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Abstract. We prove that there are long intervals containing fewer prime numbers
than the average for intervals of such length.

1. Introduction

The first proof that there exist gaps between consecutive prime numbers which are
much larger than the average was given by Westzynthius [29] in 1931. Let c0; c1; . . . denote
positive constants. He proved that for arbitrarily large integers x,

p
�
x þFðxÞ

�
� pðxÞ ¼ 0;ð1:1Þ

with

FðxÞ ¼ c0
log x log3 x

log4 x
;ð1:2Þ

where logi ¼ logðlogi�1Þ denotes the i-th iteration of the logarithm function and pðxÞ de-
notes the number of primes less than or equal to x. In 1934 Ricci [25] removed the factor
of log4 x from the denominator of (1.2). One year later Erdős [10] established that (1.1)
holds for infinitely many integers x with

FðxÞ ¼ c1
log x log2 x

ðlog3 xÞ2
:

In 1938 Rankin [23] showed that this result also could be improved by a factor of log4 x

and so (1.1) holds with
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FðxÞ ¼ c2
log x log2 x log4 x

ðlog3 xÞ2
;ð1:3Þ

for arbitrarily large integers x. Rankin proved that (1.3) holds with c2 any positive real
number less than 1=3. Subsequent improvements by Schönhage [26], Rankin [24], Maier
and Pomerance [18] and Pintz [22] have concerned the value of c2. The best result to date
is due to Pintz [22] who proved that c2 may be taken to be any positive real number less
than 2egð¼ 3:5621 . . .Þ.

One might expect, from a consideration of the prime number theorem, that if FðxÞ
grows su‰ciently quickly as a function of x, then

p
�
x þFðxÞ

�
� pðxÞ@ FðxÞ

log x
;ð1:4Þ

as x ! y. In 1943, Selberg [27], under the assumption of the Riemann hypothesis, proved
that (1.4) holds for almost all x, in the sense of Lebesgue measure, provided that FðxÞ
is positive and increasing and that FðxÞ=x is decreasing for x > 0 and, in addition, that
FðxÞ=x ! 0 and FðxÞ=ðlog xÞ2 ! y as x ! y.

In 1985 Maier [17] showed that Selberg’s result does not apply for all su‰ciently large
x. He proved that if l is a real number larger than one and FðxÞ ¼ ðlog xÞl, then

lim sup
x!y

p
�
x þFðxÞ

�
� pðxÞ

FðxÞ=log x
> 1ð1:5Þ

and

lim inf
x!y

p
�
x þFðxÞ

�
� pðxÞ

FðxÞ=log x
< 1:ð1:6Þ

The purpose of this note is to give a result which interpolates between Rankin’s result
(1.3) and Maier’s result (1.6). In particular we shall study the behaviour of

p
�
x þFðxÞ

�
� pðxÞ

FðxÞ=log x

when FðxÞ ¼ ðlog xÞ1þsðxÞ where sðxÞ is a non-increasing function of x. We shall suppose
that sðxÞ does not decrease too rapidly, in fact that

sðxÞ�1 ¼ O
log2 x

log4 x

� �
:ð1:7Þ

As well, we shall suppose that

sðxÞ � sð2xÞ ¼ o
1

log2 x

� �
ð1:8Þ
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and

sðxÞ � sðx3=2Þ ¼ o
��

sðxÞ
�3=2�

;ð1:9Þ

so that sðxÞ is a smoothly varying function of x.

In order to state our main result we require functions introduced by Dickman and
Buchstab. Dickman’s function rðuÞ is defined [9], [5] for non-negative real numbers u as
the unique continuous solution of the di¤erential-di¤erence equation,

rðuÞ ¼ 1 if 0e ue 1;ð1:10Þ

and

ur 0ðuÞ ¼ �rðu � 1Þ if u > 1:ð1:11Þ

Buchstab’s function oðuÞ is defined [1] for real numbers u which are greater than or equal
to 1 as the unique continuous function for which

oðuÞ ¼ 1

u
if 1e ue 2;ð1:12Þ

and �
uoðuÞ

� 0 ¼ oðu � 1Þ if u > 2:ð1:13Þ

Let g ð¼ :5772 . . .Þ denote Euler’s constant. Put

f ðu; vÞ ¼ v
�
logð1 þ uÞ þ r

�
vð1 þ uÞ

��
;ð1:14Þ

for u > 0, v > 0. It can be shown, see §2, that there is a unique positive real number y for
which

min
vf1

f ðy; vÞ ¼ eg

2
;

and that y ¼ :500462161 . . . : We define g on the non-negative real numbers by

gðyÞ ¼
inf
vf1

f ðy; vÞ for y < y;

inf
ufy

egoð1 þ uÞ for yf y:

8><
>:

Both infima in the definition of g are minima, see §2.

We are now able to state our main result.

Theorem. Let e be a positive real number and let s be a non-increasing function on the

positive real numbers satisfying (1.7), (1.8) and (1.9). There are arbitrarily large integers x for

which

p
�
x þ ðlog xÞ1þsðxÞ�� pðxÞ < ð1 þ eÞg

�
sðxÞ

�
ðlog xÞsðxÞ:ð1:15Þ
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Let l be a positive real number and take sðxÞ ¼ l for all positive real numbers
x, so that (1.7), (1.8) and (1.9) apply. Since inf

vf1
f ðy; vÞ increases with y and since

inf
u>0

oð1 þ uÞ ¼ oð2Þ ¼ 1=2, it follows from the definition of y that

gðlÞe inf
ufl

egoð1 þ uÞ:

Iwaniec [14] (see also [17]) proved that oð1 þ uÞ � e�g changes sign in every interval of
length 1 and so gðlÞ < 1 and we recover (1.6). Further it follows from Corollary 3.2 and
(3.2) of [11] that

gðlÞ ¼ 1 � exp
�
�l log l� l log log lþ OðlÞ

�
:

In fact, if lf y, estimate (1.15) is already implicit in [17], see [3], and our argument
coincides with that given in [17]. In particular, we shall estimate the number of primes in
arithmetical progressions with moduli consisting of the product of an initial segment of the
primes and then apply an averaging argument. The range when l < y requires a new
approach however. In this case the moduli that we consider are the product of a segment
of primes of intermediate size. Instead of exploiting the oscillatory behaviour of the Buch-
stab function, as we do for lf y, we shall make use of the fact that an initial segment of
the integers can be very e‰ciently sieved by primes of intermediate size.

We remark, see (2.8) from §2, that

lim
y!0

gðyÞ y logð1=yÞ
log log ð1=yÞ

� ��1

¼ 1:ð1:16Þ

Accordingly, we are able to deduce the following consequence of our main theorem.

Corollary. Let e be a positive real number and let s be a non-increasing function on the

positive real numbers satisfying (1.7), (1.8), (1.9) and

lim
x!y

sðxÞ ¼ 0:

There are arbitrarily large integers x for which

p
�
x þ ðlog xÞ1þsðxÞ�� pðxÞ < ð1 þ eÞ

sðxÞ log
�
1=sðxÞ

�
log log

�
1=sðxÞ

� ðlog xÞsðxÞ:ð1:17Þ

In particular, if we take sðxÞ ¼ log3 x=log2 x we see, from (1.17), that for each e > 0
and for infinitely many integers x, the interval of length log x log log x starting at x contains
at most ð1 þ eÞðlog3 xÞ2=log4 x primes. Thus the average gap between primes, with the gap
in or partly in the interval, is at least

1

1 þ e

log x log2 x log4 x

ðlog3 xÞ2
;

which corresponds, up to a constant factor, to Rankin’s bound (1.3).
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2. Properties of the function g

In this section we shall establish properties of the functions f and g. In particular, we
shall prove that y is well defined and we shall show how to compute it and how to evaluate
g: For the convenience of the reader we have included a table of values of gðlÞ for a selec-
tion of points l from the interval ð0; 1=2Þ. Furthermore we shall establish (1.16) and so
show how gðyÞ decays as y tends to 0 from above.

It follows from (1.10) and (1.11) that

rðtÞ ¼ 1 � log t for 1e te 2ð2:1Þ

and

rðtÞ ¼ 1 � log t þ 1

2
log2 t þ Li2

1

t

� �
� Li2

1

2

� �
� 1

2
log2 2 for 2e te 3;ð2:2Þ

where Li2ðxÞ denotes the Euler dilogarithm function which is defined for jxje 1 by

Li2ðxÞ ¼
Py
k¼1

xk

k2
:

For an explicit representation of rðtÞ in the interval 3e te 4 see the appendix of [2]. Also
note that

Li2
1

2

� �
þ 1

2
log2 2 ¼ �Li2ð�1Þ ¼ p2

12
;ð2:3Þ

see (1.6) and (1.7) of [15].

By (1.11), for vð1 þ uÞ > 1,

qf ðu; vÞ
qv

¼ logð1 þ uÞ þ r
�
vð1 þ uÞ

�
� r
�
vð1 þ uÞ � 1

�
:

Further, from (1.10), (1.14) and (2.1), for 1 < vð1 þ uÞe 2,

qf ðu; vÞ
qv

¼ �log v:ð2:4Þ

Furthermore, for vð1 þ uÞ > 2,
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q2f ðu; vÞ
qv2

¼ ð1 þ uÞr 0�vð1 þ uÞ
�
� ð1 þ uÞr 0�vð1 þ uÞ � 1

�

¼ 1

v � 1

1 þ u

0
BB@

1
CCAr
�
vð1 þ uÞ � 2

�
� 1

v
r
�
vð1 þ uÞ � 1

�
:

Thus, since r is a non-increasing function,

q2f ðu; vÞ
qv2

> 0;ð2:5Þ

for vð1 þ uÞ > 2. It follows from (2.4) and (2.5) that for each u > 0 there is a unique mini-
mum of f ðu; vÞ with vf 1. Let vmin ð¼ vminðuÞÞ denote the unique real number larger than
1 at which the minimum occurs. Then

logð1 þ uÞ þ r
�
vminð1 þ uÞ

�
� r
�
vminð1 þ uÞ � 1

�
¼ 0:ð2:6Þ

In 1951 de Bruijn [7] proved that

rðtÞ ¼ exp
�
�t
�
log t þ log2 t þ Oð1Þ

��
and therefore by (2.6), since logð1 þ uÞ@ u as u ! 0,

vminðuÞ ¼
�
1 þ oð1Þ

� logð1=uÞ
log log ð1=uÞð2:7Þ

as u ! 0. Furthermore,

gðuÞ ¼
�
1 þ oð1Þ

� u logð1=uÞ
log logð1=uÞð2:8Þ

as u ! 0.

Put

hðtÞ ¼ rðt � 1Þ � rðtÞ for tf 1:

rðtÞ is concave for tf 2 (see [28], Lemma 3), and thus hðtÞ is strictly decreasing for tf 2.
Therefore hð2Þ ¼ log 2 is the maximum of hðtÞ for tf 2. Thus, from (2.6), vminðuÞ is mono-
tone decreasing on ð0; 1� with vminð1Þ ¼ 1. We remark that f ð1; 1Þ ¼ 1.

As we have noted above, for u > 0,

inf
vf1

f ðu; vÞ ¼ min
vf1

f ðu; vÞ ¼ f ðu; vminÞ:

Further, oð1 þ uÞ is continuous and tends to e�g as u ! y. As well, [17], oð1 þ uÞ � e�g

changes sign in every interval of length 1. Thus in the definition of g we may replace the
two infima by minima.
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Note, by (1.11), that for u > 0, vf 1,

qf ðu; vÞ
qu

¼ v

1 þ u

�
1 � r

�
vð1 þ uÞ � 1

��
> 0

and so f
�
u; vminðuÞ

�
is an increasing continuous function of u. Therefore there is a unique

positive real number y for which

f
�
y; vminðyÞ

�
¼ eg=2:ð2:9Þ

We shall now evaluate y and vminðyÞ. To that end observe that since hðtÞ is strictly
decreasing for tf 2 and hð2Þ ¼ log 2, for each real number t with tf 2 there is a unique
real number u with

hðtÞ ¼ logð1 þ uÞð2:10Þ

and 0 < ue 1. Then, by (2.6),

vminðuÞ ¼
t

ð1 þ uÞ :

Notice that f
�
u; vminðuÞ

�
¼ vminr

�
ðvminÞð1 þ uÞ � 1

�
so

f
�
u; vminðuÞ

�
¼ t

1 þ u
rðt � 1Þ:ð2:11Þ

Taking t ¼ 2:7 we find that f
�
u; vminðuÞ

�
< eg=2 whereas with t ¼ 2:6 we have

f
�
u; vminðuÞ

�
> eg=2. Thus y and vminðyÞ are determined by a real number t0 with

2:6 < t0 < 2:7. By (2.1), (2.2) and (2.3),

hðt0Þ ¼ log
t0

t0 � 1

� �
�
 

1

2
log2 t0 þ Li2

1

t0

� �
� p2

12

!
ð2:12Þ

and, by (2.1), (2.9) and (2.11),

log t0 � logð1 þ yÞ þ log
�
1 � logðt0 � 1Þ

�
¼ logðeg=2Þ:ð2:13Þ

Thus, by (2.10), (2.12) and (2.13),

logðt0 � 1Þ þ log
�
1 � logðt0 � 1Þ

�
þ 1

2
log2 t0 þ Li2

1

t0

� �
¼ log

eg

2

� �
þ p2

12
:

Using MAPLE we find that t0 ¼ 2:637994987 . . . hence that

y ¼ :500462161 . . .ð2:14Þ

and

vminðyÞ ¼ 1:758121634 . . . :ð2:15Þ
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For tf t0 we may calculate u and f
�
u; vminðuÞ

�
from (2.10) and (2.11) and in this

case gðuÞ ¼ f
�
u; vminðuÞ

�
. In order to make this calculation we need to be able to evaluate

rðtÞ and rðt � 1Þ and van de Lune and Wattel [28] have described an e‰cient method
for computing rðtÞ. In the table below we list values of u and gðuÞ obtained on taking
t ¼ 2:6 þ ðk=10Þ for k ¼ 1; . . . ; 14; here we have used the values for rðtÞ given in Table II
of [2].

In order to determine gðlÞ for lf y we need to evaluate the Buchstab function nu-
merically and Marsaglia, Zaman and Marsaglia [19] and Cheer and Goldston [3] have
given e‰cient algorithms for this purpose. In fact Cheer and Goldston, motivated by the
work of Maier [17], have determined (see [3], Table I) the initial relative maxima and min-
ima of o. The absolute minimum of oð1 þ uÞ occurs at u ¼ 1 and oð2Þ ¼ 1=2 hence, for
ye le 1, gðlÞ ¼ eg=2 ¼ :8905 . . . : By [3], Theorem 1 and Table I, the second relative
minimum of oð1 þ uÞ for u > 0 occurs at y2 ¼ 2:46974 . . . and egoð1 þ y2Þ ¼ :9988 . . . :
From (1.12) and (1.13) we see that oð1 þ uÞ ¼ ðlog u þ 1Þ=ðu þ 1Þ for 1e ue 2. Let y1 de-
note the real number with 1e y1 e 2 for which

log y1 þ 1

y1 þ 1
¼ oð1 þ y2Þ;

so y1 ¼ 1:4697 . . . : Since o 0ð1 þ uÞ is continuous for u > 1 and oð1 þ uÞ has only one crit-
ical point, which is a local maximum, in ð1; y2Þ, we deduce that

gðlÞ ¼ egðlog lþ 1Þ
lþ 1

for 1e le y1 and gðlÞ ¼ egoð1 þ y2Þ for y1 e le y2.

3. Preliminary lemmas

Let C be a positive real number. We say that an integer q > 1 is a good modulus with
respect to C if Lðs; wÞ3 0 for all characters wmod q and all s ¼ sþ it with

t l gðlÞ t l gðlÞ

2.7 :4622 . . . :8667 . . . 3.4 :1452 . . . :4631 . . .
2.8 :4032 . . . :8224 . . . 3.5 :1208 . . . :4069 . . .
2.9 :3475 . . . :7707 . . . 3.6 :1000 . . . :3543 . . .
3.0 :2946 . . . :7110 . . . 3.7 :0824 . . . :3056 . . .
3.1 :2474 . . . :6471 . . . 3.8 :0675 . . . :2612 . . .
3.2 :2076 . . . :5839 . . . 3.9 :0550 . . . :2213 . . .
3.3 :1739 . . . :5223 . . . 4.0 :0446 . . . :1861 . . .

Table I
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s > 1 � C

logjqðjtj þ 1Þj :

Lemma 3.1. Let C be a positive real number and let q be an integer, with q > 1, which

is a good modulus with respect to C. There exists a positive number D0, which depends on C

and a positive absolute constant c such that if D is a positive number with log qfDfD0 and

x and h are positive integers with xf qD and x=2e he x then

pðx þ h; q; aÞ � pðx; q; aÞ ¼ 1

jðqÞ
�
Liðx þ hÞ � LiðxÞ

�
�
1 þ Oðe�cD þ e�

ffiffiffiffiffiffiffi
log x

p
Þ
�
;

where the constant implied in the Oð. . .Þ term depends on C only.

Proof. This is [17], Lemma 2, and was deduced by Maier from work of Gallagher
[12]. r

For positive real numbers x and y, let cðx; yÞ denote the number of positive integers
n with n at most x for which the greatest prime factor of n is at most y.

Lemma 3.2. Let e be a positive real number, let x and y be real numbers and put

u ¼ ðlog xÞ=log y. If

ue ðlog xÞ
3
8
�e

then

cðx; yÞ ¼ xrðuÞ
�
1 þ oð1Þ

�
;

as x ! y.

Proof. This is [20], Lemma 3.20, see also [8], (1.4). r

For positive real numbers x and y, let fðx; yÞ denote the number of positive integers
n with n at most x and with all prime factors of n at least y. Further, note that the letter p

under a product sign indicates that the product is taken over prime numbers only.

Lemma 3.3. Let x and y be real numbers and put u ¼ ðlog xÞ=log y. If u is fixed and

u > 1, then

fðx; yÞ ¼ xegoðuÞ
Q

pey

1 � 1

p

� ��
1 þ oð1Þ

�

as x ! y.

Proof. This follows from [1] and Mertens’ Theorem, see also [5]. r
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4. Proof of main theorem

Let e be a real number with 0 < e < 1. We shall denote by d a real number with
0 < d < 1 which depends on e and by D a positive integer which depends on d:

As before let y be the positive real number for which gðyÞ ¼ eg=2. Put b ¼ lim
x!y

sðxÞ; b
exists since sðxÞ is non-increasing. We distinguish two cases. In the first case b < y while in
the second case bf y.

For each positive integer z put

P1ðzÞ ¼
Q

pez

p

and

D1ðzÞ ¼ 2P1ðzÞD:

If b < y find v0 f 1 such that f
�
s
�
D1ðzÞ

�
; v
�

is minimized at v0. We may suppose by taking
z su‰ciently large, that v0 f 1:7, see (2.15). Put

PðzÞ ¼

Q
z1=v0epez

p if b < y;

P1ðzÞ if bf y;

8<
:

and

DðzÞ ¼ PðzÞD:ð4:1Þ

Notice that since v�1
0 < 3=5,

log PðzÞ ¼
�
1 þ oð1Þ

�
z;ð4:2Þ

by the prime number theorem.

In 1935 Page [21], see also [4], p. 95, proved there is a positive number C0 such that
there is at most one primitive character w modulo q for an integer qePðzÞ for which
Lðs; wÞ has a zero s with s ¼ sþ it and

s > 1 � C0

logjqðjtj þ 1Þj :ð4:3Þ

Further if such a zero exists it is real, unique and is associated with a real character. If no
such zero exists, then certainly Lðs; wÞ is non-zero for

ReðsÞ > 1 � C0

log
�
PðzÞðjtj þ 1Þ

� ;ð4:4Þ

and for all characters w modulo PðzÞ. If such a zero s exists, then we may choose z 0 such
that
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1 � C0

2 log Pðz 0Þ > s > 1 � C0

log Pðz 0Þ :

In this case Lðs; wÞ is non-zero for

ReðsÞ > 1 � C0

2 log
�
Pðz 0Þðjtj þ 1Þ

� :
Therefore there exist arbitrarily large integers z for which Lðs; wÞ is non-zero for

ReðsÞ > 1 � C0

2 log
�
PðzÞðjtj þ 1Þ

� ;
and for all characters w modulo PðzÞ. We shall assume henceforth that z is such an integer.
Thus PðzÞ is a ‘‘good’’ modulus with respect to the constant C0=2 in the sense introduced
by Maier in [16].

Suppose that bf y and let l be the smallest real number with lf b for which

oð1 þ lÞ ¼ min
ufb

oð1 þ uÞ:

If l > b, choose d to satisfy

ð1 þ dÞb < lð4:5Þ

and put

U ¼
��
ð1 þ dÞzD

�1þl�
:ð4:6Þ

If l ¼ b or if b < y put

U ¼
��
ð1 þ dÞzD

�1þsðDðzÞÞ�
:ð4:7Þ

Let R denote the set of integers from 1 to U which are coprime with PðzÞ: Let
S denote the number of primes of the form PðzÞk þ l with 1e leU and
PðzÞD�1 < k e 2PðzÞD�1. For each integer l with 1e leU which is coprime with
PðzÞ we may estimate the number of primes of the form PðzÞk þ l with
PðzÞD�1 < k e 2PðzÞD�1 by Lemma 3.1 with a ¼ l, q ¼ PðzÞ and x ¼ h ¼ PðzÞD. By
(4.2), for z su‰ciently large, the number is at most

1

j
�
PðzÞ

� PðzÞD

log
�
PðzÞD

� �1 þ Oðe�cDÞ
�

hence, for D su‰ciently large in terms of d, at most

ð1 þ dÞ PðzÞD�1

log
�
PðzÞD� Q

p jPðzÞ
1 � 1

p

� ��1

:
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Therefore

S e ð1 þ dÞjRj PðzÞD�1

log
�
PðzÞD� Q

p jPðzÞ
1 � 1

p

� ��1

:

Thus for some k with PðzÞD�1 < k e 2PðzÞD�1 the number of primes in the interval
½PðzÞk þ 1;PðzÞk þ U � is at most

ð1 þ dÞ jRj
log
�
PðzÞD

� Q
p jPðzÞ

1 � 1

p

� ��1

:ð4:8Þ

We shall now estimate jRj. Suppose first that b < y. Put

R1 ¼ f1e neU : the greatest prime factor of n is less than z1=v0g

and

R2 ¼ f1e neU : n is divisible by a prime p with p > zg:

Note that

RLR1 WR2:ð4:9Þ

Observe that, for z su‰ciently large,

log U

v�1
0 log z

¼ v0

�
1 þ s

�
DðzÞ

�� 
1 þ logð1 þ dÞD

log z
þ O

1

z

� �!
ð4:10Þ

f v0

�
1 þ s

�
DðzÞ

��
:

If b > 0 then v0

�
1 þ s

�
DðzÞ

��
is bounded as z tends to infinity. If b ¼ 0 then, by (2.7),

v0 ¼
�
1 þ oð1Þ

� log
1

s
�
D1ðzÞ

�
 !

log log
1

s
�
D1ðzÞ

�
 ! :

Since sðxÞ > 1=log log x for x su‰ciently large by (1.7) and D1ðzÞ < e2zD, for z su‰ciently
large, we find that

s
�
D1ðzÞ

�
> sðe2zDÞ > 1

log 2zD
;

hence that

v0 ¼ Oðlog log zÞ:ð4:11Þ
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In particular, by (4.7) and (4.11),

log U

v�1
0 log z

¼ O
�
ðlog UÞ1=4�

whence, by Lemma 3.2,

jR1j ¼ Ur
log U

v�1
0 log z

 !�
1 þ oð1Þ

�
:

Since r is a non-increasing function of u

jR1jeUr
�
v0

�
1 þ s

�
DðzÞ

����
1 þ oð1Þ

�
:ð4:12Þ

There exists a positive real number B1 such that

P
pez

1

p
¼ log log z þ B1 þ O

1

log z

� �
;ð4:13Þ

see [13], 22.7.4. Thus by (4.7) and (4.13),

jR2jeU
P

z<peU

1

p
¼ U

 
log log U � log log z þ O

1

log z

� �!

¼ U

 
log
�
1 þ s

�
DðzÞ

��
þ log

 
log z 1 þ logð1 þ dÞD

log z

� �!
� log log z þ O

1

log z

� �!
:

But by (4.1) and (4.2), DðzÞ < e2zD for z su‰ciently large and so, by (1.7),

jR2jeU
�
log
�
1 þ s

�
DðzÞ

���
1 þ oð1Þ

��
:ð4:14Þ

Therefore, by (4.9), (4.12), and (4.14),

jRjeU
�
r
�
v0

�
1 þ s

�
DðzÞ

���
þ log

�
1 þ s

�
DðzÞ

���
1 þ oð1Þ

��
:

Thus from (4.8) and Mertens’ Theorem, see [13], Theorem 429, the number of primes
in the interval ½PðzÞk þ 1;PðzÞk þ U � is at most

ð1 þ 2dÞ U

log
�
DðzÞ

� �v0

�
log
�
1 þ s

�
DðzÞ

��
þ r
�
v0

�
1 þ s

�
DðzÞ

�����
:ð4:15Þ

Take x ¼ PðzÞk. Then

DðzÞ < xe 2DðzÞ:ð4:16Þ

Further, from (4.1) and (4.2),

logDðzÞ ¼
�
1 þ oð1Þ

�
zD:ð4:17Þ
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Thus, for z su‰ciently large,

U >

 
1 þ d

2

� �
zD

!1þsðDðzÞÞ

>
�
log
�
2DðzÞ

��1þsðDðzÞÞ
;

and, since s is non-increasing,

U > ðlog xÞ1þsðxÞ:ð4:18Þ

On the other hand, by (4.7) and (4.17),

U

log
�
DðzÞ

�e ð1 þ 2dÞðzDÞsðDðzÞÞ

e ð1 þ 2dÞ
�
ð1 þ dÞ log x

�sðDðzÞÞ

e ð1 þ 2dÞð1 þ dÞsð1Þðlog xÞsðDðzÞÞ

and so, by (1.8) and (4.16),

U

log
�
DðzÞ

� e ð1 þ 2dÞð1 þ dÞsð1Þðlog xÞ
o 1

log log x

� 	
ðlog xÞsðxÞ:

Thus we can choose d su‰ciently small and z su‰ciently large so that

U

log
�
DðzÞ

� e 1 þ e

2

� �
ðlog xÞsðxÞ:ð4:19Þ

Since xeD1ðzÞ and s is non-increasing, sðxÞf s
�
D1ðzÞ

�
hence

g
�
sðxÞ

�
f g

�
s
�
D1ðzÞ

��
:ð4:20Þ

Suppose that b > 0. Then gðbÞ > 0. Further f ðu; v0Þ is a continuous function of u for
u positive, DðzÞeD1ðzÞ and lim

z!y
s
�
DðzÞ

�
¼ b. Thus, for z su‰ciently large,

f
�
s
�
DðzÞ

�
; v0

�
< ð1 þ dÞ f

�
s
�
D1ðzÞ

�
; v0

�
¼ ð1 þ dÞg

�
s
�
D1ðzÞ

��
:ð4:21Þ

Suppose next that b ¼ lim
z!0

s
�
DðzÞ

�
¼ 0. Then, since s

�
DðzÞ

�
f s
�
D1ðzÞ

�
and rðuÞ is a

non-increasing function of u for u positive,

v0r
�
v0

�
1 þ s

�
DðzÞ

���
e v0r

�
v0

�
1 þ s

�
D1ðzÞ

���
:ð4:22Þ

Further, by the prime number theorem,

D1ðzÞ
DðzÞ e 2

� Q
pez1=v0

p

�D

¼ eð1þoð1ÞÞz1=v0 D:

Since DðzÞeD1ðzÞ, v�1
0 e 3=4 and (4.17) holds, for z su‰ciently large,

196 Maier and Stewart, On intervals with few prime numbers



DðzÞeD1ðzÞeDðzÞ3=2:ð4:23Þ

Therefore, by (4.23), (1.9) and the fact that b ¼ 0,

s
�
DðzÞ

�
< 1 þ d

2

� �
s
�
D1ðzÞ

�

and thus

v0 log
�
1 þ s

�
DðzÞ

��
< ð1 þ dÞv0 log

�
1 þ s

�
D1ðzÞ

��
;ð4:24Þ

for z su‰ciently large. It follows from (4.22) and (4.24) that (4.21) holds when b ¼ 0 and
when 0 < b < y.

Therefore, from (4.15), (4.19), (4.20) and (4.21), provided that d is su‰ciently small
that ð1 þ 2dÞð1 þ dÞð1 þ e=2Þ < 1 þ e we find that the interval starting at x of length
ðlog xÞ1þsðxÞ contains at most

ð1 þ eÞg
�
sðxÞ

�
ðlog xÞsðxÞ

prime numbers as required.

Suppose now that bf y. It follows from Lemma 3.3 that, for z su‰ciently large,

jRje ð1 þ dÞU
Q

p jPðzÞ
1 � 1

p

� �
egoð1 þ lÞ

hence, by (4.8), the number of primes in the interval ½PðzÞk þ 1;PðzÞk þ U � is at most

ð1 þ dÞ2 U

log
�
PðzÞD

� egoð1 þ lÞ:ð4:25Þ

If l ¼ b we take x ¼ PðzÞk so that DðzÞ < xe 2DðzÞ. Then, by (4.1), (4.2) and (4.7),

U > ðlog xÞ1þsðxÞ

and (4.19) holds, as before, for z su‰ciently large. Therefore, the number of primes in the
interval ½x; x þ U � is at most

ð1 þ dÞ2 1 þ e

2

� �
egoð1 þ bÞðlog xÞsðxÞ;

which, since o, hence g, is continuous and lim
x!y

sðxÞ ¼ b, is at most

ð1 þ dÞ3 1 þ e

2

� �
g
�
sðxÞ

�
ðlog xÞsðxÞ;

for z su‰ciently large. Choosing d so that ð1 þ dÞ3ð1 þ e=2Þ < 1 þ e our result follows.
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On the other hand if l > b we put l ¼
��
ð1 þ dÞzD

�1þsðDðzÞÞ�
. Then, by (4.25), there is

a subinterval of ½PðzÞk þ 1;PðzÞk þ U � of length l with at most

ð1 þ dÞ3 l

log
�
PðzÞD

� egoð1 þ lÞ

primes. Take x to be the start of that subinterval. Since xe 2DðzÞ þ U e 3DðzÞ for z su‰-
ciently large, by (4.1) and (4.2),

l > ðlog xÞ1þsðxÞð4:26Þ

and the number of primes in the interval ½x; x þ l� is at most

ð1 þ dÞ4 1 þ e

2

� �
egoð1 þ lÞðlog xÞsðxÞ;ð4:27Þ

as in the proof of (4.19). For z su‰ciently large,

be sðxÞe ð1 þ dÞb;

hence, by (4.5),

g
�
sðxÞ

�
¼ egoð1 þ lÞ:ð4:28Þ

On choosing d so that ð1 þ dÞ4ð1 þ e=2Þ < 1 þ e our result follows from (4.26), (4.27) and
(4.28). r
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