ANALYSIS & TOPOLOGY Comprehensive Examination

Wednesday, 14 May 2014

Instructions: Attempt all 9 questions. Show all of your reasoning. To pass, you must demonstrate sufficient knowledge in all of the three areas: real analysis, complex analysis, and topology.

Prepared by: Ruxandra Moraru and Andu Nica.

- [1] Let X and Y be topological spaces, and let $f: X \to Y$ be a function.
 - (a) Define the closure (denoted in what follows as "cl(A)") of a subset $A \subseteq X$.
 - (b) Define what it means for f to be continuous.
 - (c) Suppose that f is continuous. Prove that $f(\operatorname{cl}(A)) \subseteq \operatorname{cl}(f(A)), \forall A \subseteq X$.
 - (d) Suppose that $f(\operatorname{cl}(A)) \subseteq \operatorname{cl}(f(A))$, $\forall A \subseteq X$. Does it follow that f is continuous? Justify your answer (proof or counterexample).
- [2] (a) Evaluate the improper integral

$$\int_0^\infty \frac{\sin x}{x(x^2+9)} dx.$$

Simplify your answer so that it is expressed in terms of real quantities.

- (b) Prove that every root of the polynomial $f(z) = z^6 5z^2 + 10$ lies in the annulus 1 < |z| < 2.
- (c) Provide a complete statement of any major theorem used in your solutions to parts (a) or (b).
- [3] Consider the space $X = C([0,1], \mathbb{R})$ of continuous functions from [0,1] to \mathbb{R} . Let $L: X \to \mathbb{R}$ be a function which has the following properties:
 - $L(\alpha f + \beta g) = \alpha L(f) + \beta L(g)$, for all $f, g \in X$ and all $\alpha, \beta \in \mathbb{R}$.
 - $L(f \cdot g) = L(f) \cdot L(g)$, for all $f, g \in X$.
 - L(1) = 1, where $1: [0,1] \to \mathbb{R}$ is the function constantly equal to 1.
 - $L(\mathbb{F}) = 2/3$, where $\mathbb{F} : [0,1] \to \mathbb{R}$ is defined by $\mathbb{F}(t) = t$, $0 \le t \le 1$.
 - (a) Let $f, g \in X$ be such that $f(t) \leq g(t)$ for every $t \in [0, 1]$. Prove that $L(f) \leq L(g)$.
 - (b) Prove that $|L(f)| \leq ||f||_{\infty}, \forall f \in X$.
 - (c) Prove that L(f) = f(2/3) for every $f \in X$.
 - (d) Provide a complete statement of any major theorem used in your solution to (c).
- [4] Let \mathbb{D} be the open unit disc in \mathbb{C} .
 - (a) Fix $a \in \mathbb{D}$. Construct a conformal mapping $\varphi : \mathbb{D} \to \mathbb{D}$ such that $\varphi(a) = 0$.
 - (b) Let f be a holomorphic function on \mathbb{D} such that |f(z)| < 1 for all z in \mathbb{D} . Suppose also that f has two distinct fixed points. Prove that f(z) = z for all $z \in \mathbb{D}$.
 - (c) Provide a complete statement of any major theorem used in your solution to (b).

- [5] Let X be a topological space. We will consider the following properties that X may have:
 - If every open cover of X has a countable subcover, then X is called a $Lindel\"{o}f$ space.
 - If every countable open cover of X has a finite subcover, then X is called *countably compact*.
 - (a) State what it means for the space X to be second-countable.
 - (b) Prove Lindelöf's lemma: If X is second-countable, then X is a Lindelöf space.
 - (c) Suppose X is a Lindelöf space. Prove that X is compact if and only if it is countably compact.
- [6] Let μ be the Lebesgue measure on the interval [-1,1]. Suppose that for every $n \in \mathbb{N}$ we have a non-negative Borel function $f_n: [-1,1] \to \mathbb{R}$ such that
 - (i) $\int f_n d\mu = 1$, and
 - (ii) $f_n(x) = 0$ for every $x \in [-1, 1]$ such that $|x| \ge 1/n$.
 - (a) Prove that the sequence $(f_n)_{n=1}^{\infty}$ does not have any convergent subsequence in the Banach space $(L^1(\mu), ||\cdot||_1)$.
 - (b) Let $g: [-1,1] \to \mathbb{R}$ be continuous, and suppose that g(0) = 14. Give a brief explanation of why $f_n g$ is integrable for every $n \in \mathbb{N}$, and prove that the sequence of integrals $(\int f_n g \, d\mu)_{n=1}^{\infty}$ is convergent. What is the limit of this sequence of integrals?
 - (c) Provide a complete statement of any major theorem you may have used in your solutions to parts (a) or (b).
- [7] Consider an infinite dimensional normed vector space $(X, ||\cdot||)$.
 - (a) Let Y be a linear subspace of X, such that $Y \neq X$. Prove that $\operatorname{int}(Y) = \emptyset$, where $\operatorname{int}(Y)$ denotes the interior of Y.
 - (b) Consider the following (true) statement: "If Y is a finite dimensional subspace of X, then $\operatorname{cl}(Y) = Y$." Write one sentence giving the idea of proof of this statement.
 - (c) In this part of the question we assume that $(X, ||\cdot||)$ is a Banach space. Let S be a subset of X such that $\operatorname{span}(S) = X$, where $\operatorname{span}(S)$ denotes the set of all finite linear combinations of vectors from S. Prove that the set S is uncountable.
 - (d) Provide a complete statement of any major theorem used in your solution to (c).
 - (e) Show by example that the conclusion of part (c) no longer holds if we drop the assumption that the normed vector space $(X, ||\cdot||)$ is a Banach space.
- [8] Let D be a bounded open set in $\mathbb C$ with closure $\operatorname{cl}(D)$. Let $f:\operatorname{cl}(D)\to\mathbb C$ be a continuous function such that the restriction $f|_D:D\to\mathbb C$ is holomorphic.
 - (a) Prove the minimum modulus principle: If f is nowhere zero on D, then the minimum of |f(z)| on cl(D) is attained on the boundary ∂D .
 - (b) Show by example that the conclusion of part (a) no longer holds if we drop the assumption that f is nowhere zero on D.
 - (c) Let f be non-constant. Prove that if |f(z)| is constant on ∂D , then f must have at least one zero in D.

- [9] Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions from [-1,1] to \mathbb{R} .
 - (a) Define what it means for the sequence $(f_n)_{n=1}^{\infty}$ to be equicontinuous.
 - (b) Suppose that every f_n is differentiable with $|f'_n(t)| \le 1$ for every $t \in [-1, 1]$. Prove that $(f_n)_{n=1}^{\infty}$ is equicontinuous.
 - (c) Let $(f_n)_{n=1}^{\infty}$ be the same as in part (b), and assume in addition that $|f_n(0)| \leq 1$ for every $n \in \mathbb{N}$. Prove that there exist a continuous function $f: [-1,1] \to \mathbb{R}$ and indices $1 \leq n(1) < n(2) < \cdots < n(k) < \cdots$ such that the subsequence $(f_{n(k)})_{k=1}^{\infty}$ converges uniformly to f.
 - (d) Provide a complete statement of any major theorem used in your solution to (c).
 - (e) In the framework of part (c), show by example that the limit function f may not be differentiable.