The Effects of Cyclic Sighing on Heart Rate Variability, Resting Breathing Rate, and Mood

Isabelle Boucher* & Mike J. Dixon, Department of Psychology, University of Waterloo

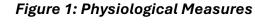
*Correspondence: iboucher@uwaterloo.ca

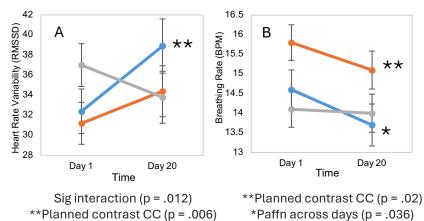
BACKGROUND

Slow breathing has been shown to promote parasympathetic activity & increase heart rate variability (HRV).^{1,2,3}

A study published by Balban et al. reported that as little as 5 minutes of cyclic sighing (CC) a day significantly reduces respiratory rate and increases positive affect compared to a mindfulness meditation condition.⁴

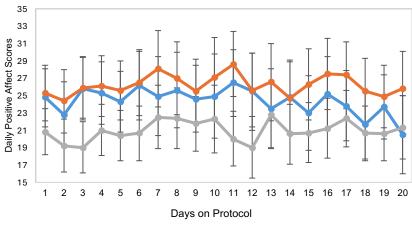
Surprisingly, there was no effect of CC on HRV in that study, despite CC having a strong breathing focus.


Here, we rectify this issue by introducing non-breathing-focused groups: a positive affirmation group and a no treatment control.


METHOD PROCEDURE DAY 1 In-lab measures (HRV, breathing rate, STAI, PANAS) Positive **Cyclic Sighing** No Treatment Affirmation Daily 5-min CC NO daily Daily 5-min PAffn intervention, intervention, intervention, PANAS-P PANAS-P PANAS-P **DAY 20** In-lab measures (HRV, breathing rate, STAI, PANAS)

SONA study pool, N = 167 (140 F), Aged 17 to 49 (M = 20.02, SD = 3.94) Eligibility criteria: Participants must not been completing any yoga/breathing exercises once per week or more

RESULTS


As expected, compared to NT, CC benefited participants by lowering breathing rates, and increasing parasympathetic activity. Only PAffn had an effect on positive affect.

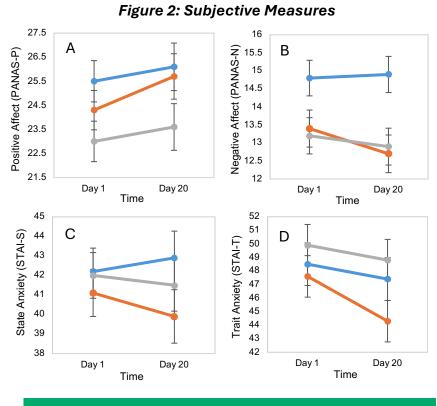

-----Cyclic Sighing -----Positive Affirmations ------No Treatment

Figure 3: Daily Positive Affect Change

**Single-sample t-test PAffn (p = .047 (one-sided))

Measures: HRV (pulse transducer, RMSSD), breathing rate (chest transducer), Anxiety (STAI), Mood (PANAS)

CONCLUSION

Cyclic sighing has an effect on physiological measures (HRV & breathing) but this does not generalize to psychological measures like mood & anxiety.

Balban et al. results may have been a type 1 error.

REFERENCES

¹ Laborde, S., Allen, M. S., Borges, U., Dosseville, F., Hosang, T. J., Iskra, M., ... & Javelle, F. (2022). Effects of voluntary slow breathing on heart rate and heart rate variability: A systematic review and a meta-analysis. Neuroscience & Biobehavioral Reviews, 138, 104711. <u>https://doi.org/10.1016/i.neubiorev.2022.104711</u>

² Russo, M. A., Santarelli, D. M., & O'Rourke, D. (2017). The physiological effects of slow breathing in the healthy human. Breathe, 13(4), 298-309. https://doi.org/10.1183/20734735.009817
³ Zaccaro, A., Piarulli, A., Laurino, M., Garbella, E., Menicucci, D., Neri, B., & Gemignani, A. (2018). How breath-control can change your life: a systematic review on psycho-physiological correlates of slow breathing. Frontiers in human neuroscience, 353. https://doi.org/10.3389/fnhum.2018.00353
⁴ Balban, M. Y., Neri, E., Kogon, M. M., Weed, L., Nouriani, B., Jo, B., ... & Huberman, A. D. (2023). Brief structured respiration practices enhance mood and reduce physiological arousal. *Cell Reports Medicine*, 4(1). https://doi.org/10.1016/j.xcrm.2022.100895