Prepared by Brian Forrest and Matthew Kennedy.

Instructions: Answer all of the questions in Part I and two of the questions in Part II. The questions in Part I are worth 10 points each. The questions in Part II are worth 15 points each. There are 110 total points available.

Part I

Answer all of the following questions.

1. Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function. Suppose there is an infinite countable subset \(S \subseteq \mathbb{R} \) such that
 \[
 \int_a^b f(x) \, dx = 0
 \]
 whenever \(a, b \notin S \). Show that \(f = 0 \).

2. Let \(C([-1,1]) \) denote the Banach space of continuous real-valued functions on \([-1,1]\) equipped with the supremum norm. Determine whether each of the following sets is dense in \(C([-1,1]) \) and justify your answer:
 (a) \(\text{span}\{1, x^2, x^4, x^6, \ldots\} \)
 (b) \(\text{span}\{1, x^{171}, x^{172}, x^{173}, \ldots\} \)

3. Give an example of a sequence \((f_n)_{n=1}^\infty \) of non-negative measurable functions on \(\mathbb{R} \) and a measurable function \(f \) on \(\mathbb{R} \) such that

 i. \(f_{n+1}(x) \leq f_n(x) \) for all \(n \geq 1 \) and \(x \in \mathbb{R} \), and

 ii. \(\lim_{n \to \infty} f_n(x) = f(x) \) for all \(x \in \mathbb{R} \),

 but
 \[
 \lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) \, dx \neq \int_{\mathbb{R}} f(x) \, dx.
 \]

4. Let \((X, d) \) be a complete countable metric space. Show there is \(x \in X \) such that the singleton \(\{x\} \) is open.

5. Let \(X \) and \(Y \) be topological spaces such that \(X \) is compact and \(Y \) is Hausdorff. Let \(f : X \to Y \) be a continuous bijection. Show that \(f \) is a homeomorphism.

6. Evaluate
 \[
 \int_{0}^{2\pi} \frac{1}{1 + \cos \theta} \, d\theta
 \]
7. Let X and Y be non-empty sets. Let

$$\mathcal{F} = \{(A, B, f) \mid A \subseteq X, B \subseteq Y, f : A \to B \text{ is a bijection}\}.$$

Partially order \mathcal{F} by $(A_1, B_1, f_1) \preceq (A_2, B_2, f_2)$ if and only if $A_1 \subseteq A_2$, $B_1 \subseteq B_2$ and f_2 restricts to f_1 on A_1. Use this to show that one of the following two possibilities must hold:

i. There exists a one-to-one function from X into Y.

ii. There exists an onto function from X onto Y.

8. (a) Let (X, d) be a metric space and let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous real-valued functions on (X, d) that converges uniformly to a function $f : X \to \mathbb{R}$. Show that f is also continuous.

(b) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series. Suppose that this series converges at some $x_0 \in \mathbb{R}$ with $x_0 \neq 0$. Show that the power series converges for every $x \in (-|x_0|, |x_0|)$.

(c) Define $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $x \in (-|x_0|, |x_0|)$, where the power series and $x_0 \in \mathbb{R}$ are as in (b). Show that f is continuous on $(-|x_0|, |x_0|)$.

Part II

Answer two of the following questions.

1. (a) i. Prove Liouville's theorem that a bounded entire function $f : \mathbb{C} \to \mathbb{C}$ is constant.

ii. Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Show that the range of f is dense in \mathbb{C}.

iii. Show that a bounded harmonic function $u : \mathbb{R}^2 \to \mathbb{R}$ is constant.

(b) i. Show that for every non-constant polynomial $p \in \mathbb{C}[z]$,

$$\lim_{|z| \to \infty} |p(z)| = \infty.$$

ii. Prove the Fundamental Theorem of Algebra: For every non-constant polynomial $p \in \mathbb{C}[z]$, there is $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$.

2. Let m denote the Lebesgue measure on \mathbb{R}.

(a) Let $E \subseteq \mathbb{R}$ be a measurable set with $0 < m(E) < \infty$. Show that the function

$$F(x) = m((x + E) \cap E)$$

is continuous at $x = 0$, where $x + E = \{x + y \mid y \in E\}$.

(b) Let $E \subseteq \mathbb{R}$ be a measurable set with $m(E) > 0$. Show that the set

$$E - E = \{x - y \mid x, y \in E\}$$

contains an open interval $(-\delta, \delta)$ for some $\delta > 0$.

2
(c) Let \(f : \mathbb{R} \to \mathbb{R} \) be a measurable function such that \(f(x) + f(y) = f(x + y) \) for all \(x, y \in \mathbb{R} \). Show that \(f \) is continuous.

(d) Let \(f \) be as in (c). Show there is \(\gamma \in \mathbb{R} \) such that \(f(x) = \gamma x \) for every \(x \in \mathbb{R} \).

[15] 3. Let \((X, \| \cdot \|_X)\) and \((Y, \| \cdot \|_Y)\) be normed spaces, and let \(T : X \to Y \) be a linear map. Say that \(T \) is \textit{bounded} if the quantity

\[
\|T\| := \sup_{\|x\|_X \leq 1} \|Tx\|_Y < \infty
\]

is finite.

(a) Prove that the following are equivalent:
 i. \(T \) is continuous.
 ii. \(T \) is continuous at 0.
 iii. \(T \) is bounded.

(b) Let \((\mathbb{R}^n, \| \cdot \|_2)\) denote the usual Euclidean space. A matrix \(A \in \mathbb{R}^{n \times n} \) gives rise to a linear map \(A : \mathbb{R}^n \to \mathbb{R}^n \) in the usual way, so that the norm of \(A \) can be defined as above by

\[
\|A\| := \sup_{\|x\|_2 \leq 1} \|Ax\|_2 < \infty.
\]

 i. Let

\[
D = \begin{bmatrix} d_1 & & \\ & d_2 & \\ & & \ddots \\ & & & d_n \end{bmatrix} \in \mathbb{R}^{n \times n}
\]

be a diagonal matrix. Show that \(\|D\| = \max\{d_1, d_2, \ldots, d_n\} \).

 ii. Let \(D \) be as in (i). Show that

\[
\|D\| = \sup_{\|x\|_2 \leq 1} |(Dx, x)|.
\]

 iii. Let \(U \in \mathbb{R}^{n \times n} \) be an orthogonal matrix, i.e. a matrix satisfying \(U^T U = I \), where \(U^T \) denotes the transpose of \(U \). Show that for every \(x \in \mathbb{R}^n \), \(\|Ux\| = \|x\| \).

 iv. Let \(A \in \mathbb{R}^{n \times n} \) be a matrix and let \(\alpha \) denote the largest eigenvalue of the matrix \(A^T A \). Show that \(\|A\| = \sqrt{|\alpha|} \).

 v. Compute \(\|A\| \) for

\[
A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.
\]