Instructions: Answer seven of the following eight questions. If you answer all eight, clearly indicate which question you do not want marked. In the following, \mathbb{Q} denotes the set of rational numbers, \mathbb{Z} the set of integers and \mathbb{N} the set of positive integers.

Linear Algebra

1. Let A be a $n \times n$ complex matrix and A^* the adjoint of A, i.e., $(A^*)_{ij} = \bar{A}_{ji}$.

 (a) Prove that $I + A^*A$ is invertible, where I is the identity matrix.

 (b) Let $\zeta_n = e^{2\pi i/n}$ be a nth root of 1. Suppose that the ijth entry of A is defined by $A_{ij} = \zeta_{ij} n / \sqrt{n}$. Prove that A is unitary, i.e., $A^*A = I$.

2. Let $T : V \to V$ be a linear transformation of vector spaces. Suppose that for $v \in V$, $T^k(v) = 0$, but $T^{k-1}(v) \neq 0$.

 (a) Prove that the set $S = \{v, T(v), \ldots, T^{k-1}(v)\}$ is linearly independent.

 (b) Prove that the subspace W generated by S is T-invariant.

 (c) Show that the restriction \hat{T} of T to W is nilpotent of index k, i.e., $\hat{T}^k = 0$ (the zero matrix), but $\hat{T}^{k-1} \neq 0$. Then write down the matrix of T in the basis $\{T^{k-1}(v), \ldots, T(v), v\}$ of W. Justify your answer.

Group Theory

3. (a) Let G be a finite group, and let p be a prime with $p|||G|$. Let n_p be the number of Sylow p-subgroups of G. Show that if $n_p \neq 1$ and $|G|$ does not divide $n_p!$, then G is not simple.

 (b) Prove there are no simple groups of order 80.

4. The following questions explore properties of \mathbb{Q} viewed as a group under addition.

 (a) Prove that \mathbb{Q} (under addition) is not a direct product of any two non-trivial subgroups.

 (b) Let P be the set of primes. Given $\emptyset \neq S \subseteq P$, let G_S be the set of rational numbers of the form a/b with $a, b \in \mathbb{Z}$ relatively prime, $b \neq 0$, and either $b = 1$ or every prime divisor of b is an element of S. Prove that G_S is a subgroup of \mathbb{Q} under addition.

 (c) Show that if S and T are non-trivial subsets of P and $G_S = G_T$, then $S = T$. Conclude that \mathbb{Q} is a countable group with uncountably many subgroups.
Ring Theory

5. Let \(R = \mathbb{Z}[\sqrt{-5}] \). Let \(\psi : R \to R \oplus R \) be the \(R \)-module map defined by \(\psi(1) = (2, 1 + \sqrt{-5}) \) and let \(M \) be the cokernel of \(\psi \), i.e., \(M \simeq (R \oplus R)/\text{im } \psi \).

(a) Let \(\langle 2, 1 + \sqrt{-5} \rangle \) be the ideal of \(R \) generated by 2 and \(1 + \sqrt{-5} \). Prove that \(\langle 2, 1 + \sqrt{-5} \rangle \neq R \).

(b) Prove that \(M \) does not contain a free sub-module of rank 2.

(c) Is \(M \) a free \(R \)-module? Justify your answer with proof.

6. Let \(V = \bigoplus_{i \in \mathbb{N}} k \) be a countably infinite dimensional vector space over a field \(k \) and let \(R = \text{End}_k(V) \).

(a) Let \(m \) be a positive integer and let \(f \in R \) be given by \(f(a_1, a_2, \ldots) = (a_m, a_{m+1}, \ldots) \). Prove that the two-sided ideal \(J \) generated by \(f \) is \(R \).

(b) Prove that \(\mathcal{K} = \{ f \in R \mid \text{rank}(f) < \infty \} \) is a non-trivial two-sided ideal of \(R \).

(c) Show that if \(J \) is any two-sided ideal of \(R \) not contained in \(\mathcal{K} \), then \(J = R \).

Fields and Galois Theory

7. Let \(n \in \mathbb{N} \) and \(f(x) = x^n - p \) with \(p \) a prime.

(a) Find the splitting field \(E \) of \(f \) over \(\mathbb{Q} \). Justify your answer.

(b) If \(n \) is a prime, prove that \([E : \mathbb{Q}] = n(n - 1) \).

8. (a) The polynomial \(f(x) = x^4 + 2x + 2 \in \mathbb{Q}[x] \) is irreducible. Let \(E_f \) be the splitting field of \(f(x) \) over \(\mathbb{Q} \). Compute the Galois group \(\text{Gal}_\mathbb{Q}(E_f) \). Justify your answer.

(b) The polynomial \(g(x) = x^4 - 2 \in \mathbb{Q}[x] \) is irreducible. Let \(E_g \) be the splitting field of \(g(x) \) over \(\mathbb{Q} \). Compute the Galois group \(\text{Gal}_\mathbb{Q}(E_g) \). Justify your answer.