Department of Pure Mathematics
Algebra Comprehensive Examination
June 3, 2010
Prepared by J. Lawrence and Y.-R. Liu

Instructions: Answer seven of the following eight questions. If you answer all eight, clearly indicate which question you do not want marked.

Linear Algebra

1. Let

\[A = \begin{pmatrix}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}. \]

(a) Show that \(A \) is nilpotent of index 3.
(b) Find the nilpotent matrix \(M \) in Jordan canonical form which is similar to \(A \).

2. Let \(A \) and \(B \) be two \(n \times n \) matrices over \(\mathbb{C} \).

(a) Show that if \(A \) and \(B \) are similar, then they have the same eigenvalues.
(b) Let \(A \) and \(B \) be two idempotent matrices, i.e., \(A^2 = A \) and \(B^2 = B \). Prove that \(A \) and \(B \) are similar if and only if they are equivalent, i.e., there exist invertible matrices \(P \) and \(Q \) such that \(A = PBQ \).

Group Theory

3. Let \(G \) be a finite group of order greater than 2, half of whose elements have order 2, and the other half of the elements form a subgroup of order a power of \(p \), where \(p \) is an odd prime.

(a) Prove that \(G \) is solvable.
(b) Prove that \(G \) is not nilpotent (in fact, it has trivial center).
(c) Give an example of such a group of order 18.

4. (a) State the universal property satisfied by the free group \(F(X) \) generated by a set \(X \).
(b) Let \(G \) be a group with presentation \(\langle u, v : uv^2 = v^2 u \rangle \).
 i. Prove that \(G \) is infinite.
 ii. Prove that \(G \) is non-abelian.
 iii. Prove that \(G \) has nontrivial center.
Ring Theory

5. Let

\[R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{Q} \right\} \]

be a subring of \(M_2(\mathbb{Q}) \).

(a) Describe the Jacobson radical of \(R \).
(b) Prove that \(R \) has precisely two maximal right ideals.
(c) Prove that \(R \) is right Artinian.
(d) Prove that \(R \) has precisely two isomorphism classes of irreducible right modules.

6. Consider the polynomial ring \(\mathbb{Z}[x, y, z] \). Let \(I \) be the ideal generated by \(z^2 - xy \) and let \(R = \mathbb{Z}[x, y, z]/I \).

(a) Prove that \(R \) is an integral domain.
(b) Prove that \(R \) is Noetherian.
(c) Prove that the only units of \(R \) are \(\pm 1 \).
(d) Prove that \(R \) is not a principal ideal domain.

Field and Galois Theory

7. (a) Let \(E \) be a field extension of \(F \). Prove that if \([E : F] < \infty \), then \(E \) is an algebraic extension of \(F \).

(b) Let \(E \) be a field extension of \(F \). Define

\[L = \{ \alpha \in E, [F(\alpha) : F] < \infty \}. \]

Prove that \(L \) is a field.
(c) Determine if the converse of (a) is true. Briefly justify your answer.

8. Let \(E \) be the splitting field of \(x^3 - 2 \) over \(F \).

(a) Let \(F = \mathbb{Q} \).
 i. Compute the Galois group \(\text{Gal}_\mathbb{Q}(E) \). Justify your answer.
 ii. Write down the lattice of the corresponding intermediate fields of \(\mathbb{Q} \subseteq E \).

(b) Let \(F = \mathbb{F}_5 \), the finite field of 5 elements.
 i. Compute the Galois group \(\text{Gal}_\mathbb{F}_5(E) \). Justify your answer.
 ii. Write down the lattice of the corresponding intermediate fields of \(\mathbb{F}_5 \subseteq E \).