bution for A≫ 1. This can be shown by finding an upper bound for the second inte-
gral. We split the range 1 < s < smax into two ranges 1 < s < s1 and s1 < s < smax,
where s1 is the first point after s = 1 where

sinA
√

s21 − 1 = 0.

Then

s1 =

√

1 +
π2

4A2
≈ 1 +

π2

8A2
,

and the integrand can be bounded from above on each of the ranges using

sin2A
√
s2 − 1

s2 − 1
≤ A2,

s2√
1 + s2

< 1 for 0 ≤ s ≤ s1,

sin2A
√

s2 − 1 ≤ 1,
s2

s2 − 1
< 1 +

4A2

π2
for s ≥ s1.

So the integral satisfies the inequalities

∫ smax

1

s2ds
sin2A

√
s2 − 1

(s2 − 1)
√

1 + s2
< A2

∫ s1

1

ds+

(

1 +
4A2

π2

)∫ smax

s1

ds√
1 + s2

= A2 (s1 − 1) +

(

1 +
4A2

π2

)

(

sinh−1 smax − sinh−1 s1
)

<
π2

8
+

(

1 +
4A2

π2

)

ln
(

smax +
√

s2max + 1
)

∼ A2 ln smax, A≫ 1.

Therefore at largeA and fixed smax the contribution of the second integral is subdom-
inant to that of the first integral.
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Exercise 7.4 (p. 92)

We change the variable k |η| = s and express the mode function through the new
function f(s) by

vk(η) ≡
√
sf(s) =

√

k |η|f (k |η|) .

Then the equation for f(s) is the Bessel equation,

s2f ′′ + sf ′ +
(

s2 − n2
)

f = 0, n ≡
√

9

4
− m2

H2
,

with the general solution f(s) = AJn(s) + BYn(s), where A and B are arbitrary con-
stants and Jn, Yn are the Bessel functions. Therefore the mode function vk(η) is

vk(η) =
√

k |η| [AJn (k |η|) +BYn (k |η|)] . (D.26)

The asymptotics of the Bessel functions are known; see e.g. The Handbook of Math-
ematical functions, ed. by M. ABRAMOWITZ and I. STEGUN (National Bureau of Stan-
dards, Washington D.C., 1974):

Jn(s) ∼
{ 1

Γ(n+1)

(

s
2

)n
, s→ 0,

√

2
πs cos

(

s− nπ
2 − π

4

)

, s→ ∞;

Yn(s) ∼
{

− 1
π Γ(n)

(

2
s

)n
, s→ 0,

√

2
πs sin

(

s− nπ
2 − π

4

)

, s→ ∞.

Since by assumption m≪ H , the parameter n is real and n > 0. So the mode function
vk(η) defined by Eq. (D.26) has the following asymptotics:

vk(η) ∼
{

B 1
π 2nΓ(n) (k |η|)

1
2−n

, k |η| → 0,
√

2
π [A cosλ+B sinλ] , k |η| → +∞.

Here we denoted

λ ≡ k |η| − nπ

2
− π

4
.

It is clear that the choice

A =

√

π

2k
, B = −iA

will result in the asymptotic at early times k |η| → ∞ of the form

vk(η) =
1√
k

exp

(

ikη +
inπ

2
+
iπ

4

)

.

This coincides with the Minkowski mode function (up to a phase).
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D Solutions to exercises

Chapter 8

Exercise 8.1 (p. 104)

The coordinates are transformed so that we get the 1-forms

dt = dτ(1 + aξ) cosh aτ + dξ sinh aτ,

dx = dτ(1 + aξ) sinh aτ + dξ coshaτ.

Then we obtain Eq. (8.8) after straightforward algebra.

Exercise 8.2 (p. 111)

We substitute the expression for b̂±Ω into the commutation relation and find

δ(Ω − Ω′) =
[

b̂−Ω , b̂
+
Ω′

]

=

[∫

dω
(

αωΩâ
−
ω + βωΩâ

+
ω

)

,

∫

dω′ (α∗
ω′Ω′ â+

ω′ + β∗
ω′Ω′ â−ω′

)

]

=

∫

dωdω′ (αωΩα
∗
ω′Ω′δ(ω − ω′) − βωΩβ

∗
ω′Ω′δ(ω − ω′))

=

∫

dω (αωΩα
∗
ωΩ′ − βωΩβ

∗
ωΩ′) .

Exercise 8.3 (p. 112)

The function F (ω,Ω) is reduced to Euler’s Γ function by changing the variable u→ t,

t ≡ − iω
a
e−au.

The result is

F (ω,Ω) =
1

2πa
exp

(

i
Ω

a
ln
ω

a
+
πΩ

2a

)

Γ

(

− iΩ
a

)

, ω > 0, a > 0.

We now need to transform this expression taking ω → −ω, but it is not clear whether
to take ln(−ω) = lnω+ iπ or some other phase instead of iπ. To resolve this question,
we need to analyze the required analytic continuation of the Γ function (a detailed
calculation is given in Appendix A.3).

A more direct approach (without using the Γ function) is to deform the contour of
integration in Eq. (8.21). The contour can be shifted downwards by −iπa−1 into the
line u = −iπa−1 + t, where t is real, −∞ < t < +∞ (see Fig. D.1). Then e−au = −e−at

and we obtain

F (ω,Ω) =

∫ +∞

−∞

dt

2π
exp

(

iΩt+
πΩ

a
− iω

a
e−at

)

= F (−ω,Ω) exp

(

πΩ

a

)

.
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0

u
iπa−1

−iπa−1

Figure D.1: The original and the shifted contours of integration for Eq. (D.28) are
shown by solid and dashed lines. The shaded regions cannot be crossed
when deforming the contour at infinity.

It remains to justify the shift of the contour. The integrand has no singularities and,
since the lateral lines have a limited length, it is enough to show that the integrand
vanishes at u → ±∞ − iα for 0 < α < πa−1. At u = M − iα and M → −∞ the
integrand vanishes since

lim
u→−∞−iα

Re

(

iω

a
e−au

)

= − lim
t→−∞

ω

a
e−at sinαa = −∞. (D.27)

At u → +∞ − iα the integral does not actually converge and must be regularized,
e.g. by inserting a convergence factor exp

(

−bu2
)

with b > 0:

F (ω,Ω) = lim
b→+0

∫ +∞

−∞

du

2π
exp

(

−bu2 + iΩu+ i
ω

a
e−au

)

. (D.28)

With this (or another) regularization, the integrand vanishes at u → +∞ − iα as
well. Therefore the contour may be shifted and our result is justified in the sense of
distributions.

Note that we cannot shift the contour to u = −i(π + 2πn)a−1 + t with any n 6= 0
because Eq. (D.27) will not hold. Also, with ω < 0 we will be unable to move the
contour in the negative imaginary direction. The shift of the contour we used is the
only one possible.

Chapter 9

Exercise 9.1 (p. 122)

We need to insert the correct combination of the constants c, G, ~, and k into the
equation. The temperature is derived from the relation of the type ω = a/(2π) where
a = (4M)−1 is the proper acceleration of the observer and ω the frequency of field
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D Solutions to exercises

modes. This relation becomes ω = a/(2πc) in the SI units. The relation between a
and M contains only the constants c and G since it is a classical and not a quantum-
mechanical relation. The Planck constant ~ enters only as the combination ~ω and the
Boltzmann constant k enters as kT . Therefore we find

a =
c4

4GM
, kT = ~ω =

~a

2πc
⇒ T =

~c3

Gk

1

8πM
.

The relation between temperature in degrees and mass in kilograms is

T

1◦K
≈

(

1.05 · 10−34
) (

3.00 · 108
)3

(6.67 · 10−11) (1.38 · 10−23) 8π

(

1kg

M

)

=
1.23 · 1023kg

M
.

Another way to convert the units is to use the Planck units explicitly: the Planck
mass MPl and the Planck temperature TPl are defined by

MPl =

√

~c

G
, kTPl = MPlc

2.

Then we write
T

TPl
=

1

8π

MPl

M

and obtain the above expression for T .
Numerical evaluation gives: T ≈ 6 · 10−8K for M = M⊙ = 2 · 1030kg; T ≈ 1011K

for M = 1015g; and T ≈ 1031K for M = 10−5g.

Exercise 9.2 (p. 122)

(a) The Schwarzschild radius in the SI units is expressed by the formula

R =
2GM

c2
.

The typical wavelength of a photon is

λ =
2π

ω
c =

(2πc)2

a
=

16π2GM

c2
.

Note that the ratio of λ to R is independent of M (this can be seen already in the
Planck units):

λ

R
= 8π2.

(b) The Compton wavelength of a proton is

λ =
2π~

mpc
.
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The proton mass is mp ≈ 1.67 ·10−27kg. Protons are produced efficiently if the typical
energy of an emitted particle,

kT = ~ω =
~c3

8πGM
,

is larger than the rest energy of the proton, mpc
2 = ~ω. The required mass of the BH

is

M =
~c

8πGmp
≈ 1.1 · 1010kg.

The ratio of the Compton wavelength λ to R is (we now use the Planck units, but the
dimensionless ratio is independent of units)

λ

R
=

2π

mp
4πT = 8π2.

Note that this ratio is the same for the massless particles. So the required size of the
black hole is significantly smaller than the size of a proton.

Exercise 9.3 (p. 125)

The loss of energy due to Hawking radiation can be written as

dM

dt
= − 1

BM2
,

where B is a constant. Then the lifetime of a black hole of initial mass M0 is

tL =
BM3

0

3
.

In the SI units, this formula becomes

tL =
G2

~c4
BM3

0

3
.

The dimensionless coefficient B depends on γ, the number of available degrees of
freedom in quantum fields. The order of magnitude of B is estimated as

B =
15360π

γ
∼ 104.

We find tL ∼ 1074s for M = M⊙; tL ∼ 1019s for M = 1015g; tL ∼ 10−41s for M =
10−5g. For comparison, the age of the Universe is of order ∼ 1010 years or ∼ 3 · 1017s;
the Planck time is tPl ≈ 5.4 · 10−44s.

Exercise 9.4 (p. 128)

(a) Here we consider the black hole as a thermodynamical system with a peculiar
equation of state. The results are essentially independent of the details of the Hawk-
ing radiation, of the kinds of particles emitted by the black hole, and of the nature of
the reservoir.
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D Solutions to exercises

Solution 1: elementary consideration of equilibrium. The equilibrium of a black
hole with a reservoir is stable if any small heat exchange causes a reverse exchange.
It is intuitively clear that in the equilibrium state the temperatures of the black hole
TBH and of the reservoir Tr must be equal. Suppose that initially Tr = TBH and the
black hole absorbs an infinitesimal quantity of heat, δQ > 0, from the reservoir. Then
the mass M of the black hole will increase by δM = δQ and the temperatures will
change according to

δTr = − 1

Cr
δQ, δTBH = δ

1

8πM
= − δQ

8πM2
+O

(

δQ2
)

.

This creates a temperature difference

TBH − Tr =

(

1

Cr
− 1

8πM2

)

δQ+O
(

δQ2
)

.

If 0 < Cr < 8πM2, then TBH > Tr and the black hole will subsequently tend to give
heat to the reservoir, restoring the balance. However, for Cr > 8πM2 the created tem-
perature difference is negative, TBH −Tr < 0, and the situation is further destabilized
since the BH will tend to absorb even more heat.

Similarly, if δQ < 0 (heat initially lost by the BH), the resulting temperature differ-
ence will stabilize the system when Cr < 8πM2. Therefore a BH of mass M can be in
a stable equilibrium with the reservoir at TBH = Tr only if the heat capacity Cr of the
reservoir is positive and not too large, 0 < Cr < 8πM2.

Solution 2: maximizing the entropy. This is a more rigorous thermodynamical
consideration. If a black hole is placed inside a closed reservoir, the total energy of
the system is constant and the stable equilibrium is the state of maximum entropy.
Let the heat capacity of the reservoir be Cr (Tr), a known function of the reservoir
temperature Tr. We shall determine the energyEr and the entropy Sr of the reservoir
which maximize the entropy.

If the reservoir absorbs an infinitesimal quantity of heat δQ, the first law of thermo-
dynamics yields

δQ = dEr = Cr (Tr) dTr = TrdSr.

Therefore

Er (Tr) =

∫ Tr

0

Cr(T )dT, Sr (Tr) =

∫ Tr

0

Cr(T )

T
dT.

The entropy of a black hole with mass M is

SBH = 4πM2 =
1

16πT 2
BH

and the energy of the BH is equal to its mass,

EBH = M =
1

8πTBH
.
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This indicates a negative heat capacity,

CBH(T ) =
dEBH

dT
= − 1

8πT 2
.

Now we have the following thermodynamical situation: two systems with temper-
atures T1 and T2 and heat capacities C1 (T1) and C2 (T2) are in thermal contact and
the combined energy is constant, E1 (T1) +E2 (T2) = const. We need to find the state
which maximizes the combined entropy S = S1 (T1)+S2 (T2). This problem is solved
by standard variational methods. The energy constraint gives T2 as a function of T1

such that
dT2 (T1)

dT1
= −C1 (T1)

C2 (T2)
.

The extremum condition dS/dT1 = 0 gives

dS

dT1
=
C1 (T1)

T1
+
C2 (T2)

T2

dT2

dT1
=

(

1

T1
− 1

T2

)

C1 (T1) = 0.

Therefore T1 = T2 is a necessary condition for the equilibrium. The equilibrium is
stable if d2S/dT 2

1 < 0 which yields the condition

d2S

dT 2
1

∣

∣

∣

∣

T1=T2

=
d

dT1

(

1

T1
− 1

T2

)

C1 (T1) = −C1

C2

C1 + C2

T 2
1

< 0.

Usually heat capacities are positive and the thermal equilibrium is stable. However,
in our case C1 = CBH < 0. Therefore the equilibrium is stable if and only if 0 < C2 =
Cr < |CBH |. The condition for this is

0 < Cr <
1

8πT 2
BH

= 8πM2.

We find that the equilibrium is stable only if the reservoir has a certain finite heat
capacity. A combination of a BH and a sufficiently large reservoir is unstable.

(b) The heat capacity of a radiation-filled cavity of volume V is

Cr (Tr) = 4σV T 3
r .

In equilibrium, Tr = TBH = T . The stability condition gives

Cr = 4σV T 3 <
1

8πT 2
⇒ V < Vmax =

1

32πσT 5
.

A black hole cannot be in a stable equilibrium with a reservoir of volume V larger
than Vmax.
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Chapter 10

Exercise 10.1 (p. 130)

a) We start with the normalization factor
√

2/L in the mode expansion and derive the
commutation relation. We integrate the mode expansion over x and use the identity
of Eq. (10.4) to get

∫ L

0

dx φ̂(x, t) sinωnx =
1

2

√

L

ωn

[

â−n e
−iωnt + â+

n e
iωnt

]

.

Then we differentiate this with respect to t and obtain

∫ L

0

dx′ π̂(y, t) sinωnx
′ =

i

2

√

Lωn

[

−â−n e−iωnt + â+
n e

iωnt
]

.

Now we can evaluate the commutator
[

∫ L

0

dx φ̂(x, t) sinωnx,

∫ L

0

dy
d

dt
φ̂(x′, t) sinωn′x′

]

= i
L

2

[

â−n , â
+
n′

]

=

∫ L

0

dx

∫ L

0

dx′ sin
nπx

L
sin

n′πx′

L
iδ(x− x′) = i

L

2
δnn′ .

In the second line we used
[

φ̂(x, t), π̂(x′, t)
]

= iδ(x − x′). Therefore the standard

commutation relations hold for â±n .
b) The Hamiltonian for the field between the plates is

Ĥ =
1

2

∫ L

0

dx





(

∂φ̂(x, t)

∂t

)2

+

(

∂φ̂(x, t)

∂x

)2


 .

The expression 〈0| Ĥ |0〉 is evaluated using the mode expansion above and the rela-
tions

〈0| â−mâ+
n |0〉 = δmn, 〈0| â+

mâ
+
n |0〉 = 〈0| â−mâ−n |0〉 = 〈0| â+

mâ
−
n |0〉 = 0.

The first term in the Hamiltonian yields

〈0| 1

2

∫ L

0

dx

(

∂φ̂(x, t)

∂t

)2

|0〉

= 〈0| 1

2

∫ L

0

dx

[

√

2

L

∞
∑

n=1

sinωnx√
2ωn

iωn

(

−â−n e−iωnt + â+
n e

iωnt
)

]2

|0〉

=
1

L

∫ L

0

dx
∞
∑

n=1

(sinωnx)
2

2ωn
ω2

n =
1

4

∑

n

ωn.
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The second term gives the same result, and we find

〈0| Ĥ |0〉 =
1

2

∞
∑

n=1

ωn.

Chapter 11

Exercise 11.1 (p. 140)

The propagator was found in the text to be

K (qf,q0; tf − t0) = lim
∆t→0

∫

dpf

2π~

n
∏

k=1

dpkdqk
2π~

× exp

[

i∆t

~

n
∑

k=0

(

pk+1
qk+1 − qk

∆t
−H (pk+1, qk)

)

]

.

When H(p, q) is of the form (11.8), we can integrate separately over each pk+1 using
the given Gaussian formula in which we set a ≡ i∆t/m~ and b = (qk+1 − qk) /~:

∫

dpk+1

2π~
exp

[

i∆t

~

(

pk+1
qk+1 − qk

∆t
−H (pk+1, qk)

)]

=

√
m√

2πi~∆t
exp

[

− i∆t
~
V (qk) −m

(qk+1 − qk)
2

2i~∆t

]

.

This integration is performed (n+ 1) times over pk+1 for k = 0, ..., n. Replacing

(qk+1 − qk)
2

∆t
= q̇2∆t+O

(

∆t2
)

,

we get the following expression under the exponential,

i

~

(m

2
q̇2 − V (q)

)

∆t.

Therefore we obtain the required path integral (11.10) and the measure (11.11).

Exercise 11.2 (p. 140)

In the case of a time-dependent Hamiltonian, the evolution operator Û (tf , t0) can still
be expressed as a product of evolution operators for time intervals,

Û (tf , t0) = Û (tf , tn) Û (tn, tn−1) ...Û (t1, t0) ,
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D Solutions to exercises

although these operators do not commute. The propagator can be rewritten as an
n-fold integration over qk as in Eq. (11.2). The evolution throughout a short time
interval ∆tk is approximated as

Û (tk+1, tk) = 1 − i∆tk
~

Ĥ (p̂, q̂, tk) +O
(

∆t2k
)

,

since any corrections due to time dependence of Ĥ will be of higher order in ∆t. Then
the derivation of the path integral proceeds as in the chapter.

Chapter 12

Exercise 12.1 (p. 142)

The general solution of an inhomogeneous equation such as Eq. (12.5) is a sum of a
particular solution and the general solution of the homogeneous equation. We need
to use the boundary conditions to select the correct solution.

Elementary solution. For t 6= t′, i.e. separately in the two domains t > t′ and t < t′,
the Green’s function satisfies the homogeneous equation

(

∂2

∂t2
+ ω2

)

Gret(t, t
′) = 0.

The general solution is
Gret(t, t

′) = A sinω(t− α),

where A and α are constants that are different for t > t′ and for t < t′. So we may
write

Gret(t, t
′) =

{

A− sinω (t− α−) , t < t′

A+ sinω (t− α+) , t > t′

= A− sinω (t− α−) θ(t′ − t) +A+ sinω (t− α+) θ(t− t′).

The boundary condition Gret(t, t
′) = 0 for t < t′ forces A− = 0. Therefore by con-

tinuity Gret(t
′, t′) = 0 and α+ = t′. To find A+, we integrate Eq. (12.5) over a small

interval of t around t′ and obtain:

∫ t′+∆t

t′−∆t

[

∂2Gret

∂t2
+ ω2Gret

]

dt =

∫ t′+∆t

t′−∆t

δ(t− t′)dt = 1.

For small ∆t → 0 this gives

lim
t→t′+0

∂G

∂t
− lim

t→t′−0

∂G

∂t
= 1.

Therefore A+ = ω−1 and we find the required solution.
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Solution using Fourier transforms. A Fourier transform of Eq. (12.5) gives the
Fourier image g(Ω),

g(Ω) =

∫ +∞

−∞
dtGret(t, t

′)e−iΩ(t−t′).

The function g(Ω) must satisfy the equation

g(Ω)
(

ω2 − Ω2
)

= 1. (D.29)

Here g(Ω) should be treated as a distribution (see Appendix A.1). The general solu-
tion of Eq. (D.29) in the space of distributions is

g(Ω) = P 1

ω2 − Ω2
+ a+δ(ω − Ω) + a−δ(ω + Ω), (D.30)

where P denotes the Cauchy principal value and a± are unknown constants.
The general form of Green’s function with arbitrary constants corresponds to the

freedom of choosing a solution of the homogeneous equation. The values a± must
be determined from the boundary condition Gret(t, t

′) = 0 for t < t′. The inverse
Fourier transform of Eq. (D.30) gives

Gret(t, t
′) =

1

2π

∫ +∞

−∞
dΩeiΩ(t−t′)g(Ω)

=
1

2π

[

P
∫ +∞

−∞

eiΩ(t−t′)

ω2 − Ω2
dΩ + a+e

iω(t−t′) + a−e
−iω(t−t′)

]

.

This expression confirms our expectation that the terms with a± represent the as-
yet unspecified solution of the homogeneous oscillator equation. Now the principal
value integral is computed using contour integration. For t < t′ the contour must be
deformed into the lower half-plane ImΩ < 0 while for t > t′ one must use the upper
half-plane. We find

1

2π
P
∫ +∞

−∞

eiΩ(t−t′)

ω2 − Ω2
dΩ = sign(t− t′)

sinω(t− t′)

2ω
=

1

2ω
sinω |t− t′| .

To satisfy the boundary conditions, the constants must be chosen as

a± = ± π

2iω
(D.31)

and then we obtain

Gret(t, t
′) = θ(t− t′)

sinω(t− t′)

ω
. (D.32)

Exercise 12.2 (p. 145)

An elementary solution (without using Fourier transforms) can be found similarly to
Exercise 12.1.
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D Solutions to exercises

Solution using Fourier transforms. Performing a Fourier transform of Eq. (12.15),
we obtain the equation

g(Ω)
(

ω2 + Ω2
)

= 1

for the Fourier image g(Ω) defined by

g(Ω) =

∫ +∞

−∞
dτ GE(τ, τ ′)e−iΩ(τ−τ ′). (D.33)

Here we have already assumed that the Green’s functionGE(τ, τ ′) tends to zero at large
|τ | because otherwise the Fourier transform (D.33) would not exist. We obtain

g(Ω) =
1

Ω2 + ω2

and the inverse Fourier transform presents no special problems since there are no
poles on the real Ω line,

GE(τ, τ ′) =
1

2π

∫ +∞

−∞
dΩeiΩ(τ−τ ′)g(Ω) =

1

2π

∫ +∞

−∞
dΩ

eiΩ(τ−τ ′)

Ω2 + ω2
.

The integral is evaluated using contour integration and yields the answer (12.14). The
boundary condition GE(τ → ±∞, τ ′) = 0 is satisfied automatically.

Exercise 12.3 (p. 153)

According to the approach explained in the text, we expect to find the in-out matrix
element by considering the ratio of the path integrals

∫

a+(t)a−(t)eiS[q,J]Dq
∫

eiS[q,J]Dq (D.34)

and by replacing the Feynman Green’s function GF (t, t′) by the retarded Green’s
function Gret(t, t

′) in the effective action. To compute the path integrals in Eq. (D.34),
consider the action

S
[

q, J+, J−] =

∫ (

1

2
q̇2 − ω2

2
q2 + J+a+ + J−a−

)

dt,

where J+(t) and J−(t) are two external forces. This action is real-valued since J− =
(J+)

∗
. The Lorentzian effective action is

exp
(

iΓL

[

J+, J−]) =

∫

Dq eiS[q,J+,J−],

where the integration is over all paths q(t) satisfying q(t→ ±∞) = 0, as in the text. If
we compute this effective action, the path integral ratio of Eq. (D.34) will be

exp [−iΓL]
δ

iδJ+(t)

δ

iδJ−(t)
exp [iΓL] . (D.35)
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We express a± through q and q̇ as

a+(t) =

√

ω

2

(

q(t) − i

ω
q̇(t)

)

,

a−(t) =

√

ω

2

(

q(t) +
i

ω
q̇(t)

)

.

Then after integrations by parts we obtain

∫

(

J+a+ − J−a−
)

dt =

∫
√

ω

2

(

J+ +
i

ω

dJ+

dt
+ J− − i

ω

dJ−

dt

)

q(t)dt,

and therefore the Lorentzian effective action can be copied from the text,

ΓL [J ] =
1

2

∫∫

J (t1)J (t2)GF (t1, t2) dt1dt2, (D.36)

if we use for J(t) the expression

J(t) =

√

ω

2

(

J+ +
i

ω

dJ+

dt
+ J− − i

ω

dJ−

dt

)

. (D.37)

Now we should substitute Eq. (D.36) into Eq. (D.35), using J(t) given by Eq. (D.37),
and then replaceGF byGret. Then we will find the required matrix element according
to the recipe presented in the text.

First, the expression (D.35) is simplified to

δΓL

δJ+(t)

δΓL

δJ−(t′)
− i

δ2ΓL

δJ+(t)δJ−(t′)
.

The functional derivatives are evaluated like this,

δΓL

δJ+(t)
=

∫

dt̃
δΓL [J ]

δJ
(

t̃
)

δJ
(

t̃
)

δJ+(t)
.

Using Eq. (D.36) and the fact that GF (t, t′) is a symmetric function of t and t′, we find

δΓL

δJ(t)
=

∫

J (t1)GF (t, t1) dt1.

To compute the functional derivative δJ/δJ+, we write J as a functional of J+ in an
integral form:

J
(

t̃
)

=

∫

J+(t)

√

ω

2

[

δ
(

t− t̃
)

− i

ω
δ′
(

t− t̃
)

]

dt+ c.c.

where we denoted the complex conjugate terms with J− = (J+)
∗

by “c.c.”. Then

δJ
(

t̃
)

δJ+(t)
=

√

ω

2

[

δ
(

t− t̃
)

− i

ω
δ′
(

t− t̃
)

]

,
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and we obtain

δΓL

δJ+(t)
=

√

ω

2

∫

dt1J (t1)

[

GF (t, t1) −
i

ω

∂

∂t
GF (t, t1)

]

.

Now replacing GF by Gret and simplifying

Gret (t, t1) −
i

ω

∂

∂t
Gret (t, t1) = θ (t− t1)

eiω(t−t1)

iω
,

we get

δΓL

δJ+(t)
= − i√

2ω

∫ T

0

dt1J (t1) e
iωt1 ≡ −J0.

The functional derivative δΓL/δJ
−(t) is the complex conjugate of this expression, so

δΓL

δJ+(t)

δΓL

δJ−(t)
= |J0|2 .

The second functional derivative

δ2ΓL

δJ+ (t1) δJ− (t2)

gives terms independent of J because ΓL [J ] is a quadratic functional of J . But the
expectation value we are computing cannot have any terms independent of J since
it should be equal to 0 when J ≡ 0. Therefore any terms we get from this functional
derivative are spurious and we ignore them. Note that one of the ignored terms is
proportional to δ (t1 − t2) and would diverge for t1 = t2.

Finally, we obtain

〈0in| â+(t)â−(t) |0in〉 = |J0|2 .
This agrees with the answer obtained in Eq. (3.12).

Chapter 14

Exercise 14.1 (p. 173)

We omit the trivial term −V (x)δ(x − x′) from M̂ , compute the generalized function
g1/4�g(x)g

−1/4δ(x − x′) and substitute gαβ = δαβ + hαβ into the result. Denoting
∂µ ≡ ∂/∂xµ and suppressing the arguments of δ(x − x′) for brevity, we find

∂µ

(

g−1/4δ
)

=g−1/4

(

δ,µ − 1

4
(ln g),µδ

)

,

g−1/4∂ν

[

gµν√g∂µ

(

g−1/4δ
)]

=gµν

(

δ,µ − 1

4
(ln g),µδ

)

,ν

+

(

gµν
,ν +

1

4
gµν(ln g),ν

)(

δ,µ − 1

4
(ln g),µδ

)

.
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This expression splits into terms with different orders of derivatives of δ(x − x′).
The derivatives of gαβ are replaced with the derivatives of hαβ , but otherwise we
keep gαβ . (Therefore we do not actually need to make any approximations in this
calculation and in particular do not need to assume that hαβ is small.) The term with
the second derivative is

gµνδ,µν = δµν∂µ∂νδ(x − x′) + hµν∂µ∂νδ(x− x′).

This corresponds to the operator expression � + ĥ. The term with the first derivative
of δ is

−1

4
gµν(ln g),µδ,ν + gµν

,ν δ,µ +
1

4
gµν(ln g),νδ,µ = hµν

,µ δ,ν .

This corresponds to the operator Γ̂. Finally, the term without derivatives of δ(x − x′)
is P (x)δ(x − x′), where

P (x) = − 1

4
gµν(ln g),µν − 1

4

(

gµν
,ν +

1

4
gµν(ln g),ν

)

(ln g),µ

= − 1

4
gµνgαβhαβ,µν − 1

4
gµνhαβ

,µ hαβ,ν

− 1

4
hµν

,ν g
αβhαβ,µ − 1

16
gµνgαβgκλhαβ,µhκλ,ν .

Here we substituted
(ln g),µ = gαβgαβ,µ = gαβhαβ,µ.

It remains to add the omitted term −V (x)δ(x − x′) to P̂ to obtain the required result.

Exercise 14.2 (p. 176)

Rewrite the argument of the exponential as a complete square,

−A |x − a|2 −B |x − b|2 + 2c · x
= −(A+B) |x|2 + 2x · (Aa +Bb + c) −

(

Aa2 +Bb2
)

≡ −(A+B) |x − p|2 +Q.

Here we introduced the auxiliary vector p and the constant Q:

p ≡ Aa +Bb + c

A+B
, Q ≡ (A+B)p2 −

(

Aa2 +Bb2
)

.

The Gaussian integration yields the required expression:

∫

d2ωx exp
[

−(A+B) |x − p|2 +Q
]

=
πω exp [Q]

(A+B)ω
,

Q = − AB

A+B
|a − b|2 + 2c · Aa +Bb

A+B
+

|c|2
A+B

.
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Exercise 14.3 (p. 177)

Following the method used in the text for the calculation of 〈x| K̂Γ
1 |y〉, we find

〈x| K̂h
1 (τ) |y〉 =

∂2

∂yµ∂yν
〈x| K̂P

1 (τ) |y〉
∣

∣

∣

∣

P (z)→hµν (z)

.

Now we use Eq. (14.16) to evaluate the second derivative and then substitute y = x.
We find

∂2

∂yµ∂yν

∣

∣

∣

∣

y=x

exp

[

− (x− y)2

4τ

]

= −δµν

2τ
,

∂2

∂yµ∂yν

∣

∣

∣

∣

y=x

hµν

(

x+
τ − τ ′

τ
(y − x)

)

=

(

τ − τ ′

τ

)2

hµν
,µν .

The terms with first derivatives are proportional to (xµ − yµ) and vanish in the limit
y → x. Therefore we obtain the required expression.

Exercise 14.4 (p. 178)

Note that hµν = −hαβg
µαgνβ + O(h2) and since we may omit terms of order O(h2),

we can convert covariant components hµν to contravariant hµν by a change of sign.
The first required identity is derived by

∂
√
g

∂gµν
= −1

2

√
ggµν ⇒

√

det (δµν + hµν) = 1 − 1

2
δµνh

µν +O
(

h2
)

.

Expanding the metric according to Eq. (14.1), we get

Γν
αβ =

1

2
gµν (hαµ,β + hβµ,α − hαβ,µ) ,

gαβ∂νΓν
αβ = δαβδµν

(

hαµ,βν − 1

2
hαβ,µν

)

+O(h2),

gαβ∂βΓν
αν =

1

2
δαβδµνhµν,αβ +O(h2).

Using Eq. (5.19), we compute the scalar curvature as

R = gαβ∂νΓν
αβ − gαβ∂βΓν

αν +O(h2)

= δαβδµν (hαµ,βν − hαβ,µν) +O(h2)

= −δαβδµν

(

hαµ,βν − hαβ,µν
)

+O(h2)

= δαβ�hαβ − hµν
,µν +O(h2).

Here we have used the relation gαβ = δαβ +O(h).
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Exercise 14.5 (p. 180)

The required values are found by computing the following limits:

f1(0) = lim
ξ→0

∫ 1

0

e−ξu(1−u)du = 1;

lim
ξ→0

f1(ξ) − 1

ξ
=
df1
dξ

∣

∣

∣

∣

ξ=0

= −
∫ 1

0

u(1 − u)du = −1

6
;

lim
ξ→0

f1(ξ) − 1 + 1
6ξ

ξ2
=

1

2

d2f1
dξ2

∣

∣

∣

∣

ξ=0

=
1

2

∫ 1

0

u2(1 − u)2du =
1

60
.

Chapter 15

Exercise 15.1 (p. 186)

The task is to compute the integral

I0 ≡ 1

32

∫ ∞

0

dx

(

f1(x) + 4
f1(x) − 1

x
+ 12

f1(x) − 1 + 1
6x

x2

)

=
1

12
,

where the function f1(x) is defined by

f1(x) ≡
∫ 1

0

dt e−xt(1−t).

Since
∫ 1

0

t(1 − t)dt =
1

6
,

we may rewrite I0 as

I0 =
1

32

∫ ∞

0

dx

∫ 1

0

dt

(

e−xt(1−t) + 4
e−xt(1−t) − 1

x
+ 12

e−xt(1−t) − 1 + xt(1 − t)

x2

)

.

It is impossible to exchange the order of integration because of the nonuniform con-
vergence of the double integral at large x. Therefore we add a regularization factor
e−ax with a > 0 and evaluate the limit a→ 0 at the end of the calculation,

I0 = lim
a→0

1

32

∫ 1

0

dt

∫ ∞

0

dx e−ax

(

e−xt(1−t) + 4
e−xt(1−t) − 1

x

+12
e−xt(1−t) − 1 + xt(1 − t)

x2

)

.
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Denote q ≡ t(1 − t). The integration over x can be performed using the auxiliary
integrals

I1(a, q) ≡
∫ ∞

0

dx e−ax e
−qx − 1

x
= ln

a

a+ q
,

I2(a, q) ≡
∫ ∞

0

dx e−ax e
−qx − 1 + qx

x2
= −q − (a+ q) ln

a

a+ q
.

The functions I1,2(a, q) are easily found by integrating the equations

∂I1
∂q

= − 1

a+ q
, I1 (a, q = 0) = 0;

∂I2
∂q

= −I1(a, q), I2 (a, q = 0) = 0.

Then we express the integral I0 as

I0 =
1

32
lim
a→0

∫ 1

0

dt

(

1

a+ t(1 − t)
+ 4 ln

a

a+ t(1 − t)

+12 (a+ t(1 − t)) ln
a

a+ t(1 − t)
− 12t(1 − t)

)

.

The last integral is elementary although rather cumbersome to compute. While per-
forming this last calculation, it helps to decompose

a+ t(1 − t) = (a1 − t) (t− a2) , a1,2 ≡ 1

2
±
√

1

4
+ a.

The limit a→ 0 should be performed after evaluating the integral. The result is

I0 =
1

32
lim
a→0

[

8

3
− 16a− 32a2 ln a+ o

(

a2
)

]

=
1

12
.

Exercise 15.2 (p. 188)

In this and the following exercise, the symbol δgµν stands for the variation of the
contravariant metric gµν . Since gανg

αµ = δµ
ν , we have

0 = δ (gανg
αµ) = gανδg

αµ + gαµδgαν .

Thus the variation δgµν of the covariant tensor gµν is

δgµν = −gαµgβνδg
αβ .

(a) First we prove that the variation δΓα
µν of the Christoffel symbol is a tensor quan-

tity even though Γα
µν itself is not a tensor. Indeed, the components

Γα
µν =

1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν)
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change under a coordinate transformation according to a non-tensor law

Γ′α
µν =

∂x′α

∂xβ

∂xρ

∂x′µ
∂xσ

∂x′ν
Γβ

ρσ +
∂x′α

∂xβ

∂2xβ

∂x′µ∂x′ν
. (D.38)

However, it follows from Eq. (D.38) that the variation δΓα
µν transforms as

δΓ′α
µν =

∂x′α

∂xβ

∂xρ

∂x′µ
∂xσ

∂x′ν
δΓβ

ρσ

and is therefore a third rank tensor.
We can always choose a locally inertial frame such that Γ̃α

µν (x) = 0 at a given
spacetime point x. In that frame, the covariant derivative coincides with the ordinary

derivative, i.e. ∇̃µ = ∂̃µ, where the tilde means that the quantities are computed in

the locally inertial frame at point x. Then the variation of the Christoffel symbol Γ̃α
µν

is

δΓ̃α
µν =

1

2
δg̃αβ

(

∂̃µg̃βν + ∂̃ν g̃βµ − ∂̃β g̃µν

)

+
1

2
gαβ

(

∂̃µδg̃βν + ∂̃νδg̃βµ − ∂̃βδg̃µν

)

=
1

2
gαβ

(

∂̃µδg̃βν + ∂̃νδg̃βµ − ∂̃βδg̃µν

)

=
1

2

(

∇̃µδg̃βν + ∇̃νδg̃βµ − ∇̃βδg̃µν

)

(D.39)

because in the locally inertial frame we have

∂̃µg̃βν + ∂̃ν g̃βµ − ∂̃β g̃µν = Γ̃α
µν g̃αβ = 0.

Since the last expression in Eq. (D.39) involves explicitly tensorial quantities, the ten-
sor δΓα

µν is equal to

δΓα
µν =

gαβ

2
(∇µδgβν + ∇νδgβµ −∇βδgµν) ≡ gαβ

2
(δgβµ;ν + δgβν;µ − δgµν;β) (D.40)

in all coordinate systems. (Here is a more rigorous argument: We first consider the
tensor (D.40) which happens to coincide with Eq. (D.39) in a particular coordinate sys-
tem and only at the point x. However, two tensors cannot coincide in one coordinate
frame but differ in another frame. Therefore the tensor δΓα

µν(x) is given by Eq. (D.40)
in all coordinate systems. Since the construction is independent of the chosen point
x, it follows that the formula (D.40) is valid for all x.)

Note that an explicit formula for the covariant derivative ∇βδgµν is

∇βδgµν = ∂βδgµν − Γα
βνδgαµ − Γα

βµδgαν .

The trick of choosing a locally inertial frame helps us avoid cumbersome computa-
tions with such expressions.

(b) Since
�g�

−1
g = 1̂,
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D Solutions to exercises

we have
0 = δ

(

�g�
−1
g

)

= �g

(

δ�−1
g

)

+ (δ�g)�−1
g

and hence
δ
(

�−1
g

)

= −�−1
g (δ�g)�−1

g . (D.41)

The covariant Laplace operator �g acting on a scalar function φ (x) is

�gφ ≡ gµν∇µ∇νφ = gµνφ;µν = gµν
(

φ,µν − Γα
µνφ,α

)

.

The variation of this expression with respect to δgµν is

δ�gφ = (δgµν)φ;µν + gµνδ
[

φ,µν − Γα
µνφ,α

]

= (δgµν)φ;µν − gµν
(

δΓα
µν

)

φ,α.

This can be rewritten as an operator identity

δ�g = (δgµν)∇µ∇ν − gµν
(

δΓα
µν

)

∇α. (D.42)

We emphasize that this identity holds only when the operators act on a scalar function
φ(x). For vector- or tensor-valued functions, the formula would have to be modified.

(c) To derive
δRα

βµν = ∇µδΓ
α
βν −∇νδΓ

α
µβ , (D.43)

we again pass to a locally inertial frame in which Γ̃α
µν = 0 and ∇̃µ = ∂̃µ. Then the

Riemann tensor (in the Landau-Lifshitz sign convention) is

R̃α
βµν = ∂̃µΓ̃α

βν − ∂̃νΓ̃α
µβ . (D.44)

Note that the RHS of this expression is not a tensor. Varying both hand sides of the
relation (D.44), we obtain

δR̃α
βµν = ∂̃µδΓ̃

α
βν − ∂̃νδΓ̃

α
µβ = ∇̃µδΓ̃

α
βν − ∇̃νδΓ̃

α
µβ . (D.45)

Note that both sides of Eq. (D.45) are written in an explicitly covariant form and are
tensors. Therefore Eq. (D.45) holds in all coordinate systems and Eq. (D.43) follows.

Exercise 15.3 (p. 188)

Here we derive the energy-momentum tensor

〈Tµν〉 =
2√−g

δΓL

δgµν

corresponding to the (Lorentzian) Polyakov effective action

ΓL[gµν ] =
1

96π

∫

d2x
√−gR�−1

g R

≡ 1

96π

∫

d2x
√

−g(x)
∫

d2y
√

−g(y)R(x)Gg(x, y)R(y), (D.46)
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where Gg(x, y) is the (retarded) Green’s function of the Laplace operator �g . Recall
that we have

(

�−1
g Φ

)

(x) ≡
∫

d2y
√

−g(y)Gg(x, y)Φ(y),

where Φ is a scalar field, and the Green’s function satisfies

x�gGg(x, y) =
1

√

−g(x)
δ(x − y).

The variation of
√−gR�−1

g R can be written as

1√−g δ
(√−gR�−1

g R
)

=
δ
√−g√−g R�−1

g R+ (δR)�−1
g R+R�−1

g (δR) +R
(

δ�−1
g

)

R

(we have introduced the prefactor 1/
√−g for convenience). This expression is inte-

grated over d2x, while the operator �−1
g is self-adjoint, which entails

∫

d2x
√−g (δR)�−1

g R =

∫

d2x
√−gR�−1

g (δR) .

Thus for our purposes it is sufficient to compute the auxiliary quantity

δI ≡ δ
√−g√−g R�−1

g R+ 2 (δR)�−1
g R+R

(

δ�−1
g

)

R. (D.47)

The EMT is expressed through δI using
∫

d2x
√−g 〈Tµν〉 δgµν =

1

48π
√−g

∫

d2x
√−g δI (x) . (D.48)

Now we shall evaluate the expression (D.47) term by term. The variation of
√−g

is (see Eq. D.13 on p. 227)
δ
√−g√−g = −1

2
gµνδg

µν . (D.49)

In two dimensions, the Ricci tensor Rµν ≡ Rα
µαν is related to the Ricci scalar as

Rµν =
1

2
gµνR,

therefore with help of Eq. (D.43) we get

δR = Rµνδg
µν + gµνδRµν =

1

2
Rgµνδg

µν + ∇α

(

gµνδΓα
µν − gµαδΓν

µν

)

. (D.50)

Using the formula (D.40) and the relation gαβδgβγ = −gβγδg
αβ , we derive the nec-

essary expressions

gµνδΓα
µν = −∇µδg

αµ +
1

2
gµν∇αδgµν ,

gµαδΓν
µν = −1

2
gµν∇αδgµν .

257
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Thus the variation δR is reduced to

δR =
1

2
Rgµνδg

µν + ∇α

(

−∇µδg
αµ +

1

2
gµν∇αδgµν +

1

2
gµν∇αδgµν

)

=

(

1

2
Rgµν −∇µ∇ν + gµν�g

)

δgµν ,

while the variation of the Laplace operator becomes

δ�g = (δgµν)∇µ∇ν +

(

δgαµ
;µ − 1

2
gµνδg

µν;α

)

∇α.

Now we can put all terms in δI together,

δI = − 1

2
gµνδg

µνR�−1
g R+ 2

(

1

2
Rgµνδg

µν − δgµν
;µν + gµν�gδg

µν

)

�−1
g R

−R�−1
g

[

δgµν∇µ∇ν�−1
g R+

(

δgαµ
;µ − 1

2
gµνδg

µν;α

)

∇α�−1
g R

]

.

It is now straightforward to compute the functional derivative (D.48). Keeping in
mind that for arbitrary scalar functions A (x) and B (x) we have

∫

d2x
√−gA�−1

g B =

∫

d2x
√−gB�−1

g A,

and that integration by parts yields for arbitrary tensors X and Y the formula

∫

d2x
√
−gX∇αY = −

∫

d2x
√
−gY∇αX,

we compute (up to a total divergence)

δI

δgµν
=

1

2
gµνR�−1

g R− 2
(

�−1
g R

)

;µν
+ 2gµνR

−
(

�−1
g R

) (

�−1
g R

)

;µν
+
(

(

�−1
g R

)

;ν
�−1

g R
)

;µ
− 1

2
gµν

(

(

�−1
g R

)

;α
�−1

g R
);α

= − 2
(

�−1
g R

)

;µν
+ 2gµνR+

(

�−1
g R

)

;µ

(

�−1
g R

)

;ν
− 1

2
gµν

(

�−1
g R

)

;α

(

�−1
g R

);α
.

Thus the final result is

〈Tµν〉 =
1

48π

{

−2∇µ∇ν�−1
g R+

[

∇ν�−1
g R

] [

∇µ�−1
g R

]

+ 2gµνR− 1

2
gµν

(

∇α�−1
g R

) (

∇α�−1
g R

)

}

,

which coincides with Eq. (15.8).
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Detailed chapter outlines

This section is intended to provide the lecturer with a snapshot of the key ideas of
each chapter.

Part I: Canonical quantization

Chapter 1: Overview. A taste of quantum fields

This first chapter is an introduction and overview. The material of this chapter will
be covered in much more detail later in the text.

The quantum theory of a free field is mathematically equivalent to a theory of in-
finitely many harmonic oscillators (field modes). Quantized fields fluctuate in the
vacuum state and have a nonvanishing energy (zero-point energy). Using the oscil-
lator analogy, we estimate the amplitude of zero-point fluctuations of a scalar field
on a given scale. Vacuum fluctuations of quantum fields have observable, experi-
mentally verified consequences, such as the spontaneous emission in hydrogen, the
Lamb shift, and the Casimir effect.

In quantum field theory, particles are represented by excited quantum states of
field modes. Particle production is a change of occupation numbers in the modes.
“Traditional” QFT considers interacting field theories and requires complicated cal-
culations. The focus of this book is on quantum fields interacting only with strong
classical fields (backgrounds) but not with other quantum fields. The main problem
of interest to us is to understand the behavior of quantum fields in a gravitational
background. Examples of particle production by the gravitational field are the Unruh
effect and the Hawking radiation of black holes.

Chapter 2: Reminder. Classical and quantum mechanics

In classical mechanics, equations of motion are obtained by evaluating functional
derivatives of the action. (We introduce the notion of functional derivative.) Both the
Lagrangian and the Hamiltonian formalisms are reviewed. The Legendre transform
is explained.

Canonical quantization in the Heisenberg picture is applied to a Hamiltonian sys-
tem to yield quantum equations of motion that govern the evolution of quantum
observables such as the coordinate q̂(t) and the momentum p̂(t). The commutation
relation between the operators q̂ and p̂ is the central postulate of canonical quantiza-
tion.

259



Detailed chapter outlines

Quantum operators act on vectors in a Hilbert space. We explain the Dirac notation
(“bra-ket”) and introduce the notion of separable Hilbert space by formalizing the
intuitive idea of a basis in an infinite-dimensional vector space. We consider the basis
{|q〉} of the generalized eigenvectors of the position operator, the analogous basis
{|p〉} for the momentum operator, and compute the matrix elements 〈q| p̂ |q′〉 and
〈p| q〉 using only the canonical commutation relations.

The Schrödinger picture of quantum mechanics involves time-dependent states
and time-independent observables. We note that the Schrödinger equation is not
particular to the nonrelativistic quantum mechanics and in principle can be used to
describe relativistic quantum fields.

Chapter 3: Quantizing a driven harmonic oscillator

We compute the classical trajectory x(t) of a harmonic oscillator driven by an external
force J(t). Quantization is conveniently performed using the creation and annihila-
tion operators. For an external force acting only during a finite time interval, we
define the “in” and the “out” regimes and the corresponding creation and annihi-
lation operators and particle states. The “in” and “out” vacuum states are different
due to particle production by the external force. We derive the expansion of the “in”
vacuum state through the “out” excited states and perform direct computations of
matrix elements of various operators with respect to the “in” and “out” vacua.

Chapter 4: From harmonic oscillators to fields

A free field can be viewed as a collection of infinitely many harmonic oscillators. In
classical mechanics, a system of linearly coupled harmonic oscillators is decoupled
by a decomposition into proper oscillation modes. We use this analogy to represent a
scalar field φ (x, t) by a set of modes φk(t) that obey the harmonic oscillator equations
with frequencies ωk.

Each mode φk is quantized using creation and annihilation operators. We derive
the commutation relations and introduce the mode expansion for a free real scalar
field. The vacuum state and the excited states are defined using the annihilation
and creation operators. We compute the zero-point energy of the field. This energy
diverges for two reasons: First, it contains the infinite volume of space manifested by
the factor δ(3)(0). After separating this factor, we obtain the zero-point energy density
which is still infinite due to the ultraviolet divergence. This divergence is removed
by normal ordering.

Finally, we show how a quantum field can be described by a wave functional satis-
fying the functional Schrödinger equation.

Chapter 5: Overview of classical field theory

Action functionals for a classical field theory must satisfy several requirements such
as locality, Lorentz invariance, and general covariance. We derive the Euler-Lagrange
equations of motion from a Lagrangian of the form L (φ, ∂µφ).

260



As an example, we consider a real scalar field in the flat (Minkowski) spacetime
with a Poincaré-invariant action. To make the action generally covariant, one needs
to introduce covariant derivatives and the covariant volume element into the action.
The resulting action describes a scalar field with a minimal coupling to gravity. An
example of nonminimal coupling is the Lagrangian for a conformally coupled scalar
field.

Gauge fields arise when a global symmetry is localized. Using the example of a
complex scalar field with the global U(1) gauge symmetry, we introduce the gauge
field Aµ and the gauge-covariant derivatives Dµ into the action. The result is the ac-
tion for a scalar field with the minimal gauge coupling. The action for the gauge field
itself can be built using the Yang-Mills term FµνF

µν , where Fµν is the field strength
tensor. We show that the action for the electromagnetic field is conformally invariant.

Einstein’s general relativity is described by the Einstein-Hilbert action. The Ein-
stein equations are derived in an exercise.

Finally, we show that the classical energy-momentum tensor (EMT) of matter in
generally covariant field theories can be defined through the functional derivative of
the action with respect to the metric gµν . The EMT defined in this way is conserved
in a generally covariant sense.

Chapter 6: Quantum fields in expanding universe

We consider a homogeneous FRW universe with flat spatial sections and define a
coordinate system (η,x) in which the metric is conformally flat. A free, minimally
coupled, massive scalar field φ (η,x) in this spacetime is quantized using a mode
expansion. The modes φk(η) are solutions of harmonic oscillator equations with time-
dependent frequencies ωk(η). We define mode functions vk(η) as suitable complex-
valued solutions of these oscillator equations. The choice of the mode functions vk(η)
is not unique unless the frequencies ωk are time-independent.

For a given set of mode functions vk(η), we define the creation and annihilation
operators â±k . Different choices of the mode functions yield different sets â±k which
are related by Bogolyubov transformations. The vacuum state is annihilated by a−k
and is thus determined by the choice of the mode functions. We derive equations
relating the Bogolyubov coefficients to the values of mode functions.

Excited states of modes are interpreted as states containing particles, and the ex-
pectation value of the particle number density in a mode φk is determined by the

Bogolyubov coefficient, nk = |βk|2.

In a general spacetime, the vacuum state is not uniquely defined. One prescrip-
tion for the vacuum state is to minimize the instantaneous energy. The instantaneous
lowest-energy state exists if ω2

k > 0 and the corresponding mode functions are spec-
ified by appropriate initial conditions. We discuss the physical interpretation of the
ambiguity in the choice of the vacuum state and the approximate nature of the con-
cept of particles. The vacuum state can be defined for high-energy modes and, sepa-
rately, in spacetimes with a slowly changing metric (the adiabatic vacuum).
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Chapter 7: Fields in de Sitter spacetime

Besides the particle interpretation of fields, we are interested in field observables such

as 〈0| φ̂(x)φ̂(y) |0〉. Such correlation functions are related to the amplitude of quantum

fluctuations of the field φ̂. We introduce the formalism of window functions and use
it to define the amplitude of fluctuations on a scale L. A general formula for the
fluctuation amplitude in vacuum is derived as a function of L.

As an illustrative example, we choose a FRW spacetime with a special scale fac-
tor a(η) such that the effective frequency ω (η) is a simple step-like function of the
conformal time η. We compute the “in” and “out” mode functions, the Bogolyubov
coefficients, the density of produced particles, and the spectrum of quantum fluctua-
tions.

Then we consider a massive scalar field in the de Sitter spacetime. We derive the
metric of the de Sitter spacetime and demonstrate the presence of horizons. The field
is quantized using a suitable mode expansion. We construct the mode functions and
compute their asymptotic forms in the far past and far future.

The effective frequency ωk(η) for any given k becomes imaginary at late times when
the wavelength of the mode exceeds the de Sitter horizon length H−1. This precludes
a particle interpretation of the superhorizon modes of the field. However, at early
times the frequencies ωk are approximately constant for all modes (a strongly adia-
batic regime), which allows one to define the Bunch-Davies vacuum.

Assuming the Bunch-Davies vacuum state, we study the evolution of quantum
fluctuations as a function of the time η and the scale L. We express this function
through the physical length Lp = a(η)L and find that the spectrum of fluctuations
is approximately scale-independent, in contrast with the sharply falling spectrum in
the flat spacetime.

Chapter 8: The Unruh effect

We explicitly build a system of reference moving with a uniform acceleration a (the
Rindler frame). The Rindler spacetime is defined as the domain of the Minkowski
spacetime seen by an accelerated observer.

Then we consider a massless scalar field in a 1+1-dimensional section of the Rindler
spacetime. The formalism of mode expansions in the lightcone coordinates helps to
quantize the field more conveniently. We describe the natural vacua in the Minkowski
(inertial) and the Rindler (accelerated) frames of reference and argue that the correct
choice is the Minkowski vacuum. The Bogolyubov coefficients relating the two vacua
and the density of observed particles are computed. The particle energies obey the
Bose-Einstein thermal distribution with the Unruh temperature T = a/(2π).

Chapter 9: The Hawking effect. Thermodynamics of black holes

To derive the Hawking effect, we draw on a formal analogy with the Unruh ef-
fect studied in the previous chapter. We consider a 1+1-dimensional section of the
Schwarzschild spacetime with coordinates (t, r), and we introduce two coordinate

262



systems: the “tortoise” coordinates corresponding to static observers far away from
the black hole (BH) and the Kruskal coordinates that describe observers freely falling
into the BH. The two coordinate systems naturally define two vacuum states. The
relation between the coordinate systems is formally the same as that between the
Rindler and the Minkowski frames. Therefore the mode expansions and the Bo-
golyubov coefficients are found directly from the results of the previous chapter, with
the substitution a = (4M)−1. We obtain the Hawking temperature TH = (8πM)−1,
discuss physical interpretations of the Hawking radiation, and remark on other deriva-
tions.

Black holes can be described thermodynamically using the temperature TH and the
entropy SBH = 1

4A, where A is the horizon area (in Planck units). The heat capacity
of a black hole is negative. We consider adiabatic interactions between black holes
and heat reservoirs to show that a black hole cannot be in a stable equilibrium with a
heat bath unless the latter has a sufficiently small size.

Chapter 10: The Casimir effect

We consider a simplified version of the Casimir effect involving a massless scalar field
φ(x, t) in 1+1-dimensional spacetime. The plates are modeled by the boundary con-
ditions φ|x=0 = φ|x=L = 0. We find that the zero-point energy of the quantum field
diverges in a different way than in the free (boundless) space. To quantify this dif-
ference, we introduce a regularization and perform a renormalization by subtracting
the zero-point energy in free space. The result is a finite and negative energy density
in the vacuum state. The energy density grows with the distance L, which indicates
a force of attraction between the plates.

The same result can be obtained by using the analytic continuation of Riemann’s
ζ function instead of the renormalization procedure. (This introduces the ζ function
method which will be also used in Part II.)

Part II: Path integral methods

Chapter 11: Path integral quantization

Evolution of quantum states in the Schrödinger picture can be expressed as the action
of an evolution operator on the initial state. The propagator is the coordinate repre-
sentation of the evolution operator. We derive the path integral representation of the
propagator. The path integral involves the Hamiltonian action and is performed over
all paths q(t), p(t) in the phase space. For Hamiltonians that are quadratic in the mo-
mentum, the path integral is simplified to an integral of exp (iS [q]) over configuration
space paths q(t), where S [q] is the Lagrangian action.

Chapter 12: Effective action

We derive the retarded (Gret) and the Feynman (GF ) Green’s functions of a harmonic
oscillator. The analytic continuation to imaginary time (the Wick rotation) yields the
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corresponding Euclidean equation of motion and the Euclidean Green’s functionGE .
We define and compute the Euclidean analog of the path integral for a driven os-

cillator q(t) with an external force J(t). The Euclidean effective action ΓE [J ] is de-
fined through the path integral over Euclidean trajectories q(τ) connecting the vac-
uum states q = 0 at τ → ±∞. The Lorentzian effective action ΓL[J(t)] is the analytic
continuation of ΓE [J(τ)] back to the real time t. We find that the “in-out” matrix ele-
ments computed in Chapter 3 are related to the functional derivatives of ΓL [J ] with
respect to J . The “in-in” matrix elements can be obtained by replacing GF by Gret

after evaluating the functional derivatives. This motivates a “recipe” for computing
matrix elements through the effective action.

Besides describing the influence of a classical background on a quantum system,
the effective action characterizes the backreaction of the quantum system on the back-
ground. The classical equations of motion for the background J(t) acquire an ex-
tra term—the functional derivative δΓL/δJ(t) of the effective action ΓL [J ]. For the
driven oscillator, this term is the expectation value of the quantum variable 〈q(t)〉.

Another important application is to quantum field theory in a curved spacetime
where the gravitational field is treated as the classical background. The backreaction
of a quantum field on the gravitational background is described by the functional
derivative term δΓL/δg

µν which is related to the expectation value of the energy-
momentum tensor of the quantum field; this term is added to the Einstein equation.
The same term describes the influence of gravity on the vacuum state of quantum
fields (the polarization of vacuum). In this way one can formulate a self-consistent
theory of classical gravity coupled to quantum fields (semiclassical gravity).

Chapter 13: Functional determinants and heat kernels

We consider the Euclidean effective action for a free scalar field in a gravitational
background. The Euclidean action is a quadratic functional of the field and the Gaus-
sian path integral can be evaluated in terms of the determinant of a differential oper-
ator (a functional determinant). Such determinants are always divergent and need to
be renormalized.

We introduce the method of zeta (ζ) function for computing renormalized func-

tional determinants. We define the function ζM (s) for an operator M̂ . The functional
determinant is expressed through the derivative of ζM (s) at s = 0 which is finite after
analytic continuation.

The method of heat kernels can be used to determine the ζ function. We define the
heat kernel K̂M (τ) of an operator M̂ and show how the trace of K̂M (τ) is related to
the ζ function of the same operator. We formulate a “recipe” to calculate the effective
action for a quantum field in a classical background. The recipe involves a ζ function
computed through the trace of a certain heat kernel.

Chapter 14: Calculation of heat kernel

We perform a detailed calculation of the heat kernel for a scalar field in a weakly
curved 3+1-dimensional spacetime. The result is a (nonlocal) perturbative expan-
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sion in the curvature R. This expansion can be used to compute the ζ function of
the Laplace operator perturbatively. We compare this expansion with the standard
Seeley-DeWitt expansion of the heat kernel in powers of τ and find agreement of the
computed terms. We derive the first-order terms and quote the second-order terms
of both expansions without derivation.

Chapter 15: Results from effective action

This final chapter builds upon the results of the entire Part II of this book.

We finish the computation of the effective action for a scalar field in a weakly
curved background, using the method of ζ functions. Before the analytic continu-
ation, the method produces a divergent result. We analyze the structure of the di-
vergent terms in the effective action. These divergences are removed by renormal-
izing the cosmological constant (zero-point energy), the gravitational constant, and
the coupling constant at the R2 term. The “bare” action for pure gravity can be cho-
sen to cancel all divergences, and the resulting action describes the standard Einstein
dynamics of gravity modified by the backreaction of the quantum field.

Then we analyze the finite terms in this modified action. In 1+1 dimensions, the
extra term in the gravitational action is the Polyakov action. (This is derived from the
second-order terms of the nonlocal expansion.) We quote the corresponding result in
3+1 dimensions.

Finally, we consider the energy-momentum tensor (EMT) of the quantum field
which characterizes the vacuum polarization. From the Polyakov action, we derive
a nonlocal formula for the polarization of vacuum in 1+1 dimensions. We use that
formula to compute the trace of the EMT for a massless conformally coupled field.
Unlike the prediction of the classical theory, the trace of the EMT does not vanish
(“conformal anomaly”). Another derivation of the conformal anomaly in 1+1 dimen-
sions is also presented, based on the ζ function method and the first-order term of the
Seeley-DeWitt expansion.

Appendices

Appendix A: Mathematical supplement

This appendix contains a tutorial exposition of some mathematical constructions used
in the text.

Appendix A.1: Functionals and distributions (generalized functions)

We define functionals as maps from a function space into numbers. “Generalized
functions” or “distributions” are linear functionals. We define the frequently used
distributions: the Dirac δ function and its derivatives, and the principal value inte-
grals such as P 1

x . The notion of convergence in the distributional sense provides a
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Detailed chapter outlines

rigorous basis for formulae such as

∫ +∞

0

dx sin kx =
1

k
.

Appendix A.2: Green’s functions, boundary conditions, and contours

We define Green’s functions and consider the frequently used calculation with Fourier
transforms where one obtains an integral with poles. We use the formalism of distri-
butions and principal value integrals to show how to compute the Green’s function
for particular boundary conditions.

Appendix A.3: Euler’s gamma function and analytic continuations

Euler’s gamma function is defined and some of its elementary properties are derived.
In particular, we justify the analytic continuation of the gamma function which was
mentioned in Sec. 8.2.4.

Appendix B: Adiabatic approximation for Bogolyubov coefficients

First we show that the WKB approximation is insufficiently precise to yield the Bo-
golyubov coefficients relating two vacua (instantaneous or adiabatic) defined at two
different moments of time. Then we present a method of computing the Bogolyubov
coefficients in spacetimes with a slowly changing metric, using the adiabatic pertur-
bation theory. This is a well-known method which is more accurate than the WKB
approximation.

Appendix C: Mode expansions cheat sheet

This is a collection of formulae related to mode expansions and commutation rela-
tions.

Appendix D: Solutions to exercises

Detailed solutions are given to each exercise appearing in the text.
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recipe, 152
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55
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generating function, 151
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Euclidean, 144, 186
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interpretation, 143
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Hawking radiation, 115
Hawking temperature, 121
heat kernel, 167
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Heisenberg equations, 21
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horizon crossing, 94
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Kruskal coordinates, 118
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Lorentz transformations, 43
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minimal coupling, 58
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mode expansion, 46
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summary of formulae, 215
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definition, 65
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Noether’s theorem, 57
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finiteness, 72
path integral, 136

definition, 139
Euclidean, 146, 149
Lagrangian, 140
Lorentzian, 149
measure, 139
quantization by, 139
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