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Abstract We review connections between the metric of spacetime and the quan-

tum fluctuations of fields. We start with the finding that the spacetime metric can be

expressed entirely in terms of the 2-point correlator of the fluctuations of quantum

fields. We then discuss the open question whether the knowledge of only the spectra

of the quantum fluctuations of fields also suffices to determine the spacetime met-

ric. This question is of interest because spectra are geometric invariants and their

quantization would, therefore, have the benefit of not requiring the modding out of

diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need

not necessarily be either discrete or continuous. Instead, results from information the-

ory show that spacetime may be simultaneously discrete and continuous in the same

way that information can. Finally, we review the recent finding that a covariant natu-

ral ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave

background (CMB) that may become observable.

Keywords Quantum gravity · Planck scale · Information theory · CMB

1 Introduction

At any given point in history, the then known laws of Nature tell not only about

the nature of Nature but also about the nature of us. The history of physics may,
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therefore, be viewed as a process of emancipation from our evolutionary heritage.

For example, in early modern physics, the known laws of Nature were about subjects

such as acoustics, optics and mechanics, directly corresponding to the set of senses

that evolution happened to equip us with, such as vision, hearing and touch. In the

meantime, the technology of experiments has superseded our sensory capabilities

and, as a consequence, many ‘common sense’ assumptions about Nature have been

superseded by the discovery of much deeper laws of Nature.

The unification of general relativity with quantum theory, see,e.g., [1–12] could be

the last step towards fully uncovering the fundamental laws of Nature. As such it may

then also be the last step of emancipation from our natural prejudices about Nature.

From this perspective, what it will take to make way for the deepest understanding of

Nature is not only the development of experimental technology that approaches the

quantum gravity regime. It will also be necessary to identify the last, basic, human,

common sense assumptions about Nature that need to be abandoned.

For example, it appears to be common sense that spacetime provides a stage while

particles and fields populate that stage. Perhaps, this duality of stage versus actors

may ultimately need to be abandoned in favor of a unifying theory that makes no

fundamental distinction between spacetime degrees of freedom and matter degrees of

freedom, a theory in which that distinction only arises at low energies. In such a theory,

conventional units, such as units of length or mass, units that were originally introduced

for use on vegetable markets, could lose their operational meaning at Planck energies

and may need to be replaced by more robust units, such as the bit and qubit, see, e.g.,

[13–18]. At present, due to insufficient experimental data, we can only speculate.

What we do know, however, is that the unifying theory of quantum gravity will

yield general relativity and quantum field theory as limiting cases. The mathematical

framework of the unifying theory will, therefore, also naturally unify the mathematics

of general relativity, i.e., differential geometry, with the mathematics of quantum

theory, i.e., functional analysis.

The present paper is to report on recent work with my group and collaborators in

which we have explored connections between the metric of spacetime and the quantum

fluctuations of fields, including an approach to possibly identifying evidence of Planck

scale physics in cosmological observations.

2 Spacetime Could be Simultaneously Continuous and Discrete in the
Same Way that Information Can

As quantization literally means discretization, spacetime is often modeled as being

ultimately a discrete structure [4–12]. Such models of spacetime are attractive, in par-

ticular, because they provide a natural ultraviolet cutoff. But they tend to come with

the loss of local external symmetries such as translation and Lorentz invariance and

it can also be difficult to obtain a smooth manifold of fixed dimension as a natural

limiting case. By modeling spacetime instead as a continuous structure, such as a dif-

ferentiable manifold, these problems can be avoided but then the challenge remains to

appropriately model the expected phenomenon that quantum fluctuations of spacetime

render the very notion of distance operationally ill defined at the Planck scale.
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Regarding the question of whether spacetime should be modeled as being contin-

uous or discrete, it is interesting to note that these two possibilities are not mutually

exclusive. There are examples of structures that are simultaneously continuous and

discrete. In particular, in information theory, Shannon sampling theory establishes

that information can be simultaneously continuous and discrete. The same mathemat-

ics can be applied to physical fields, implying that spacetime may be simultaneously

continuous and discrete in mathematically the same way that information can [14].

The basic Shannon sampling theorem [19,20], concerns functions, f (t), such as

a signal, that are bandlimited, i.e., that contain only frequencies in a finite interval

(−Ω,Ω). Shannon’s theorem holds that knowledge of the samples { f (tn)}∞n=−∞ of

such a signal’s amplitude that were taken at a spacing that obeys tn+1 − tn = (2Ω)−1

is sufficient to reconstruct the signal at all times:

f (t) =
∑

n

f (tn)
sin (2Ωπ(t − tn))

2Ωπ(t − tn)
∀ t ∈ R (1)

More generally, the signal can also be recovered from samples that are spaced irregu-

larly, if the spacing of the samples is at most (2Ω)−1 on average in the Beurling sense

[21–23]. The price to pay when reconstructing a function from irregularly spaced

samples is that the reconstruction becomes more sensitive to errors in the taking of

the values of the samples.

The theorem generalizes to functions over Rn and can then be applied to physical

fields that possess an ultraviolet cutoff in the form of a bandlimitation which amounts to

a hard momentum cutoff. For now, we let this be either a non-covariant 3-momentum

cutoff or a covariant 4-momentum cutoff in a Wick-rotated theory with Euclidean

signature. We will consider the case of manifolds with Lorentzian signature below.

The value of the natural ultraviolet cutoff should presumably be chosen at the Planck

scale of 10−35 m, where quantum fluctuations of spacetime are thought to become

strong.

If spacetime possesses such a natural bandlimitation (which is non-covariant in three

dimensions and covariant in the four-dimensional euclidean formulation) then fields

and the equations of motion can be written on continuous spacetime and, equivalently

on any spacetime lattice that possesses a minimum finite (e.g. Planckian) density

of points. It is in this sense, via Shannon sampling theory, that spacetime could be

described as being simultaneously continuous and discrete in the same way that the

information in a bandlimited music signal is simultaneously continuous and discrete.

The fact that the samples can be chosen irregularly spaced at the cost of reduced

stability of the reconstruction of the function from the samples possesses implications

when applied to quantum field theory where, in particular, it ensures the area law

for entanglement entropy [24]. Bandlimitation is also closely related to generalized

uncertainty principles [25–33] of the type

∆x∆p ≥
1

2

(

1 + β(∆p)2 + · · ·
)

(2)

that arose from considerations of quantum gravity and string theory and that imply

a finite lower bound on positions uncertainties, ∆x ≥ ∆xmin =
√

β (in units where

123

Author's personal copy



Found Phys

h̄ = 1). Indeed, these uncertainty principles imply and are implied by bandlimitation,

with the minimum position uncertainty and the bandlimit being proportional [34].

This relationship between ∆xmin > 0 and bandlimitation also holds when ∆xmin is

allowed to be position dependent.

The generalization to curved space is relatively straightforward [15]. To see this, let

us recall that, for functions on the real line, bandlimitation is the restriction of the space

of square integrable functions to the subspace spanned by the eigenfunctions eikx of

the self-adjoint derivative operator D := −i∂x whose eigenvalues k obey |k| < Ω .

Equivalently, this is the restriction to the subspace spanned by the eigenfunctions of

−D2 whose eigenvalues, λ obey λ < Ω2. On curved space, covariant bandlimitation

is then the restriction of the Hilbert space of square integrable functions to the subspace

spanned by only those eigenfunctions of the Laplacian, ∆, whose eigenvalues, λ obey

λ < Ω2.

In this way, physical fields and their equations of motions can be written as liv-

ing on any sufficiently dense spacetime lattice while, equivalently, they can also be

written as living on continuous spacetime. As a consequence, if Nature possesses this

ultraviolet cutoff, one obtains lattice regularizations while the external symmetries and

conservation laws, such as those described by Killing vector fields, can be maintained.

The presence of curvature on the manifold affects the sampling and reconstruction of

fields in an interesting way. It has been shown [35], using a result of Gilkey [36,37], that

curvature locally modulates the bandwidth, i.e., that curvature modulates the density

of degrees of freedom, in the sense of the optimal (most stable) density of sample

points from which to reconstruct fields. It is an open question whether, vice versa, the

local curvature and metric can be expressed entirely in terms of the modulation of the

local density of the degrees of freedom of the matter fields. In this case, curvature could

be viewed as an information-theoretic concept based on a notion of local information

carrying capacity [14,35].

An important feature that distinguishes1 a bandlimitation from a conventional lattice

cutoff is that in the case of the bandlimitation the field does not just live on one

lattice. Instead, democratically, there are infinitely many sampling lattices on which

the same field can be represented and on each lattice of sufficiently dense spacing

there is enough information in the field’s amplitude samples to reconstruct the field

everywhere. A bandlimited music signal that has been reconstructed from samples via

Shannon’s theorem does not retain any memory of the choice of sample lattice that it

was reconstructed from.

It has been pointed out [38] that this freedom to choose any sampling lattice, among

all sampling lattices of sufficiently tight average spacing, is mathematically linked to

unitary groups that arise from von Neumann’s theory of self-adjoint extensions. This

invites speculation that the degrees of freedom that are cut off at the Planck scale re-

emerge to form the internal degrees of freedom of the gauge principles of the standard

model, with their unitary gauge groups. In this case, local isospinors might be, in a

1 Technically, in Shannon’s theorem, a bandlimited signal is assumed to obey Dirichlet boundary conditions

in the Fourier domain. A conventional lattice theory implements periodic boundary conditions in the Fourier

domain.
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sense, ‘locating’ field degrees of freedom within Planckian volumes, while the gauge

principle expresses the non-observability of that localization.

So far, many of these results and speculations are confined to curved spaces with

Euclidean signature. This is because the generalization of Shannon sampling theory

to Lorentzian manifolds is generally mathematically nontrivial as bandlimitation then

amounts to cutting off the spectrum of the hyperbolic d’Alembertian instead of cutting

off the spectrum of the Laplacian which is an elliptic operator. However, a number

of results for the generalization of Shannon sampling theory to Lorentzian manifolds

have been obtained, see, e.g. [15,39,40].

The physics of such a covariant cutoff on the spectrum of the d’Alembertian is

best understood in the path integral formulation of quantum field theory. There, the

path integral involves a formal sum over a space of field configurations. The special

field configurations that are on the mass shell, i.e., that obey the classical equations of

motion, contribute the classical solutions while the other field configurations describe

quantum fluctuations away from the classical solutions. The covariant bandlimitation

is implemented by restricting the space of field configurations that one sums over in

the quantum field theoretic path integral to the subspace spanned by the eigenfunc-

tions of the d’Alembertian whose eigenvalues are bounded (above and below) by the

Planck scale. The cutoff, therefore, eliminates the most extreme quantum fluctuations.

Technically, this means in perturbation theory that in loops of Feynman graphs, the

masses of virtual particles are restricted to masses below the Planck mass.

Let us now discuss what this type of Lorentz covariant natural ultraviolet cutoff

implies for the short-distance structure of the theory. This question is pressing because

it should be hard to reconcile the presence of a finite natural minimum length scale

with relativity, given that any length can be Lorentz contracted by a boost. The answer

is [15], that such a covariant natural ultraviolet cutoff generalizes Shannon sampling

theory so that it provides a beautiful new way to reconcile the presence of a minimum

length with relativity.

The way that covariantized Shannon sampling theory reconciles the existence of a

kind of minimum length with covariance is easiest to see in the case of Minkowski

space. Here, in the simplest case and after Fourier transforming, the covariant cutoff

amounts to implementing the inequality

|p2
0 − p2| < Ω2 (3)

This equation does not imply an upper bound on the magnitude of the three-momentum

p. Therefore, arbitrarily short spatial wavelengths can still occur. However, the inequal-

ity implies that spatial modes with very large p, i.e., spatial wavelengths that are

significantly smaller than the Planck length, possess an exceedingly small bandwidth

in time (i.e., the range of allowed p0 values becomes exceedingly small), and these

transplanckian wavelengths are, therefore, effectively frozen out as their dynamics

becomes trivial.

To summarize, the statement is that wavelengths shorter than the Planck length

dynamically freeze out in the sense that their bandwidth in time becomes exceed-

ingly small, which means that they are fully determined by samples in time which

have an exceedingly large spacing, which implies that the dynamics of these wave-
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lengths becomes simple and predictable, hence effectively frozen. The covariance of

this statement is maintained under Lorentz transformations because the inverse of the

temporal bandwidth time dilates correspondingly as the size of spatial wavelengths

Lorentz contracts. Also, while as we discussed, every spatial mode obeys a corre-

sponding conventional sampling theorem in time, vice versa, every temporal mode

obeys a corresponding conventional sampling theorem in space.

The generalization of Shannon sampling to cosmological spacetimes has been

developed in [39,40]. In this case, each comoving spatial mode possesses a tem-

poral sampling theorem. The shorter the proper wavelength of this mode, the smaller

is this mode’s effective bandwidth in time. This means that the number of sample

points that need to be taken to capture a comoving mode’s behavior from past infin-

ity, or as the case may be from the big bang, to any point in the future can then be

finite. In particular, if we follow modes back in time to when their proper wavelength

drops below the Planck length we find that only on the order of one sample point is

needed to capture the mode’s behavior there. Vice versa, this means that as, during

expansion, comoving modes keep crossing the Hubble length, they become unfrozen

in the sense that, literally, their bandwidth becomes finite. In the next section we will

discuss the application of generalized Shannon sampling to cosmic inflation [39,40].

The generalization of Shannon sampling to black holes is in progress.

3 A Covariant Natural Ultraviolet Cutoff at the Planck Scale Implies a
Potentially Observable Signature in the CMB

Since the Hubble length during inflation was likely only about five orders of magnitude

from the Planck length, it has been proposed to search for signatures of Planck scale

physics in the cosmic microwave background (CMB) [41–50]. Such studies require

a concrete model for how quantum gravity influences the quantum field theoretic

framework a few orders of magnitude from the Planck scale. In the literature, this

influence tends to be modeled through the introduction of either discretization, a

minimum length, a generalized minimum length uncertainty principle or modified

dispersion relations. In such models, it tends to be difficult to maintain covariance.

Without covariance, however, it is difficult to distinguish how much of a predicted

effect on inflation is due to quantum gravity, and how much is due merely to the

breaking of covariance. In particular, no consensus has been reached regarding the

crucial question whether the impact of quantum gravity on the CMB spectrum should

be expected to be of first or second order in the key dimensionless ratio:

σ =
Planck length

Hubble length during inflation
(4)

If the effects are merely linear rather than of higher order in σ , then eventual experi-

mental testability may not be ruled out.

Recently, the covariant information-theoretic natural ultraviolet cutoff at the Planck

scale that was discussed in the previous section has been implemented into the basic

single-field inflationary scenario with DeSitter and power law expansion [39,40]. This
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calculation maintains covariance and involves the application of von Neumann’s theory

of self-adjoint extensions to the d’Alembertian on expanding spacetimes. A benefit of

employing von Neumann’s formalism is that it yields a new powerful unified method

for implementing initial conditions and the choice of vacuum (Bunch Davies) in the

field propagator.

The main result of these calculations is the prediction that the perturbation spectrum,

as generated in the inflationary scenario, should be modulated with k-dependent small

oscillations whose frequency is determined by the slope of the slow roll and whose

amplitude is, crucially, linear in σ . It is not excluded, therefore that these characteristic

oscillations may, therefore, become testable in the CMB. In principle, the only free

parameter in these predictions is the value of the cutoff, for which the natural choice

is the Planck scale. An open question is how the predictions would be affected if the

natural ultraviolet cutoff on the spectrum of the d’Alembertian is not a sharp cutoff but

a smooth tapering off. A plausible conjecture is that the predicted small oscillations

on top of the main CMB spectrum would start to wash out.

4 The Metric can be Deduced from Knowledge of the Correlator of
Vacuum Fluctuations

The equations of motion of fields can be viewed as the equations of motion for coupled

harmonic oscillators (with the usual caveats for fermionic fields and except for the non-

harmonic oscillators of self-interacting fields). The fields of the various particle species

are acting as driving forces for each other’s oscillators.

The spatial derivatives in the field equations couple local field oscillators to their

neighbors so that local excitations spread in space. The coupling between neighboring

local quantum field oscillators implies that the quantum fluctuations of neighboring

field oscillators are correlated and entangled, and the more so the closer the oscillators

are. As is well known, the relatively fast decay of this entanglement with growing

distance, for dimensions larger than (1,1), means that the entanglement between the

field degrees of freedom of the inside and the outside of a region is governed by the

size of the dividing boundary and, therefore, tends to obey an area law.

As was shown in [51], the spatial decay of the correlations between neighboring

field oscillators in the vacuum state also reveals a direct connection between quan-

tum vacuum fluctuations and spacetime curvature. To see this, recall that the wave

operators, such as the d’Alembertian in the case of the Klein Gordon fields, contain

metric-dependent coefficient functions and are, therefore, generally impacted by the

presence of curvature. Spacetime curvature impacts the quantum ringing of fields in

spacetime in a mathematically similar way to how the curvature of a glass vase affects

the spectrum with which the vase can ring. Given that curvature impacts quantum field

fluctuations, the question then arises to what extent knowledge of the quantum fluctu-

ations’ statistics can be used to reconstruct the metric. In fact, it has been shown that

knowledge of a 2-point correlator of quantum fields, such as the Feynman propagator,

G(x, y), can be used to reconstruct the metric. In the case of the free Klein Gordon

field in n dimensional Lorentzian spacetimes, for n > 2:
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gµν(x) = −
1

2

[

Γ (n/2 − 1)

4πn/2

]
2

n−2

lim
y→x

∂

∂xµ

∂

∂xν
G(x, y)

2
2−n (5)

The original motivation for trying to derive the metric from the 2-point correlator

has been the fact that knowledge of the 2-point correlator implies knowledge of the

light cones because of the divergence of the correlator on the light cone, while, as is

well known [52], a Lorentzian manifold is determined up to a conformal prefactor

by knowledge of its light cones. The question that remained was whether or not the

Feynman propagator also encodes the conformal factor.

There is a simple reason for why it does and why, therefore, it is possible to derive

the tensorial metric from a bi-scalar 2-point correlator. The reason is that the 2-point

correlator decays with the invariant distance of the events x and y, and it can, there-

fore, serve as a proxy for distance measurements. And to know infinitesimal invariant

distances, in this case by means of the propagator, is to know the metric. In further

work [53], it has been shown that also within the framework of causal set theory,

the propagator carries the complete information about the discretized spacetime, i.e.,

any causal set can be re-constructed from knowledge of a propagator. This confirms

that a propagator on causal sets does not only contain the information about the light

cone structure of the spacetime but that it does also contain the information about the

spacetime’s conformal factor, which is information that in the case of causal sets is

normally encoded in the density of the sprinkled events.

5 Towards Describing Spacetime in Terms of Geometric Invariants

In the previous section, we discussed that knowledge of the propagator, G(x, y) of, for

example, a free Klein Gordon field allows one to reconstruct the metric gµν(x) and,

therefore, to obtain the Lorentzian manifold of the underlying the spacetime. In this

way, the metric and curvature can be expressed entirely in terms of the correlations of

quantum vacuum fluctuations of a field that lives on the spacetime.

This description of the metric of spacetime still suffers from the fact that it is a

highly redundant description, because of its variance with the diffeomorphism group

of changes of coordinates. This matters if we are to try to quantize gravity by path

integrating over a set of spacetimes. In the path integral, each spacetime should occur

only once, similar to how, in a gauge theory, only one field should occur out of each

gauge equivalence class. Technically, a spacetime is a Lorentzian structure, i.e., an

equivalence class of differentiable manifolds with Lorentzian metric tensors that are

connected by isometric diffeomorphisms. Since it is difficult to gauge fix in the case

of gravity, it would be desirable to find a description of spacetimes, i.e., of Lorentzian

structures in terms of only geometric invariants, i.e., a description that is diffeomor-

phism invariant.

From this perspective, let us reconsider the fact that knowledge of the propagator

constitutes a complete description of the spacetime. The propagator, as a function, is

dependent on the choice of coordinate system, and, therefore, the propagator provides

a coordinate system dependent description of a spacetime. This suggests to ask if

there is information in the propagator which is coordinate system independent, how
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this information might be obtained, and whether it is sufficient to obtain a complete

description of the spacetime, in terms of geometric invariants.

Given that the spectrum of the 2-point correlator when viewed as an operator on

functions on the manifold is independent of the choice of basis in that function space, it

is natural to ask if the spectrum of the correlator determines the metric of the underlying

spacetime. We know that the correlator does entirely determine the spacetime metric,

but also that it is a redundant description because it is variant with the choice of

coordinate system. The spectrum of the quantum vacuum fluctuations, i.e., the quantum

noise on the spacetime, on the other hand, consists of geometric invariants but it may

represent merely a subset of the geometric information contained in the correlator. A

priori, the information contained in just the spectrum of the correlator may or may not

be too small to determine the metric fully.

To address this question, let us now retreat to the simpler case of euclidean space-

times of finite volumes, technically, compact Riemannian manifolds. In this case, the

spectrum of the 2-point correlator is discrete and it is the inverse of the Laplace opera-

tor’s spectrum (while in Lorentzian spacetimes the propagator is a right inverse of the

d’Alembertian, the propagator is not self-adjoint due to its anti-Hermitean component

that is in the kernel of the d’Alembertian). The spectra of the 2-point correlator and

the Laplacian are coordinate system invariant, i.e., they are geometric invariants. The

question is how much information about the metric is contained in the spectrum of the

Laplacian.

We have arrived, from a new perspective, at a central question of the field of spectral

geometry: to what extent does the spectrum of the Laplacian (on a compact Riemannian

manifold) determine the underlying manifold.

This is a hard problem. First, let us discuss why it is that the eigenvalues of the

correlator (or Laplacian) may contain strictly less information than the correlator

itself. To this end, let us consider that changes of coordinate system imply a change

of basis in the Hilbert space of functions on which the 2-point correlator acts as an

operator. Since the eigenvalues of the correlator are basis independent, the spectrum

is coordinate system independent. Crucially, this does not imply the converse. While

it is true that the eigenvalues of the correlator are independent of the basis in the

Hilbert space, not every change of basis in the Hilbert space of square integrable

functions over the manifold arises from a change of coordinate system. This means

that by retaining, among all the information in the correlator, only its eigenvalues we

are retaining only the information in the correlator that is invariant under all changes

of basis in the Hilbert space of functions on the manifold. This may be too little

geometric information. There could be information about the metric in the correlator

which is invariant under all those changes of basis in the Hilbert space that are induced

by changes of coordinates but that is not invariant under all changes of basis in the

Hilbert space.

This distinction matters, at least in dimensions larger than 2 because in dimensions

larger than two, the spectrum of the Laplacian cannot determine the metric fully.

Counter examples that prove this point have long been known, such as certain high-

dimensional tori, and such as those examples that are generated by Sunada’s method.

For a review, see, e.g. [54].
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But there is also a relatively new systematic way to probe the amount of metric

information contained in the spectrum of the Laplacian as a function of the dimension

[14,55]. This method shows that the spectrum of the Laplacian in a precise sense

contains sufficient information in the case of two dimensions while confirming that

the spectrum does not suffice in higher dimensions. The new method also shows that

if the spectra of certain other Laplace operators are considered, they may provide

sufficient information to determine the metric, even in higher dimensions.

The key idea of this method is to simplify the highly nonlinear problem of spectral

geometry, i.e., the problem of determining a metric from a spectrum, by linearizing the

problem. To this end, the problem of determining a metric from a spectrum is replaced

by the problem of determining an infinitesimal change of a known metric from the

corresponding infinitesimal change of its known spectrum. Technically, this amounts

to taking the nonlinear map from metrics to spectra, calculating the tangent map and

checking for its invertibility. If successful, such infinitesimal reconstruction steps can

then be iterated and effectively integrated to obtain finite changes of shape from finite

changes of the spectrum.

This program has been carried out for 2-dimensional compact Riemannian mani-

folds [55–57]. In this case, the metric, being a 4-component symmetric matrix subject

has three independent matrix elements of which two can be fixed by choosing two

new coordinates leaving effectively only one degree of freedom. This scalar function

an be expanded in the eigenbasis of the Laplacian and is therefore describable by its

discrete set of coefficients φn with respect to the Laplacian’s eigenbasis. The spectrum

of the Laplacian is given by the discrete set of eigenvalues λn . Let us now impose an

ultraviolet cutoff by cutting off the Laplacian at some for example Planckian value

Ω2, i.e., we restrict the function space to that finite-dimensional function space of

dimension say N , which is spanned by the eigenfunctions of the Laplacian to eigen-

values obeying λ < Ω2. Intuitively, this is the situation of finite vision and hearing,

where we cannot see ripples in the manifold shorter than the scale set by Ω2, nor can

we hear the associated eigenfrequencies above the scale Ω2.

Important here is the fact that there are in this case as many eigenvectors as there

are eigenvalues (allowing for degeneracies). This means that there are as many coef-

ficients describing the metric as there are coefficients describing the spectrum. The

linear matrix that maps infinitesimal changes in the metric, i.e., infinitesimal changes

in the N coefficients φn into the infinitesimal changes in the eigenvalues, λn , is, there-

fore, a quadratic matrix. Generically, its determinant is nonzero and it is, therefore,

invertible. The calculation of changes of the metric from changes of the spectrum

should, therefore, generally work, at least infinitesimally, in two dimensions. This has

also been demonstrated explicitly numerically [55].

This consideration also shows why there is an obstruction in dimensions higher than

2. The reason is that in higher dimensions the metric is no longer effectively scalar

because it possesses more than one degree of freedom. But only scalar perturbations

of the metric can be expanded in the eigenbasis of the Laplacian on scalars. Therefore,

changes in the spectrum of the Laplacian on scalars then cannot contain all information

about changes in the metric. But this observation also suggests a way forward. The

perturbations of the metric in any dimension can be expanded in the eigenbasis of any

Laplacian operator that acts on covariant symmetric 2-tensors because its eigenvectors
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will span that function space. In this way, it should be possible to obtain again a square

tangent matrix after implementing an ultraviolet cutoff.

As discussed in the introduction, the sought-after theory of quantum gravity will

need to contain general relativity and quantum field theory on curved spacetime as

limiting cases. The theory of quantum gravity will, therefore, have to naturally com-

bine their mathematical frameworks, differential geometry and functional analysis. To

explore the mathematical ways in which this can happen, it will be interesting to further

develop spectral geometry, Shannon sampling theory and their information-theoretic

implications for Lorentzian manifolds.
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