Instructions

1. Print your name and UWaterloo ID number at the top of this page, and on no other page.

2. Check for questions on both sides of each page.

3. Answer the questions in the spaces provided. If you require additional space to answer a question, please use one of the overflow pages, and refer the grader to the overflow page from the original page by giving its page number.

4. Do not write on the Crowdmark QR code at the top of each page.

5. Use a dark pencil or pen for your work.

6. All questions are equally weighted.
1. Find the degree of the splitting field over \mathbb{Q} for the following polynomial $f(x)$.

(a) $f(x) = x^4 + 4.$
(b) $f(x) = x^3 + 4.$
(c) $f(x) = x^{13} - 1.$
Extra page for answers. Please specify the question number here and the use of this page on the question page.
2. Find the Galois groups of the splitting fields for $x^3 - 2$ over the fields \mathbb{F}_5 and \mathbb{F}_{11}.
Extra page for answers. Please specify the question number here and the use of this page on the question page.
3. Let $K \subset \mathbb{C}$ be a field extension of \mathbb{Q} such that $\text{Gal}(K/\mathbb{Q})$ is cyclic of order 4. Prove that $i = \sqrt{-1} \notin K$.
4. Let \(f(x) \) is irreducible over \(\mathbb{Q} \), and let \(F \) be its splitting field over \(\mathbb{Q} \). Show that if the Galois group of \(F \) over \(\mathbb{Q} \) is abelian, then \(F = \mathbb{Q}(u) \) for all roots \(u \) of \(f(x) \).
Extra page for answers. Please specify the question number here and the use of this page on the question page.
Extra page for answers. Please specify the question number here and the use of this page on the question page.
Extra page for answers. Please specify the question number here and the use of this page on the question page.
Extra page for answers. Please specify the question number here and the use of this page on the question page.