

Cities and Resilience

Pragma Council - University of Waterloo School of Planning

Dustin Carey
Lead, Land Use Sector Development
Federation of Canadian Municipalities
dcarey@fcm.ca

What is Resilience?

Climate resilience is the ability to anticipate, prepare for, and respond to hazardous events, trends, or disturbances related to climate.

- Centre for Climate and Energy Solutions

Urban resilience is the capacity of individuals, communities, institutions, and systems within a city to survive, adapt, and thrive in the face of the chronic stresses and acute shocks they experience.

- Toronto Resilience Strategy

Low-Carbon Resilience

"Low carbon resilience is an integrated climate action planning and decision-making approach that layers on top of existing sustainability visions, plans, and decision frameworks to help organizations embed climate preparedness and sustainability throughout policy, planning, and decision making."

Low Vulnerability

Adaptive Emissions e.g., Air conditioning, higher sea walls

High Emissions

Unsustainability e.g., Rapid deforestation, urban sprawl

High Vulnerability

SUSTAINABLE DEVELOPMENT PATHWAY

Low Carbon Resilience

e.g., Green/blue infrastructure adaptive, zero emissions buildings.

Low Emissions

New Vulnerabilities

e.g., Large-scale hydro, biofuels

Asset Management

Why asset management?

- Municipalities already do it
- Emissions can be inferred from energy use
- Risk is a key tenet of planning and decisionmaking
- Tied to budgeting process
- Involves multi-departmental teams

Figure 3: Climate Change Framework for LOS and Risk Management

Identification

- ServicesAssets
- Climate Change
- Hazards
- Current Levels of Service
- Other Regional and Local Climate Change Data and Projections

Assessment

- Climate Change Implications on Levels of Service
- Gaps between Current and Committed Levels of Service
- Climate Change Implications on Risk

Prioritization

- Strategies to Address Level of Service Gaps due to Climate Change
- Strategies to Mitigate or Adapt to Climate Change Risk

Management

- Preparation of Service Delivery Plans
- Monitoring
- Continuous Improvement

In Practice – Selkirk, MB WWTP

- Emissions-free
- Waste heat capture
- Methane capture
- Lagoon of old plant used for overflow storage – prevents discharge

Natural Assets

 Natural assets (or nature-based climate solutions) offer a key means to sequester carbon, avoid embodied carbon and increase adaptive capacity.

Figure 1: Natural Capital creates Ecosystem Goods and Services⁶

Planning for Resilience

Best Practices

- Understand there is no "No cost" scenario
 - Failing to act on mitigation and/or adaptation has a cost, which may be far greater than the up-front capital expenditures
- Embrace a diversity of views and expertise
 - Differences in background and lived experience can help identify blind spots and craft solutions that are acceptable to the recipients.
- Know when to make difficult decisions
 - Some risks are too great to manage under status quo conditions
- Use the tools at your disposal
 - Local governments have a variety of options to direct change
- Plan for the city you want
 - Many of these solutions increase livability

Climate Lens

Table 2: Windsor's Climate Projections Summary

3. After reviewing Windsor's climate change projections, can the project/po affected by today's climate or Windsor future climate?			
		Yes (cont	nue to question 4)
			to question 7)
No	te: whe	n consideri	ng this question, the project scope should not be limited to a specific asset bu
inc	lude cor	nsideration	s for the Community (example, thermal comfort of users).
4.	If ves	which clim:	ate parameter is of concern?
٠.	☐ Temperature		
			nnual Temperatures
		0 D	ays below -10°C
		0 D	ays above 30°C
☐ Precipitation		ion	
		o A	nnual precipitation
		o S	easonal precipitation
		0 E	xtreme precipitation
	☐ Surface Water Levels		/ater Levels
☐ Water temperatures			

Networks

How FCM Plans to Help

1,738

sustainability projects approved

\$1.1 B

worth of approved sustainability projects

12,908

person-years of national employment

2.75 mil.

tonnes of greenhouse gases avoided

Updated Land Use Offer: Compact, Complete and Resilient Cities Supported by Natural Assets

- Loans up to \$10 million for natural asset restoration or improvement projects
- Pilot project grants up to \$500,000 for natural assets, tactical urbanism and other novel interventions
- Grants up to \$175,000 for studies, plans and policies that advance climate planning in land-use planning, including development standards, growth and climate analyses, incentive structures, etc.

