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In this paper we show that if o/ and @ are “dense” sets of positive integers, then
there is some member of the sumset o/ + # with many prime factors. © 1993
Academic Press, Inc.

1. INTRODUCTION

Let v(n) denote the number of distinct prime factors of the positive
integer n. Further, let Q(n) denote the number of prime factors of n
counted with multiplicity. In this paper we are concerned with showing
that v and Q are forced to be quite large on some elements of the sumset
o + B if of and # are “dense” sets of positive integers.

Recently in several papers, Balog, Elliott, Maier, Tenenbaum, and the
authors have studied problems of the following type: if &/ and # are
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“dense” sets of integers, then what can be said of the arithmetical properties
of the elements of & + #? In particular, Balog and Sarkézy [1] studied
the problem of finding suitable conditions on & and # that would force
&/ + 4 to have an element with only small prime factors, while in [6] and
in several papers referenced therein, the problem of when o7 + # contains
an element with a very large prime factor is considered. In [2,3] the
problem of when there is an Erdos-Kac type theorem for the distribution
of the numbers v(a+ b) for ae &/, he # is studied. See [5] for further
problems and references.

Let m(N) denote the largest integer m for which p, p,... p,, < N, where
p;: denotes the ith prime. Thus

m(N)=max{v(k): k< N}.

We show below that for each ¢ > 0 there are numbers c¢(¢), N(¢) such that
whenever N> N(e) and o/ and # are sets of integers in [1, N/2] with
|| |B| >eN?, we have some aec o#, be # with

via+ b)>m(N)—c(e) S/ m(N).

We further show that this result is nearly best possible.
In addition, we show some similar results for the function £2.
Throughout the paper, all latin letters except ¢ will represent positive
integers. Further, if q, k are integers with £ > 0, then let r(a, k) denotes the
integer in [ —k/2, k/2) that is congruent to @ mod k.

2. LARGE VALUES OF v ON & + .o/

We first consider the case & = %, so that we wish to show that if &/ is
“dense,” then there are a, a’ € of with v(a+a’) large.
It is easy to show that the function m = m(N) defined above satisfies

log N
m=(+0(1) —8Y 4 No oo (1)
loglog N

For N>e* let x=x(N) denote the largest integer with p_<./log N.
Define n =n(N) to be the largest integer with

PrxstPxs2--- p,\'+n<N'
Clearly we have

nEm<x+n
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Thus from (1), we have as N — x,
0<m—n<x=n(/log N)=o(/m). 2)

THEOREM 1. There exist effectively computable positive constants ¢y and
N, such that if N is an integer with N> Ny, o < {1, 2, ..., N}, L is a positive
integer with L <n/2, and

[ ok
Ehay (7) 3)

/=0

then there exist integers a, a’ € of with

vla+a')>6L—2n. (4)

COROLLARY 1. For each ¢ >0 there exist effectively computable positive
numbers c(e), N(g) such that if N is an integer with N > Ny(¢) and </ is a set
of integers in [1, N] with |.of| > eN, then there exist integers a, a' € o with

va+a)>m—c(e) /m. (5)

Proof of Coroflary 1. It is easy to see that the hypothesis implies there
are effectively computable positive numbers ¢’(¢) and N'(¢) such that if
N> N'(¢) then (3) holds with L>0.5n—c’(e)\/;. Thus the Corollary
follows from (2) (with an effective estimate for n(,/log N)) and (4).

Note that we clearly have

max via+a’) Sm% v(ii)=m2N)<m+1,
so that (5) is best possible apart from an O(ﬂ) term.

It is clear that Theorem 1 is only interesting in the case that L > n/3.
Suppose that |«7| > N exp(— ¢’ log N/log log N) where ¢’ is a small positive
constant. Then for sufficiently large N, (3) holds with L =[0.34n]+ 1.
Hence, in view of (2), Theorem | implies for large N that there are
a, a’ e o with

n_ m log N
V>6L—m>ts s O8N
Mata)> 6L = 2> > > T log log N

We thus have the following result.

COROLLARY 2. There exist effectively computable positive constants ¢,
N, such that if N is an integer with N> N, and & is a set of integers in

[1, N] with
log N )

N — ——
|| > exp( ¢y Tog log N
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then there exist integers a, a’' € of with

log N

Wata )>27 loglog N

3. A COMBINATORIAL LEMMA

The proof of Theorem 1 will be based on a combinatorial lemma
(Lemma 2 below) which can be derived from the following result of
Katona [4].

LEMMA 1. Let k and n be integers of the same parity with 0 <k <n. Let
& be any set of cardinality n and let &, &, ..., &, be distinct subsets of &

with
(n—k)/2
1> 3 (';) (6)

=0
Then there exist subsets &, & with i # j and
| S <k. (7)

(Note that the lower bound in (6) is the best possible. In fact, taking all
the subsets 7 of & with |7 | > (n + k)/2, there are 3¢ ¥ (") of them and
for any pair 7, 7' of them, |7 nJ'| 2k.)

LEMMA 2. Let k and n be integers of the same parity with 0 <k <n and
put L=(n—k)/2. Let R be a set of cardinality n and let R, R,, ..., R. be
distinct subsets of R with

L /n
z>2 Y ( ) (8)

1=0 l
Then there exist subsets R,, R, with i # j such that the symmetric difference

R; A R satisfies
|B; D Ry = | R, — R + | H#;,— R| >6L—2n. 9)
Proof of Lemma 2. Clearly,

|2 > L (10)

holds for all but 3°/_, (7) subsets #,. Thus by (8), the number ¢ of subsets
R, satisfying (10) is such that t>3¥ 7, (7), so that ¢ satisfies (6). Thus
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Lemma 1 can be applied with these subsets, so that there are subsets #,, %;
satisfying (10) with i # j and

| R) <k. (11)
Then by (11) we have
|2 & R =(1R] ~ | R RN+ (R — | R, R|)
>(L—k)+(L—k)=6L—2n,

which proves (9) and so completes the proof of Lemma 2.

4. THE PROOF OF THEOREM 1

Recall the definitions of x=x(N),n=n(N) from Section2. Let Q=
Pxs1Pxvz Pepn Fori=12, ., [NQl+1putF=((i—-1)Q,iQ]n.
By the pigeon hole principle, there is an integer j with 1 <j<[N/Q]+1
and

| |1

2 tNig1+ 172w &

(12)

where we use Q< N.

Recall the definition of r(a, k) from Section 1. To any a e &/, we assign
the n-tuple w(a)=(r(a, p., ), ... F(a, P, ,)). Note that by the Chinese
remainder theorem, the mapping that sends ae€ . to the vector u(a) is
injective, so that if % is defined as the set of u(a) for ae «, then by (12)

| A
1= 1) > 0. (13)

Let us call two vectors u(a),w(a’) in ¥ equivalent if r(a, p.,;)=
+r(a@, p.,;) for each i=1, 2, .., n. This is clearly an equivalence relation
on % and the number T of equivalence classes satisfies

n

n . n 1
Tsﬂ&‘—*:é—ﬂcz""Q 1l <1+ )sz‘ "Qexp(z

i=1 i=1 X+ i=1 X+ i

)<2 o

Thus for some absolute constant ¢, we have

T<c,2 Q. (14)
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Let us write %, for the vectors in % in the ith equivalence class,
i=1,2,.., T. By (13) and (14), there is a class %, with

11,

= .
41> T ¢, 2N

(15)

Let .o/ , denote the set of a e .o/, with u(a)e %, and for ae o/ ,, let
Ra)={i:1<i<n, r(a)>0}.

The mapping that sends a€ o, to #(a)= {1, 2, .., n} is clearly injective,
so that the number of such sets #(a) is |« ,| = |%,|, which is estimated in
(15).

Let ¢, in Theorem 1 be 4¢,. Then by (3) and (15), the number of sets

A(a) for ae .o, exceeds
1|/ - <n
—72">2 .
& 2N >,§1)

We thus may apply Lemma 2 with #={1,2,..,n},k=n—2L, and with
the subsets #(a). We obtain that there are a, a’ € o/, with

|R(a) A R(a’)| > 6L —2n. (16)

But if ied(a) & A(a'), then r{a, p,, V+rd,p.,;)=0; that is,
Peii/a+a’. Thus

via+a')= |%#(a) A R(a') >6L—2n,

which proves (4) and thus completes the proof of Theorem 1.

5. THE CASE & # %

We now generalize the statement in Theorem 1 by considering the case
of two sets of integers ./, # that are not necessarily equal. This can be
done by combining Theorem 1 with Lemma 3 below.

For a set of integers o/, we write 2 x o for the set of numbers 2a with
aed.

LemMa 3. Let N be a positive integer and let o/, B be nonempty subsets
of {1,2, ..., N}. Then there is a set @ such that
iy 2<{1,2,.,2N},
(i) 24+2c2x (A +B), and
(iii) |2| > || |B|/2N.
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Proof. For each integer y, let f(y) denote the number of pairs
(a, b)e o x B with a— b= y. Then clearly we have

T f(y)= | x B = || |,

y=-N+1

so that there is an integer y, with — N < yq < N for which

1
fyo) 25— 1181, (17)

Let & denote the set of integers d that can be written in the form

d=2a— y,=2b+ y,=a+b (ae .o, beH). (18)

Thus (i) holds trivially, while (iii) holds by (17). Finally, let d,d" € &, so
that there are ae o7, b’ € # with d=2a— y,,d"=2b"+ y,. Thus
d+d'=2a+b)e2x (A +AB),

which proves that also (ii) holds and thus completes the proof of Lemma
3.

From Lemma 3 and Theorem 1, we easily deduce the following.

COROLLARY 3. The constants c,, Ny of Theorem 1 and the function
n=n(N) of Section 2 have the following property. Suppose N is an integer
with N> Ny, of and B are subsets of {1, 2, ..., [N/2]}, L is an integer with

L <n/2 and
|| |B) e (N
e >ce27" Y (1 .

=0

Then there exist integers ac o/, be # with v(a+b)>6L —2n—1.

6. AN EXAMPLE

We now give an example to show that Corollary 1 and thus also
Theorem | are best possible apart from a factor log m in the secondary
term. We are not sure which result is closer to the “truth.” The first two of
us vote for Corollary 1, while the latter two vote for Theorem 2 below.
So even if such matters were decided by votes, things would still be
inconclusive.
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THEOREM 2. There are effectively computable positive constants c,, c,,
N, such that for each integer N> N, there is a set of < {1,2,.., N} with

|| > cy N (19)

and for all a, a' € &/ we have

m

via+a)<m—c, (20)

logm’

Proof. Put t=[m/3] and let Q=p,, P,.>..- P2.. Let X' (a) denote
the set of [ for which r(a, p,,;)>0. Note that for any set ¥ c
{r+1, 142, .., 2t}, the number of integers a with 0<a< N and ¥ (a)=%
1s

pi—1 pi+l
NJ] — +0(V) 0,
:]e_<[/ 2[7: ie[1+1!—.—[21]—7. 2P,

where 8(.%) is some number of absolute value at most 1. Thus the number
of these integers a is

2-'N(1 + O(1/log m)) + 0(F) Q =2~ 'N(1 + O(1/log m))

uniformly for all large N and all subsets & < {t+1, .., 2¢}.
Let o denote the set of all integers a with 0 <a< N and

|f(a)|>%+\/?. (21)

Since the number of subsets & of {¢+ 1, ..., 2t} with |&| > /2 + \/7 is »2/,
it follows from the above that |.o/| > N, that is, (19) holds.
Assume now that g, a’€ &/. From (21) it is clear we have

| (@)n A (@) >2/1. (22)

Further, if ie # (a)n¥(a’), then O<r(a, p,,.;))+r(a, p,,;)<p:ivi, SO
that

a+a=r(a, p,,)+rd, p.)#E0mod p,, .
Thus by (22) we have

u=u(a+a’):=|{j<2t:p,la+a’}|>2\/;. (23)
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If a,a' € of and f v=v(a+a'), then
v+ u m+ 1

ANza+a' zp* [ pizeneit ™ " 11 p

i=1 j=1

>N(p"'+])upu—m-—l

m+t ’
P

so that

1/p “
m+1-v _ m+1
Pm >2( P ) (24

For all large N we have p,,., /p,, > 3/2, so that with (23) and (24) we have

—log 2 + u log(3/2) S —log2+2./{m/3]1log(3/2)
108 Pt log m ’

m+1—v>

Fix some positive number ¢, < (2/\/5) log(3/2). Then for all large N and all
a, @’ € o, we have (20). This completes the proof of Theorem 2.

7. THE CASE OF Q

In this section we show the following result. The proof is very much like
that of Theorem 1, so that we only sketch it.

THEOREM 3. There exist effectively computable positive constants cs, Cq,
N, such that if N> N is an integer and of = {1,2, .., N} with

log N
. ——2 5
l.d|>Nexp< c51 i N>’ (25)

then there are integers a, a' € o with

log N
log log(2 + N/|.o])

Qa+a)>cq (26)

Proof. Write s=[c,log(2N/|#|)], where ¢, is an eflectively com-

putable positive constant to be specified later. If N, is sufficiently large and
cs=1/(3¢,), then (25) implies that TT:_, p,<./N. Let

= ____lO_g_]_V___} =( 5 .>1
’ [log(plpz...ps)’ Q D}P. ;
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so that a>2 and Q < N. As in the proof of Theorem 1, there is an integer
J such that if o= ((j—1)Q, jQ]1n o/, then (12) holds.

For ae .o, let w(a)=(r(a, p}), ... r(a, p})). As before, we say two such
vectors are equivalent if the corresponding coordinates are equal in
absolute value. The number T of equivalence classes satisfies

¥ 5

+1 2 | )
T<(2® ‘+1)]’]£’—2—=2 >"Q(1+§;)H(1+F><2 Q,

i=12 -2

since 2> 2. Thus the set &/ , of elements in & which map to the largest
equivalence class has cardinality

PRES - L NIt

4 ) T Q N 3 (27)

where we use (12) for the last inequality. From the definition of s above,
we have 2°9% > N/l.of| if ¢, is chosen large enough. Thus from (27),
|, | >2%%, so that if ¢, is chosen sufficiently large, we have

1. s
52 Y (,)

=0

where L=[04s]+ 1.

Thus as in the proof of Theorem 1, we may use Lemma 2 to show
there are a,a' €.« , such that r(a, p})+r(a, p7)=0 holds for at least
6L — 25> 0.4s distinct values of i. For each such i we have p¥la+a’, so
that

log N log N log N
> P> A
log(pypy... p;)~ logs  loglog(2 + Nf|«/|)

Qa+d)>04sa>s

This completes the proof of Theorem 3.

We remark that by the use of Lemma 3, it is a simple matter to prove
a version of Theorem 3 that holds for two sets of integers 7, # as in
Corollary 3.

In addition, we remark that it is easy to see that apart from the constant,
(26) is best possible. Indeed, if S <0.9log N and & is defined as the set of
integers ae {1, .., N} with r(a,4)>0 and r(a, p)>0 for each odd prime
p< S, then |.o/| > N/25. Further, if a, a’ € o then 4fa+a’ and pla+a’ for
each odd prime p < S, so that Q(a+a’) <1 +log N/log S. Thus we see that
(26) is best possible, apart from the choice of ¢,.

The maximal order of © on the interval [1, 2N] is easy to compute; it
is log(2N)/log 2. One may ask how dense must ./ be for there to be
a,a' e/ with Q(a+a')~log N/log?2. Certainly density 1/4 is not
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sufficient, since if we take for .o/ the integers up to N that are 1 mod 4, then
Qa+a’)<1+1og Nlog 3 for all a,a’ € &. It is interesting that for some
values of N, density 1/2 is sufficient and for other values it is not. For
example, if N is a power of 2, say N=2% and if &/ < {1,.., N} with
lof| = N/2, then either Ne o# or there are a,a'e &/ with a+a’=N. In
either case, we get at least log N/log2 for the maximal value of 2 on
o+ o

But now say N=2%+2%*! for some integer k>2 and &/ is the set of
integers ae [1, N] with r(a, 2**?)>0. Then || = (2 + D)(2**' = 1)>
N/2. But for all a,a’ € o/ we have a+a'Z0mod 2°*2 Thus Q(a+a’)<
k + 1 +log(N/2%)/log 3. It is not hard to show that something close to this
upper bound actually does occur for this example, so that as N—
through this sequence of numbers and </ is as just constructed, then the
maximal order of 2 on &/ + o/ is (¢ + o(1)) log N where

1 1 1
C_210g2+2log3<log2'

Generalizing these thoughts, we have the following two results.

THEOREM 4. Suppose £>0, N is a positive integer, and o/ < {1, ..., N}
with || 2 (N+N'"%)/2. Then there are a,a'esd with Qa+a')>
(1 —¢)log N/log 2.

THEOREM 5. Let 0<e< 1/2 be arbitrary, but fixed. There are infinitely
many positive integers N for which there is a set &/ < {1, ..., N} with |.«| >
(N+N'"%/2 and

1—¢ €
Nl —= 1) }log N,
a.x?i).(a Qa+d) (log2+log3+o( )) o8

Jor N running through the infinite set asserted to exist.

As with the gap between Corollary 1 and Theorem 2, we are not sure
which of Theorems 4 and 5 is closer to the truth. It is perhaps interesting
to note the following corollary of Theorem 4: For each ¢ >0, there is a
number ¢, such that if N is a positive integer and & < {1, ..., N} with |.o/| >
(1 4+ 8) N/2, then there are a,a’ € of with v(a+a’)> —c;+log N/log 2. In
fact, ¢; = |log é|/log 2.
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