Algebra Comprehensive Exam
January 30, 2013, MC5046, 2:30-5:30pm
J. Lawrence and D. McKinnon

- Attempt all questions.
- You must show all of your reasoning.
- Each of the four sections has roughly equal weight.

Linear Algebra

1. Compute the Jordan canonical form of the 4×4 complex matrix

$$A = \begin{bmatrix}
5 & 4 & 2 & 1 \\
0 & 1 & -1 & -1 \\
-1 & -1 & 3 & 0 \\
1 & 1 & -1 & 2
\end{bmatrix}$$

whose characteristic polynomial is $(x - 1)(x - 2)(x - 4)^2$.

2. Prove that there are $n+1$ similarity classes of idempotent $n \times n$ matrices (i.e. matrices E for which $E^2 = E$) over the field of complex numbers.

Group Theory

3. (a) Show that no group of order 56 is simple.

 (b) Give a clear statement of any major theorem used in the proof of part (a).

4. Let p be a prime.

 (a) Let C_p denote the cyclic group of order p. Prove that $\text{Aut}(C_p \times C_p)$ has order $(p^2 - 1)(p^2 - p)$.

 (b) Prove that there exists a non-abelian group of order p^3.

5. Let $\mathbb{F} = \langle u, v \rangle$ be the free group on two generators u and v, and N be the normal subgroup generated by $uvu^{-2}v^{-1}$. Let $G = \mathbb{F}/N$.

 (a) Find a homomorphism α from \mathbb{F} onto the infinite cyclic group, for which $N \subseteq \ker \alpha$. Conclude that G is infinite.

 (b) Find a homomorphism β from \mathbb{F} onto the symmetric group S_3, for which $N \subseteq \ker \beta$. Conclude that G is non-abelian.
In the following sections, \(\mathbb{Q} \) will always denote the field of rational numbers, \(\mathbb{R} \) the field of real numbers, and \(\mathbb{Z} \) the ring of integers.

Ring Theory

6. (a) Define what is meant by a *prime* ideal and a *maximal* ideal in a commutative ring \(R \).

(b) Let \(d \) be an integer which is not a perfect square and let \(R = \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\} \). Show that every non-zero prime ideal of \(R \) is maximal.

7. Consider the ring

\[
T = \begin{bmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{bmatrix} \times \mathbb{R} := \left\{ \begin{bmatrix} q & r \\ 0 & s \end{bmatrix} : q, r, s \in \mathbb{Q} \right\} \times \mathbb{R}.
\]

(a) Compute the Jacobson radical of \(T \).

(b) Find all of the maximal (2-sided) ideals of \(T \).

Field Theory

8. (a) Determine the Galois closure of \(\mathbb{Q}(\sqrt{2})/\mathbb{Q} \).

(b) Find the lattice of all subfields of \(\mathbb{Q}(\sqrt{2}) \).

9. Let \(L/K \) and \(M/K \) be finite extensions of respective degrees \(n \) and \(m \), of a field \(K \), which satisfy \(L \cap M = K \).

(a) Show that if gcd\((n, m) = 1\), then the composite field \(LM \) has degree nm over \(K \).

(b) Find examples of \(K, L \) and \(M \), for which \(LM \) does not have degree \(nm \) over \(K \).

10. Let \(F \) be a field with \(p^m \) elements where \(p \) is a prime and \(m \) is a positive integer, and let \(K \) and \(L \) be subfields of respective cardinalities \(p^k \) and \(p^\ell \) where \(0 < k, \ell < m \). Calculate all of the possible cardinalities of \(K \cap L \).

2