On divisors of terms of linear recurrence
sequences

By C. L. Stewart*) at Waterloo

1. Introduction

Let r and s be integers with r? 4+4s non-zero. Let u, and u, be integers and put
Up=TUy_+SUy_2,
for n=2,3,.... Then for n=>0 we have
(1) u,=ao"+bp",
where o and f are the two roots of x> —rx —s and

uof—u,
a=

Uy — oot
, b= )
f—a p—a
whenever o+ ff. The sequence of integers (u,); -, is a binary recurrence sequence. It is

said to be non-degenerate if ubaf+0 and »»;— is not a root of unity.

In 1934 Mahler [7], [9] showed, by a p-adic generalisation of the Thue-Siegel
theorem, that the greatest prime factor of u,, the n-th term of a non-degenerate binary
recurrence sequence, tends to infinity with n. However, because of the ineffective
nature of the Thue-Siegel-Roth theorem, Mahler’s proof does not yield an effective lower
bound, which tends to infinity with n, for the greatest prime factor of u,. In 1967
Schinzel [16], by employing a p-adic theorem of Gelfond in place of the p-adic Thue-
Siegel Theorem used by Mabhler, was able to give such a lower bound. For any integer
m let P(m) denote the greatest prime factor of m with the convention that

PO)=P(+1)=1.
Schinzel proved that

(2) P(u,) > Cn (logn)e,
where C= C(r, s, ug, u,), ¢; and ¢, are effectively computable positive numbers; indeed

1 7 1 7
we may take ¢, =% and Cl:ﬁ if « and f are integers, ¢, =133 and ¢, = T otherwise.

*) This research was supported in part by Grant A 3528 from the Natural Sciences and Engineering
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In this article we shall obtain estimates from below for the greatest prime factor
of u, and the greatest square-free factor of u,, when u, is the n-th term of a linear
recurrence sequence. For any integer m let Q(m) denote the greatest square-free factor
of m with the convention that Q(0)=Q(+1)=1. Thus if m=pf --- p’ with p,,...,p,
distinct primes and h,,. .., h, positive integers then Q(m)=p, -+ p,. In our first theorem
we improve on Schinzel’s estimate (2).

Theorem 1. Let u,, defined as in (1), be the n-th term of a non-degenerate binary
recurrence sequence and let d denote the degree of o over the rational numbers. Then

b o
3 P C|— , Gl—=),
( ) (un) >0 (log n> Q(un) >C; <(log n)z)
where Cy and C, are positive numbers which are effectively computable in terms of a and
b only.

We remark that if « and f are real quadratic irrational numbers then Theorem 4
gives a better lower estimate for Q(u,) in terms of n than Theorem 1 does.

Let a, b, x and y be non-zero integers with x =+ +y. Since ax"+by" is the n-th
term of the recurrence sequence defined by the relation w,=(x+y) u,_, —xyu,_, with
initial terms u,=a+b and u, =ax+by, we have, for any integer n larger than one,

1
2

Pax"+by") > G (—f’ «> :
logn
and

n
X"+ by" B

Qax"+by )>C4(logn)2

where C; and (4 are positive numbers which are effectively computable in terms of a

and b only. Our proof of Theorem 1 depends upon estimates for linear forms in the

logarithms of algebraic numbers, due in the complex case to Baker [1] and in the

p-adic case to van der Poorten [13].

A Lucas sequence is a non-degenerate binary recurrence sequence (7,);%, with
to=0 and t,=1. For such sequences the results of Theorem 1 can be improved. It
follows from results of Schinzel, Shorey and Stewart [17], [18], [22] and [23] that if
t, is the n-th term of a Lucas sequence then

(g(m)
for n > Cg, where g(n) denotes the number of square-free divisors of n, Cy is an absolute
constant and Cs is a positive number which is effectively computable in terms of «
and f only.

lo
P(t,) = max {n— 1, G 'L—gi}},

We are able to strengthen (3) by means of an elementary argument, whenever
u, is non-zero and is divisible by a prime number p which does not divide u,,, for any
non-zero u,, with 0= m <n. We shall call such a prime number p a characteristic divisor
of u,. Our definition extends that of Carmichael [4] who defined characteristic divisors
for Lucas sequences.
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14 Stewart, On divisors of linear recurrence sequences

Theorem 2. Let u, be the n-th term of a non-degenerate binary recurrence sequence,
defined as in (1), and put v,=bo"+apf" for n=0. Let p be a characteristic divisor of
u, for n>3. Then

(4) p ; n— C7 >
where C, is a positive number which is effectively computable in terms of a and b only.
Further, if u,v,, %0 for all m=0 then

p2n+[Cglogn],

where Cg is a positive number which is effectively computable in terms of a, b, o and B.

Birkhoff and Vandiver [3] and Zsigmondy [26] proved that if ¢ and b are coprime
non-zero integers with a & +b then u,=a"—b" has a characteristic divisor for n> 6.
Similar results have been obtained for the Lucas numbers, see [17] and [23], although
no comparable result is known in general. Ward [25] proved that for each non-
degenerate binary recurrence sequence (u,),-, there are infinitely many prime numbers
which divide at least one non-zero term of the sequence. Thus, from (4),

P(u,) >n—GC;,

for infinitely many integers n. In fact, we are able to obtain the following stronger
assertion, again by an elementary argument.

Theorem 3. Let (u,) -0 be a non-degenerate binary recurrence sequence. For all
integers n, except perhaps for a set of asymptotic density zero,

(5 P(u,) >e(n)nlogn,

where €(n) is any real valued function for which lim g(n)=0.

For the case of a non-degenerate Lucas sequence Shorey and Stewart, [18] and
e(n) n(logn)?

[22], proved that (5) applies with e(n)n logn replaced by
log logn

For general linear recurrence sequences much less is known. Let r,..., r, and
Ug,. .., U be integers and put

Up=T1Up_ 1+ + Ny
for n=k, k+1,.... We shall denote the field of rational numbers by Q. It is well
known, see page 62 of [6], that
(6) u,=fi(n) af + - +£(n) o,

where f;,..., f are non-zero polynomials in n with degrees less than /..., / respec-
tively and with coefficients from Q(a,,..., ®) where a,,..., a, are the non-zero roots
of the characteristic polynomial

k k—1
Xi—r X 2,
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and /,,..., I, are their respective multiplicities. We shall say that the sequence (u,)%,
is non-degenerate if t>1 and «;, for 1=i=1t, and o/a; for 1=i< =<t are different
from roots of unity. In 1935 Mabhler [8] proved that if (u,)%, is a non-degenerate
linear recurrence sequence then |u,| tends to infinity with n. In 1975 Mignotte [10]
obtained a good lower estimate for |u,| in terms of n when the characteristic polynomial
of the recurrence sequence has at most three roots, which are simple, of maximum
modulus. It has not yet been established that if (u,) -, is a non-degenerate linear re-
currence sequence then P(u,) tends to infinity with n'). This is a consequence of the
next theorem in the special case that the characteristic polynomial of the sequence has
one root of largest modulus.

Theorem 4. Let K be a field of degree D over Q and let a be a real algebraic number
from K with absolute value greater than one. Let u(n) be an integer which can be written
in the form

u(n) = f(n) o+ h(n),

where f is a non-zero polynomial with coefficients from K and

(7 lh(nm)| <af’",
for some 6 with 0 <o <1. If f(n) and h(n) are non-zero then, for any ¢>0,
(8) P(u(n)>(1—¢ logn, 9) O (u(n)>n'"c,

for n greater than Cy, a number which is effectively computable in terms of ¢, d, a, f, D
and the discriminant of K.

The proof of Theorem 4 depends upon a version, due to Waldschmidt [24], of
Baker’s theorem concerning lower bounds for linear forms in the logarithms of algebraic
numbers. The important feature of Waldschmidt’s result in this context is the precise
dependence in his lower bound on the number of logarithms in the linear form.

For any integer m let w(m) denote the number of distinct prime divisors of m.
With the hypotheses of Theorem 4 and the additional assumption that

logn
(log logn)?

o (u(n)) <

we are able to prove by a minor modification of the proof of Theorem 4, see for example
Theorem 2. 2 of [21], that for any ¢>0,
(@)
P(u(n))>e" ,
for n greater than C,o, a number which is effectively computable in terms of ¢, , «, f, d

and the discriminant of K. The above estimate links P(u(n)) and  (u(n)). Indeed for the
proof of Theorem 4 we suppose that P(u(n)) is less than logn and we deduce that

1

w(u(n)) is at least 1—2) 2" The result then follows from the prime number
2 Jloglogn

theorem.

1) A. J. van der Poorten announced such a result at the Colloquium on Number Theory of the Janos
Bolyai Mathematical Society, July 20—26, 1981, as joint work with J. P. Glass, J. H. Loxton, and H. P. Schlicke-
wei.

kid
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A simple application of Theorem 4 yields the following result.

Corollary 1. Let u, be the n-th term of a non-degenerate linear recurrence se-
quence, defined as in (6), and assume that |a;|> |o;| for j=2,...,t. If u(n)*f, (n)o} then,
for any £¢>0,

(10) P(u,)>(1—¢)logn, Qu,)>n'"*,
SJor n> Cyy, a number which is effectively computable in terms of ¢, ay,..., o, and fi,. . ., f.

_ Note that since |o;| > |a| for j=2,..., ¢, o, is a real number. L. E. Shparlinskij [20],
see [12], has proved the estimate (10) for P(u,) with (1 —e¢) replaced by a positive number
Cy, in the case that f(n) is a non-zero constant. In [21] we obtained (8) with 1—¢
replaced by C;;, a positive number which is effectively computable in terms of o, 6,
f and d, and at Oberwolfach in 1977 M. Mignotte [11] observed that such an estimate
could be applied to sequences of the form ([10"])2, and ({A6"))%, where A and 6 are
non-zero real algebraic numbers; for any real number x, [x] denotes the greatest integer
less than or equal to x and {x) denotes the nearest integer to x. In particular, we have:

Corollary 2. Let A and 0 be non-zero real algebraic numbers with (0| >1. If A0" is
not an integer then

P([20")>(1—¢)logn,  Q([A0"])>n'"%,
for n greater than Cy4, a number which is effectively computable in terms of A and 0 only.

In this connexion we remark that if 0 is a real irrational algebraic number, n is
a positive integer composed of the primes ¢q,,..., g, only and € is any positive real
number then

P([n0])>(1—¢) loglogn, 0([n6]) > (logn)' ¢,

for n greater than C;s, a number which is effectively computable in terms of q,,. . ., g,
and 6 only. The proof of this result is similar to that of Theorem 4.

I would like to thank I’Université de Strasbourg for its hospitality since it was
during a visit to ’'Université de Strasbourg that this paper was prepared for publication.

2. Preliminary lemmas

Let ay,...,®, be non-zero algebraic numbers. Put K=0Q(ay,..., «,) and denote
the degree of K over Q by D. We shall define the height of an algebraic number f§ to be

d
ladl l:[l max {1, |8},

d
where a,X%+---4+ao=a,; [ (X—p;) is the minimal polynomial of B in Z[X]. Let
. N i=1
Ay,..., A, be upper bounds for the heights of «,,..., a, respectively and let b,,..., b,
be rational integers with absolute values at most B. We shall assume that A4,,..., 4,
and B are all at least 3. Let /;,...,/, be complex numbers satisfying e"=a; for

i=1,...,n and put
A=bll1+"‘+bnlﬂ.
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For any non-zero complex number z we shall denote the principal branch of the loga-
l

1
rithm of z by logz and for any positive integer m we shall denote exp < o’f’ ) by z
For j=1,...,n, put

1l
V;=max {log A;, I;

By choosing indices for the a;s appropriately we may assume that
NEWs-=V.
Recently Waldschmidt proved the following result.
Lemma 1. Let g be a prime number such that the field K (a%,. . aé) has degree q"
over K. If A+0 then
(11) | 4] > exp (—c"n"V; -+ V,(log B+log ¥;) log ¥, ),
where c is a positive number which is effectively computable in terms of D and q only.
Proof. This is Proposition 3. 8 of [24].
Waldschmidt established the above inequality as a step in the:1 proof 1of a more

general result where no hypothesis is made on the degree of K(of,..., a?) over K.
1 1

However, in removing the condition on the degree of K (a?,. . ocE) over K he is
forced to replace n" by n®" in the expression on the right hand side of (11). The
weaker estimate n?" leads to inequalities like (8) and (9) of Theorem 4 but with 1 —¢

1 L . G
replaced by — 7 & In [14], Loxton and van der Poorten obtained an inequality similar

to that of Lemma 1 with a dependence on n of the form n"*°™ and their result could
also be used here. To profitably apply Lemma 1 we shall need, because of the condition
1 1

on the degree of K (oc?,. ey af) over K, the following three lemmas which enable us to
rework the “final descent” in Waldschmidt’s proof of his general result.

Lemma 2. If l,,. .., I, are linearly dependent over Q then there exist rational integers
ty,..., t,, not all zero, such that

tli+-+1t,0,=0

with
V- ¥,
|l S On D) ———".
v . W
Proof. This is Lemma 4. 1 of [24]. A similar result is Theorem 1 of [15].
Lemma 3. If ..., 1, are linearly independent over Q then there exist algebraic
numbers «f,..., o, from K with heights at most Aji,..., A, respectively and 1i,..., 1,

satzsfymg e”—oc for j 1,..., n such that:
' a) For each prime number q such that K contains the g-th roots of unity, the field

((al) yeens (oz,,)" ) has degree q" over K.
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b) For 1=s=n,

l 7 /2
ax{ogAIll

<
D D} it-+Vs.

¢) There exist rational integers mg ; with 1=s=<n and 0<j=<s such that for
1=s5=n,

ms,Ols 2 ms Jj 19

with mg 0 >0, and

1< 3.2 s
Joax. Ims, | = (9D>s*Vy)*.

Proof. This is Proposition 4. 3 of [24].

Lemma 4. Let q be a prime number and let K be an algebraic number field which
contains the q-th roots of unity and the non-zero algebraic numbers ay,..., o, If
1 1
K(af,. .., a8) has degree less than q" over K then for some y in K we have
a'll...a'"='yq,

where ry,...,r, are rational integers, not all zero, with 0= r,=q—1 for i=1,...,n.
Proof. This is Lemma 3 of [2].

Denote by g a prime ideal of R, the ring of algebraic integers of K, lying above
the rational prime number p and for any non-zero x in X let ord,(x) denote the exponent
of g in the canonical decomposition of the fractional ideal generated by x into prime
ideals of R. Write e, for the ramification index of g and put

(1, e
e=| 5+ ]

G, =(Normg, ) (Normg,, 0 —1).

and

In 1976, van der Poorten [13] obtained the following result.
Lemma 5. If o' --- al»— 140 then
ord, (o} -+ aﬁ"f 1)< Cfg-é‘-'il-’— log 4, --- log A,(log B)?,
where C is a positive number which is effectively computable in terms of n and D only.
" Proof. This is Theorem 2 of [13].
We shall use Lemma 5 in our proof of Theorem 1. Our next result, which gnves

an estimate for the rate of growth of a non-degenerate bmary TECUITENce sequence, is
used in the proofs of Theorem 1 and Theorem 3. : :
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Lemma 6. Let u,=aa"+bp" be the n-th term of a non-degenerate binary recurrence
sequence. Then
| > ||~ Colem™,

SJor n>Cy, where Cy and C, are positive numbers which are effectively computable in
terms of a and b only.

Proof. This is Lemma 5 of [19] and Lemma 3. 2 of [21]. The proof depends upon
a result of Baker [1].

Let (z,)7%0 be a Lucas sequence. Since to=0 and #; =1 we have from (1),
o — ﬂ"
a—p°’

for n=20. For the proof of Theorem 2 we require the following result concerning
characteristic divisors of Lucas numbers.

(12) t,=

Lemma 7. Let (t,)i-0 be a Lucas sequence, as in (12). If p is a prime number
which does not divide af then p divides t, for some positive integer n and if | is the
smallest positive integer for which p divides t, then

p=l—1.

Proof. We first remark that if p is a prime number which divides ¢, =a+ f then
the result holds. Further, the result applies for p=2 since either 2 divides ¢, or 2
divides aft;. Next, as in Lemma 4 of [22], we observe that if p is a prime number
which does not divide ¢, af(x— B)? then p divides t,-1tp+1 and again our result applies.
Finally, as in Lemma 5 of [22], if p is greater than 2 and p divides (x— B)* then p
divides ¢,. The assumption is made in [22] that «f and «+ B are coprime integers but
this assumption is not used in the proofs of the preceding two assertions.

Our final lemma is used in the proof of Theorem 3. For any rational number x
let |x|, denote the p-adic value of x, normalized so that |p|,=p~'.

Lemma 8. Let (t,)% be a Lucas sequence, as in (12), with (a+ ) and af coprime.
Let p be a prime number which does not divide ap, let | be the smallest positive integer
JSor which p divides t, and let n be a positive integer. If | does not divide n then

ltal p=1.
If, for some integer k, n=kl then, for p>2,

ltal = 11:l p 11 s
while for p=2,

ltal2=1t)|2 for k odd,
and

[ta2 =222l |kl; for k even.
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Proof. We remark that Lemma 7 assures us that / exists. For any positive integers
n and [ we have (,, t}) =1, ;) by Theorem VI of [4]. Thus if p divides ¢, then p divides
tm 1 and, by the minimality of /, (n,/)=1I. Thus / divides n and this proves our first
assertion.

If n=k/ the lemma follows from Theorem X of [4].

3. The proof of Theorem 1

Recall that u,=ao"+bp" for n20 and u,=ru,_,+su,_, for n=2,3,.... Put
(r?, s)=k and for any 6 in the ring of algebraic integers of Q(x) let [0] denote the
2 2
ideal generated by 6 in that ring. Note that % and % are the roots of
2 2
2 (T +2s s
() ()

2

+

k
2\n 2\n
v,,=k'”uz,,=a<ﬁk—> +b<%>,

2\n

w,=k~ u2n+1—aa<k> +bﬂ<ﬁ )

for n=0,1,2,.... Since

and so are algebraic integers in Q(«). Further !

(e} [ )=

and

2 2
S and (%) are coprime hence

P(“Zn)gp(vn)’ Q(u2n)gQ(vn)a P(u2"+1)gP(W,,) and Q(u2n+l)gQ(wn)a

by considering the non-degenerate binary recurrence sequences (v,);=o and (w,);%o in
place of (u,)o we may assume, without loss of generality, that ([«], [ f]) =[1]. Further,
we may assume that |a| > |B|. Since « and B are non-zero algebraic integers of degree

a . .
at most 2 and — is not a root of unity we have

B
(15) la| 2 /2.

Let ¢y, ¢3,... denote positive numbers which are effectively computable in terms
of a and b only. From (15) and Lemma 6 we have

(16) log Iu..I > log|al,

2

for n>c,. We shall assume henceforth that n>c;.
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Let o be a prime ideal of the ring of algebraic integers of Q(«) lying above the
rational prime number p. For any x in Q(a) let |x|, denote the p-adic value of x

. : d . .
normalized so that |x|,=p~/ where j= % X p divides af then, since ([«], []) =[1],

ord, p

(17 |talp >p™ .

On the other hand if p does not divide af then

—a\[a\"
lun|p = | (_b—-) (?) -1 @ |bﬁn|p P
and plainly
(18) | 168", = bl >p~
We now employ Lemma 5 with o, =——b—a, oy =%, by =1 and b, =n. Since d, the degree

of «, is at most 2, e, is also at most 2 hence g=0 for p>5. Thus G, <cyup® and
consequently

o @)

where 4 denotes the maximum of 3 and the height of %. From (17), (18) and (19) we.

—cs E%log A(log n)?

p=>P

conclude that
(20) log(lu,l, ") < cep®log A(logn)?,

for any prime number p. Write

Iun‘— ' Pr ’

where p,,..., p, are distinct primes and /j,. .., /, are positive integers. Certainly A4 is at
most 3|a|? and so, by (15), at most |a|%. Thus, from (20),

1) log [iy] < ¢, log ] (logn)® <é p;’).

Comparing (16) and (21) we find

(22) E pi.

. “® (log n)2 i=1
Put p, = P(u,). The right harid side of inequality (22) is at most rp# and so by the prime
number theorem

d+1

Pr
® (logn)? " logp,’

Journal fir Mathematik. Band 333 4
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Thus
1

n a+1
P(u,)=p,>cyo (@) ,

as required. Furthermore,
r d r
(H pi) 2 X i,
i=1 i=1

and so the desired estimate for 0 (u,) follows from (22).

4. The proof of Theorem 2

Let m be an integer larger than 3 and let p be a characteristic divisor of u,,.

Assume first that p divides af. Let o be a prime ideal which lies above p in the
ring of algebraic integers of Q(«). If " exactly divides [o], the ideal generated by a,
and p" exactly divides [ 8] then one at least of /; and /, is non-zero. If we assume that
both /; and /, are positive then the recurrence relation

(23) un=(a+ﬁ) un—l_aﬂun—Z’

for n=2,3,..., shows that g, and hence [p], divides [u,] and [u;]. Since m is greater
than 3 we have u,=u;=0. In this case, however, (u,), is a degenerate sequence
contrary to our assumption. Thus one of /; and /, is zero, and without loss of generality
we may assume that /, is zero. Since p is a characteristic divisor of u,=aa™+bp"
and m > 3 we deduce that g divides [(f — a) b] = [u; — uya] whence g divides [u,]. Thus
u; =0 and by (23) p divides u, hence u,=0. Again we find that (u,)2, is degenerate
contrary to our assumption. Therefore p does not divide af.

—p"
«—p
Since p does not divide af there exists, by Lemma 7, a smallest posmve integer / for
which p divides ¢, and / satisfies the inequality

o" . .
Let ¢,= be the n-th term of the Lucas sequence associated with (u,).

If m <1 then, by (24), ,
(25) | pzm,

and (4) holds. Therefore we may assume that m=/. We have
Up—ad™ a—B) ty=B'up-,,

and thus, since a(x— B) is an algebraic integer and p does not divide ap, p divides
-1» But p is a characteristic divisor of u,, so u,_,=0. From Lemma 6, m—I/= C,—1
whenoe from (24),

-p=m—GC;.
This establishes inequality (4).
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We shall now assume that «,v, +0 for m>0. By the preceding paragraph m <!
and so : : o

a(e—p) t,— o ™up=—p"v;_ .

Plainly p divides v,_,,. Thus
(26) ps|bod™m+ap ™,
since v;_,,+0. We may assume that |«| =|B| hence, from (25) and (26),
m= (al +1B) "

We have |a| /2, as in (15), so

logm < (I—m) ¢,
whence

m+citlogm<l,

for a positive number ¢, which is effectively computable in terms of a, b, « and B.
The Theorem now follows from (24).

5. The proof of Theorem 3

We may assume, as in the proof of Theorem 1, that ([«], [#])=[1] and that
|a] = |B|. To obtain our result we shall assume that there exists a function &(n) which
tends to zero as m tends to infinity and a positive constant ¢ such that

27 P(u,) <e(m) mlogm,

for a set of integers m of positive upper density 6 and we shall show that this leads
to a contradiction. Plainly we may assume that e(m) is strictly decreasing and that
e(m)>(logm)~" for m>1. Accordingly, we can find arbitrarily large integers n such

that between n and 2n there are at least % integers m which satisfy (27).

Put T=¢(n) 2nlog2n and for each prime p less than T let u,,,, be the term with
n=m(p)=<2n which is divisible by the highest power of p; if more than one term is
divisible by p raised to the largest exponent then denote the one with least index by

0 .
Unp- For n sufficiently large e(n) is less than 10 and by the prime number theorem
on

3 integers of the form m(p). Denote by M the set of those integers

there are at most

m between n and 2n which are not associated with a prime )4 less than T and for

which (27) holds. Plainly M has at least 56_n members. To obtain a contradiction we

compare estimates for | [T #,,|.
meM

4*
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We first estimate the product from below. From: Lemma 6 |u,|> |a|™ Colosm,
where (, is a positive number which is effectively computable in terms of a and b

only. For n sufficiently large, m — C, logm >% and thus
on?

(28) | TT thl > 1ol 2.

meM

Alternatively, we can prove, in an elementary way, that at most three integers m
with n=m = 2n satisfy

3"1
|t < [0 *"
and then estimate (28) again follows. This approach has the virtue that the proof be-

3 .
comes completely elementary. Accordingly, assume that |u, | < lalz"' for integers n; and
n, with n; >n, 2n. Certainly |a| =| S| in this case. Then

a\% b
G
for i equal to 1 and 2. Thus
a\™m 2\
(F) _<7f>

_5
Jor = — B <2lal T 1B ET

1
- —gm
<lal"t 1Bl %",

n2
<2lal™" |8 *

and so

. . . N 6
Since the left-hand side of the above inequality is at least 1 we see that n; >—5— n, for n

4
sufficiently large and since (%) > 2 this establishes our claim.

We next estimate the product from above. Put

un o uln
S(p) =122,
P - Ump)
Clearly S
(29) T uls n 1S5,
o ) T meM

and for our purpose it will be sufficient to estimate |S(p)|, for p less than T.

We first estimate |S(p)|, for those primes p which divide aB. Let o be a prime
ideal divisor of [p] with ramification index e,. Then g divides either [«] or [B] and
we shall assume, without loss of generahty, that p divides [a]. Put a'=(f—®) a
and b'=(f—a) b. If [p}, hence also peﬁ exactly divides [u,,] it exactly divides [4']
for m sufficiently large. Thus

|l p 2 |0’ B,
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whence .
(30) I IS, =TT ladl,".
p<T p<T
plap plap
ot — Bn
Assume now that p does not divide af and let t,= ; be the n-th term of
a—-
the Lucas sequence associated with (u,)2,. For positive integers m and r with m>r,

(31) Upy— P Uy, =a'a™""t,.
On setting m=m(p) in (31) and letting r run over those integers such that m(p)—r=n
we find that ‘

m(p)—n

(32) [Umipy—1 - wnlp 2z TT (81, 1@'8'] ).
r=1

Let / be the smallest integer for which p divides ¢,; / exists by Lemma 7. By Lemma 8,
if p>2 then

m(p)—n
(33) IT |nl,=10l3 Isit,,
r=1
where s1=[mg%_—’z], while if p=2
m(p)—n t2 52
(34) IT lnl=10l3" =] Is2!l2,
r=1 12
m(p)—n _ . . .
where s, = 57 | Similarly on setting m —r=m(p) in (31) and letting r run over

those integers such that m(p)+r=2n we find that for p>2
(35 |tmipy 1+ Uaal p Z 11113 1531 1@ & 137 P,
while for p=2,

t21 B | ' W12n—m(p)
= lIsa!lzla'b'|3 s

112

(36) [Up(py+1 *** Uznl2 2 [1)]3°

I 21
that if p is a prime number which does not divide 2af then

where s3=[-2—"—_—m—(£)] and s4=[w . Thus, from (32), (33) and (35), we see

ISP, S 1als1st,  la b,

n .
where s=|:—l—] and therefore, since |f)|<2|al,

G7)  1S@I; ' =Clahintl, ab], "
From, (32), (34) and (36),

ta I° _ _ —
2 st e b S Qla) vt e b5

(38 ISQl =1yl
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Thus, from (30), (37) and (38),

(39) IS, = I_IT (@laD>"Int]; a'b];").
p<

p<T
Further, we have

(40) CIT (M e Y= na' b

p<T

Since e(n) >(logn)™! and T=¢(n) 2nlog2n it follows from the prime number theorem,
(39), and (40), that

(41) IT ISP, 'S 2la))* ™ n*|a'b|",

p<T

for n sufficiently large. We have |af g[/i since |a| = || and (u,)2, is non-degenerate.
Thus, from (29) and (41),

| TT ] S a2,
meM

Comparing the estimate with (28) we obtain a contradiction for n sufficiently large.
This establishes the theorem.

6. The proof of Theorem 4

We may assume, by replacing f(n) by —f(n) if necessary, that o is a positive
real number. Further, we shall suppose throughout that n exceeds a sufficiently large
number c,; here ¢, c,,... are positive numbers which are effectively computable in
terms of ¢, 0, a, f, D and the discriminant of K.

The proof proceeds by a comparison of estimates for |logR|, where

u(n)
42 - R= .
@2 Jy o
h(n) .
We have R=1+ oY and for n sufficiently large
llogR| < 1]

Lf(m)] o™

since for any real number x with |x| <—§— we have |log(1+x)|=2|x|. Thus, from (7),

(43) - logR|<a 1.
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We shall now derive a lower bound for |logR| with the aid of Lemmas 1, 2, 3
and 4. Let a and b be the smallest positive integers, such that af(n) and ba are alge-
braic integers and denote by g¢;,...,q, the prime numbers which divide either
a, b, Normg o (ba) or the discriminant of K. Note that s is less than c,. Write

(44) u(n) =pi’l ...p:’tqi‘l e q‘;s’

where ay,. .., a;, are non-negative integers, b,..., b, are positive integers and py,.. ., p,
are distinct prime numbers different from g¢,,..., ¢,. Put

(45) af(n)=pf - pEfi(n),

where d,,. .., d, are non-negative integers which are chosen as large as possible subject
to the restriction that f;(n) is an algebraic integer. Note that d,<c; logn for i=1,...,t.
Put k;=b;—d, for 1,...,t and, by reindexing the g;s if necessary, write

(46) a, 10g¢11 + - ta logqs+loga=kt+l Iqul + "'+kt+r Iqurs

where k,.,,..., k,+, are positive integers and r=<s. Since a is a positive real number
we have log(a")=nloga and thus, from (42), (44) and (46),

47)
logR =k, logp, + - +k,logp,+k,+, loggy + -+ +k,, logq,—logf; (n) —n log .

We remark that |k;|Sc4n for i=1,...,t+7r.

Assume now that loggq;,...,logg,, loga and logfi(n) are linearly independent
over Q and put o, =g¢,..., 4,=¢,, %+ =0 and a,;,=f(n). By Lemma 3 there exist
numbers aj,. .., &, from K with heights at most A4j,..., 4,+, respectively, /i,..., [+,
satisfying e=aj for j=1,...,r+2 and rational integers m; ; with 1<i<r+2 and
0=<j<i such that for 1=iSr+2, m;(>0,

(48) m,',o log di= Zl mi'jlfi,
j:
and

L=< ¢
max |m; ;| = (logn)®.
Further, K ([/E,. ..» J/#+2) has degree 2"*2 over K and if we put
, , 10l
V;=max {log A, %
then
(49) Vi<cs,
for_j=1,...,r+1 and
(50) : e I/”+2 <Cq lOgn.
Therefore, from (47) and (48),
Myg+ Mysz0logR=gylogp, + - +8,108p,+ger1 i+ +8ir+2li+2s
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where

Myo ** Mypsz,0l <(logn)®,
and

(51 max _|g;| <n(logn)®.

15ist+r+2

We shall now show that K(]/p_,,. e l/;,, l/cx_’l,. .+, J/%+2) has degree 2'*"*2 over
K. If it does not then by Lemma 4 there exist integers z,,. .., z,4,4+,, not all zero, with

0=z;<2 for i=1,...,t+r+2 such that

(52) pf‘ aee ptz’(a'l)z“" ves (a;+2)zt+r+2 = .y2

for some algebraic number y in K. We shall show first that z;=0 for i=1,...,1¢.

Write . .
[pi]= i - o,

where @;,..., @, are distinct prime ideals of the ring of algebraic integers of K and
ey,. .., e, are positive integers. Indeed e, =---=¢,=1 since p; does not divide the dis-
criminant of K. By our choice of d,, recall (45), there is some prime ideal g, which
does not divide [f;(n)]. From (48), we have

(33) o0 =TT (i)™,
i=t

with m; >0 for i=1,..., r+2. Arguing inductively from (53) we find that g, does
not occur in the canonical decomposition of the fractional ideal generated by
for j=1,...,r+2. Thus, from (52), ordy,,(y*)=z; Since ord,, (y*)=2 ord,(y) and
0=z;<2 we conclude that z;=0 for i=1,...,¢. Thus we have

()%t e (e rt2 =192,
with z,44,..., Z,+,+2 not all zero, hence the degree of K(]/oc_'l,. .o [/ %+2) over K is less

than 2"*2? and this is a contradiction. Therefore, K (l/p_l, s 1/17,, WTI,. s J/%4+2) has
degree 2'*"*2 over K.

If, on the other hand, logg,..., logg,, loga and logf,(n) are linearly dependent
over Q then, by Lemma 2, there exist integers 4,,. .., h,+,, not all zero, such that

(54) hylogq, +---+h,logq,+h,+  loga+h,,,logfi(n)=0,
with , max | |hil <ciologn. One of h,., and h,,, is non-zero since logg;,. .., logg, are
linearly independent over Q. If A,,, is non-zero then, from (47) and (54),
h,.1logR=kilogp, +---+k;logp,+ ki1 l0gq, + - +kis, logq, +kiipr1 logfi(n),

with |k{|= ¢y nlogn for i=1,...,t+r+1. In a similar fashion if A,,, is non-zéro we
can express h,., logR as a linear combination of logp,,.. ., logp,, logg,,. .., logg, and
log o with integer coefficients less than c,,n logn in absolute value. If in the former case
loggs,. . ., logq, and logf, (n) are linearly dependent, or in the latter case loggq;,. . ., logg,
and loga are linearly independent, then a second application of Lemma 2 shows that
for some non-zero integer M, with |M,| < c;3(logn)?> we have

- My logR=k{logp;+ - +klogp,+,+ki+y logq1’+ -+ kyy, logg,,
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with |k7| <c;4n(logn)?. Therefore, after at most two applications of Lemma 2, we
produce a non-zero multiple of logR which is expressed as a linear combination of
logarithms which are linearly independent over Q. We may now employ Lemmas 3 and 4
as we did in the preceding two paragraphs to obtain a non-zero multiple of logR

which is expressed as a linear combination of logarithms of algebraic numbers, the
square roots of which generate a field of maximal degree over K.

Thus, whether loggq,,. . ., logg,, loga and log f; (n) are linearly independent over Q
or not, there exist, for y equal to r, r+1 or r+2, algebraic numbers af,. .., a; with
heights A7,. .., A; respectively, some non-zero integer M with

(55) |M| < (logn)”*,

1,. .., Iy such that e”':a'} for j=1,...,y, and integers wy,..., w4, such that

(56) MlogR=w,logp; + - +w/logp,+wii I+ +wiyly,

and such that K (]/;—7:, e ]/;,, 1/&7,. . [/&z) has degree 2'*” over K. Further, as in (51),

(57) max |w;| <n(logn)“e
t+y

12is

and if we put

V} =max {A’j, l—ll—;)l-l} )
for j=i,. ..,y then, as in (49) and (50),
(58) Vi<eirs
for j=1,...,y—1, and
(59) Vy <ciglogn.
We may now use Lemma 1 with ¢g=2 to estimate |M logR| from below. We remark

that M logR +0 since M and h(n) are non-zero. Further we may assume that p,=n,
where p,= max {p;}, for otherwise the theorem holds. From (56), (57), (58), (59) and
<ist

Lemma 1 we find
(60) log |M logR| > —clym™logp, --- logp, (logn)?,
where m=t+y. By contrast, it follows from (43) and (55) that
(61) log |IM 1ogR| < —cyon,
for n sufficiently large, and a comparison of (60) and (61) reveals that

(62) logn—3 log logn — ¢, <cyym+mlogm+log logp, + --- +log logp,.

Journal fiir Mathematik. Band 333 5
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Certainly the left hand side of inequality (62) is at least (1 —1—£0~) logn for n suffi-

ciently large and thus, since we may assume that 0 <e<1, m is at least c,3|/logn.
Since m=t+y and y <c,, we deduce that

(63) <1 ——18—0> logn < <1 +i%) tlogt+loglogp, +---+loglogp,,

for n sufficiently large. By the arithmetic-geometric mean inequality

t t
log (1_1l p,-)

t
ITlogp;=
i=1 t

t
Since [T p;= Q (u(n)), it follows from (63) that
i=1

€ €
<1 'E) logn <15 tlogt+1log log Q (u(n)).

4

If we assume that ¢ is less than (1 ———) logn

log logn

5 then ¢logt is less than logn hence

(1 __;;_> logn <tloglogQ (u(”))’

from which it follows that Q (u(n))>n, as required. Thus we may assume that ¢ is at

1 . . . .
least 1—i ogn and in this case the product of the first ¢ primes is at least
5 Jloglogn .

n'~¢ for n sufficiently large. Therefore,

t
0 ()2 T pi>n'™",
and this establishes (9).

For the proof of (8) we may assume that p, is less than logn. As a consequence

the right-hand side of (63) is less than (1 +%) tlogt, whence <1 ——g-) logn<tlogt,

for n sufficiently large. Thus

e\ logn
> (1 -?) log logn”

Certainly p, is greater than or equal to the t-th prime number and so by the prime
number theorem

p,>(1—¢)logn,

for n sufficiently large. Since P (u(n))2p,, this completes the proof of the theorem.
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