

# Enhancing Learning Outcomes: Exploring the Role of Cognitive Skills when Children Teach a Robot

Thuvaraka Mahenthiran<sup>1</sup>, Elaria Ebeid<sup>1</sup>, Charlotte Aitken<sup>1</sup>, Celina Bowman-Smith<sup>1</sup>, Edith Law<sup>2</sup>, & Elizabeth Nilsen<sup>1</sup>

1. Department of Psychology 2. Cheriton School of Computer Science, University of Waterloo

# INTRODUCTION

# RESULTS

#### Fig 1. Mean level differences between each condition and learning outcomes

- Children demonstrate increased learning when they teach others versus learning for themselves.<sup>1</sup>
- Social robots, including when in the role of a tutee, have been used to enhance children's learning outcomes.<sup>2</sup>
- Different robot characteristics have impacted children's engagement and learning from social robots.<sup>3</sup>
- However, there is a gap of research examining how children's individual characteristics relate to learning in the context of teaching a robot, as well as whether these associations differ by robot behaviour.

### **RESEARCH GOAL**

To examine children's learning outcomes (increased knowledge, reflection on teaching and learning) after teaching a robot, in relation to:

- The robot's behaviour (type of mistakes)
- The children's cognitive skills, namely, executive functioning (EF) and verbal skills
- An interplay between children's cognitive skills and robot mistake behaviour

### **METHOD**

#### MEASURES

- Executive Functioning: Children's Executive Functioning Inventory (CHEXI)<sup>4</sup>, a 24item parent-report measure of children's difficulties with EF in everyday contexts.
- Verbal skills: NIH Toolbox Picture Vocabulary Test, a task-based assessment of children's vocabulary comprehension.

#### PROCEDURE

• Children taught a novel classification to a humanoid robot, namely teaching where aliens were from based on physical characteristics using a classification



2. Participants were randomly assigned to one of three robot conditions:

Correct – Robot made no errors errors on taught material errors on untaught material

- 3. Childs' knowledge of the classification scheme was tested after the teaching task.
- 4. Children provided self-assessments of their teaching and learning using a 5-point Likert scale:
  - 1 I think I was a bad teacher  $\rightarrow$  5 I think I was a great teacher
  - 1 I did not learn at all  $\rightarrow$  5 I learnt a great deal

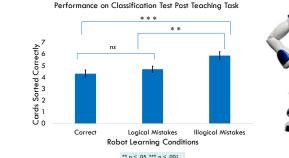



Table 1. Correlations with measures, learning, and self-assessment

| ALL CHILDREN<br>Measure | Learning                         | Self-assessment |          |  |
|-------------------------|----------------------------------|-----------------|----------|--|
|                         | Classification Task<br>Knowledge | Learning        | Teaching |  |
| EF                      | .085                             | .001            | .056     |  |
| Verbal Skill            | .168                             | 073             | 191*     |  |

Table 2. Correlations with measures, learning, and self-assessment for each robot condition

| 2a. CORRECT ROBOT |                                  |          |         |              | 2b. LOGICAL ROBOT                |          |         | 2c. ILLOGICAL ROBOT |                                  |          |          |
|-------------------|----------------------------------|----------|---------|--------------|----------------------------------|----------|---------|---------------------|----------------------------------|----------|----------|
| Measure           | Classification Task<br>Knowledge | Learning | Teachin | g Measure    | Classification Task<br>Knowledge | Learninç | Teachin | g Measure           | Classification Task<br>Knowledge | Learning | Teaching |
| EF                | .124                             | .075     | 089     | EF           | .139                             | .109     | .328*   | EF                  | 100                              | 144      | 081      |
| Verbal Skill      | .270                             | 030      | .053    | Verbal Skill | .192                             | .119     | 387*    | Verbal Skill        | 002                              | 245      | 259      |

Notes \* Correlation is significant at the 0.05 level (2-tailed) Hiaher EF = more executive dysfunction

## DISCUSSION

- Children's learning was highest when teaching a robot who made illogical errors (Fig 1).
  - There may be more active engagement (and thus learning) when working with a robot whose responses do not follow a predictable learning pattern.
- Executive functioning and verbal skills were not related to children's learning of the classification system (**Table 1**).
  - Awaiting current behavioural coding of teaching strategies to determine whether these skills related to teaching behaviours.
- Better EF and verbal skills were associated with lower rating in self-assessment for teaching,
- particularly for children teaching the logical robot (Table 2b).
- As the learning pattern of the logical robot was more predictable, children with better cognitive skills may have (accurately) detected that their teaching strategies had no impact on the robot's success.
- This work highlights the importance of examining outcomes in terms of both children's learning and self-reflection (in this learning-by-teaching-a-robot context), as well as the differing roles that robot behaviour and children's cognitive skills play for both outcomes.



Cognitive