## Contact Info

Pure MathematicsUniversity of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x33484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

Friday, March 28, 2014 — 2:30 PM EDT

Wednesday, March 26, 2014 — 10:30 AM EDT

Monday, March 24, 2014 — 4:00 PM EDT

Friday, March 21, 2014 — 3:30 PM EDT

Friday, March 21, 2014 — 2:30 PM EDT

We will discuss some existence results for complete Calabi-Yau metrics on crepant resolutions of singularities, and use these results to give simple examples of ALF Ricci-flat manifolds.

Tuesday, March 18, 2014 — 4:00 PM EDT

Friday, March 14, 2014 — 3:30 PM EDT

Abstract - n/a

Friday, March 14, 2014 — 2:30 PM EDT

Thursday, March 13, 2014 — 1:30 PM EDT

In this talk I will give a brief overview of a known approach to the ABC conjecture using modular forms. Then I will explain how this approach actually gives a partial result for the ABC conjecture and Szpiro’s conjecture. As a consequence, we will obtain a new effective proof of the finiteness of solutions to the S-unit equation, which does not involve linear forms in logarithms. This is joint work with Ram Murty.

Wednesday, March 12, 2014 — 2:30 PM EDT

Friday, March 7, 2014 — 3:30 PM EST

Thursday, March 6, 2014 — 2:30 PM EST

For every positive, decreasing, summable sequence $a = (a_i)$, we can

construct a Cantor set $C_a$ associated with $a$. These Cantor sets

are not necessarily self-similar. Their dimensional properties and

measures have been studied in terms of the sequence $a$.

In this thesis, we extend these results to a more general collection

Thursday, March 6, 2014 — 1:30 PM EST

Wednesday, March 5, 2014 — 10:30 AM EST

Tuesday, March 4, 2014 — 2:30 PM EST

Abstract: See title.

Monday, March 3, 2014 — 4:00 PM EST

Friday, February 28, 2014 — 3:30 PM EST

Friday, February 28, 2014 — 2:30 PM EST

Thursday, February 27, 2014 — 1:30 PM EST

In my talk I present results from the joint paper [1]. We prove that the intersection G ∩ A of an infinite geometric progression

Wednesday, February 26, 2014 — 10:30 PM EST

“Semisimple Lie Algebras”

Tuesday, February 25, 2014 — 2:30 PM EST

Thursday, February 20, 2014 — 4:00 PM EST

We will discuss a technique which allows one to approximate singular varieties by smooth spaces called stacks. As an application, we will address the following question, as well as some generalizations: given a linear action of a group G on complex n-space C^n, when is the quotient C^n/G a singular variety? We will also mention some applications to Hodge theory and to derived equivalences.

Thursday, February 20, 2014 — 2:19 PM EST

Wednesday, February 19, 2014 — 4:00 PM EST

Tuesday, February 18, 2014 — 4:00 PM EST

University of Waterloo

200 University Avenue West

Waterloo, Ontario, Canada

N2L 3G1

Departmental office: MC 5304

Phone: 519 888 4567 x33484

Fax: 519 725 0160

Email: puremath@uwaterloo.ca

University of Waterloo

University of Waterloo

43.471468

-80.544205

200 University Avenue West

Waterloo,
ON,
Canada
N2L 3G1