
On divisors of terms of linear recurrence
sequences

By C. L. Stewart*) at Waterloo

1. Introduction

Let r and s be integers with r2 + 4^ non-zero. Let u0 and u± be integers and put

for n = 2, 3, . . . . Then for n ̂  0 we have

(1) un =
where α and β are the two roots of x2 — rx — s and

whenever α Φ/?. The sequence of integers (w„)?=o is a binary recurrence sequence. It is

said to be non-degenerate if aba ^Q and — is not a root of unity.

In 1934 Mahler [7], [9] showed, by a /?-adic generalisation of the Thue-Siegel
theorem, that the greatest prime factor of wn, the /?-th term of a non-degenerate binary
recurrence sequence, tends to infmity with n. However, because of the ineffective
nature of the Thue-Siegel-Roth theorem, Mahler' s proof does not yield an effective lower
bound, which tends to infmity with n, for the greatest prime factor of un. In 1967
Schinzel [16], by employing a /7-adic theorem of Gelfond in place of the p-adic Thue-
Siegel Theorem used by Mahler, was able to give such a lower bound. For any integer
m let P (m) denote the greatest prime factor of m with the convention that

P(0) = P(±1) = 1.
Schinzel proved that

(2) P(iO>Oicl(log/ir,

where C=C(r, s, u0, u{), c\ and c2 are effectively computable positive numbers; indeed

we may take ci =— and c2 = — if α and β are integers, c\ = —— and ^2 = 7^ otherwise.

*) This research was supported in pari by Grant A 3528 from the Natural Sciences and Engineering
Research Council of Canada.
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In this article we shall obtain estimates from below for the greatest prime factor
of un and the greatest square-free factor of un, when un is the n-th term of a linear
recurrence sequence. For any integer m let Q(m) denote the greatest square-free factor
of m with the convention that Q(Q) = Q(± 1) = 1. Thus if m=pil --ph

r
r with p{,.. .,pr

distinct primes and h^. . ., hr positive integers then Q(m)=p{ ··· pr. In our first theorem
we improve on Schinzel's estimate (2).

Theorem 1. Let un, defined s in (1), be the n- 1 h term of a non-degenerate binar y
recurrence sequence and let d denote the degree of α over the rational numbers. Then

n
(3) P(un)>Ci \ogn

where Q and C2 are positive numbers which are effectively computable in terms of a and
b only.

We remark that if α and β are real quadratic irrational numbers then Theorem 4
gives a better lower estimate for Q(un} in terms of n than Theorem l does.

Let a, b, χ and y be non-zero integers with .γ Φ ±y. Since axn + byn is the n-th
term of the recurrence sequence defined by the relation un = (x + y) un^{ — xyun-2 with
initial terms uQ = a + b and iii=ax + by, we have, for any integer n larger than one,

i
}>cA~ n—\ ,

\\ognj
and

*(log>02

where C3 and C4 are positive numbers which are effectively computable in terms of a
and b only. Our proof of Theorem l depends upon estimates for linear forms in the
logarithms of algebraic numbers, due in the complex case t o Baker [1] and in the
/7-adic case to van der Poorten [13].

A Lucas sequence is a non-degenerate binary recurrence sequence (tn)™=0 with
?0 = 0 and ii = l. For such sequences the results of Theorem l can be improved. It
follows from results of Schinzel, Shorey and Stewart [17], [18], [22] and [23] that if
/„ is the fl-th term of a Lucas sequence then

n\ogn\Λ-1, C5 5 > ,

for n > C6, where q(n) denotes the number of square-free divisors of /?, C6 is an absolute
constant and C5 is a positive number which is effectively computable in terms of α
and β only.

We are able t o strengthen (3) by means of an elementary argument, whenever
un is non-zero and is divisible by a prime number p which does not divide wm, for any
non-zero um with 0^m<n. We shall call such a prime number/? a characteristic divisor
of un. Our definition extends that of Carmichael [4] who defined characteristic divisors
for Lucas sequences.
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Theorem 2. Lei u„ be the n-th term of a non-degenerate binary recurrence sequence,
defmed s in (1), and put vn = bun + a n for n^.0. Lei p be a characteristic divisor of
u„ for n > 3. Then

(4) P^n-C79

where C7 is a positive number which is effectively computable in terms of a and b only.
Further, if umvm^0 for all m ^ O then

where Cs is a positive number which is effectively computable in terms of a, b, α and .

Birkhoff and Vandiver [3] and Zsigmondy [26] proved that if a and b are coprime
non-zero integers with αφ ±b then un = an — bn has a characteristic divisor for n>6.
Similar results have been obtained for the Lucas numbers, see [17] and [23], although
no comparable result is known in general. Ward [25] proved that for each non-
degenerate binary recurrence sequence (w„)*=0 there are infmitely many prime numbers
which divide at least one non-zero term of the sequence. Thus, from (4),

P(un)>n-Cj9

for infmitely many integers n. In fact, we are able to obtain the following stronger
assertion, again by an elementary argument.

Theorem 3. Lei (un)^=G be a non-degenerate binary recurrence sequence. For all
integers n, except perhaps for a sei of asymptotic density z er o,

(5) P(un)>s(n)nlogn,

where s(n) is any real valued function for which lim s(n) = Q.

For the case of a non-degenerate Lucas sequence Shorey and Stewart, [18] and
ε(η) n(logn)2

[22], proved that (5) applies with ε(η)η log« replaced by
log log«

For general linear recurrence sequences much less is known. Let r^...,rk and
«o,. . ., w f c-i be integers and put

for n = & , & + !,.... We shall denote the field of rational numbers by 0. It is well
known, see page 62 of [6], that

(6) un=f, („)«» + ...+/(,,) of,

where ^,. . . , f t are non-zero polynomials in n with degrees less than / l9. . ., lt respec-
tively and with coefficients from 0(al5. . ., a,) where a l9. . ., af are the non-zero roots
of the characteristic polynomial

Yk — r Yk~l — ... — rΛ r1Λ rk,
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and /!,... , lt are their respective multiplicities. We shall say that the sequence (w„)^=o
is non-degenerate if t>\ and a f , for l ^ / ^ / , and α,/α7 for \^i<j^t are different
from roots of unity. In 1935 Mahler [8] proved that if (w„)^L0 is a non-degenerate
linear recurrence sequence then \u„\ tends to infmity with n. In 1975 Mignotte [10]
obtained a good lower estimate for \un\ in terms of n when the characteristic polynomial
of the recurrence sequence has at most three roots, which are simple, of maximum
modulus. It has not yet been established that if (wn)*=0 is a non-degenerate linear re-
currence sequence then P(u„) tends to infinity with n *). This is a consequence of the
next theorem in the special case that the characteristic polynomial of the sequence has
one root of largest modulus.

Theorem 4. Lei K be a field of degree D over G and let α be a real algebraic number
from K with absolute value greater than one. Let u(ri) be an integer which can be written
in the form

where f is a non-zero polynomial with coefficients from K and

(7) \h(n)\<\*\*\

for some δ with Q< <\. If f(ri) and h(n) are non-zero then, for any ε > 0 ,

(8) P(w(/ i))>(l-e) log/ i , (9)

for n greater than C9, a number which is effectively computable in terms of s, δ, α,/, D
and the discriminant of K.

The proof of Theorem 4 depends upon a version, due to Waldschmidt [24], of
Baker's theorem concerning lower bounds for linear forms in the logarithms of algebraic
numbers. The important feature of Waldschmidt's result in this context is the precise
dependence in his lower bound on the number of logarithms in the linear form.

For any integer m let co(m) denote the number of distinct prime divisors of m.
With the hypotheses of Theorem 4 and the additional assumption that

v ' (log log«)2

we are able to prove by a minor modification of the proof of Theorem 4, see for example
Theorem 2. 2 of [21], that for any ε > 0 ,

P(u(n)}>en

for n greater than C10, a number which is effectively computable in terms of ε, δ, α,/, d
and the discriminant of K. The above estimate links P(u(ri)} and ω(η(ή)\ Indeed for the
proof of Theorem 4 we suppose that P (u(n)) is less than log« and we deduce that

ω(η(η)} is at least ( l )-— . The result then follows from the prime number
V 2/log log«

theorem.

*) A. J. van der Poorten announced such a result at the Colloquium on Number Theory of the Janos
Bolyai Mathematical Society, July 20—26,1981, s joint work with J. P. Glass, J. H. Loxton, and H. P. Schlicke-
wei.
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A simple application of Theorem 4 yields the following result.

Corollary 1. Lei un be the n-th term of a non-degenerate linear recurrence se-
quence, defined s in (6), and assume that |αλ | > |oj| for j = 2, ...,t.If u(ri) Φ/χ (η)ζ\ then,
for any ε>0 ,

(10) P(W

for n>Cn, a number which is effectively computable in terms ο/ ε, αΐ5 . . . , ar and /, ...,/.
Note that since \QLI \ > |a |̂ for j = 2, . . . , r, o^ is a real number. I. E. Shparlinskij [20],

see [12], has proved the estimate (10) for P(un) with (l —ε) replaced by a positive number
Ci2 in the case that f(n) is a non-zero constant. In [21] we obtained (8) with l — ε
replaced by CJ3, a positive number which is effectively computable in terms of α, δ,
/and uf, and at Oberwolfach in 1977 M. Mignotte [11] observed that such an estimate
could be applied to sequences of the form ([/I0w])^°=o and «Αθη»*=0 where λ and θ are
non-zero real algebraic numbers; for any real number x, [x] denotes the greatest integer
less than or equal to χ and <;c> denotes the nearest integer to x. In particular, we have:

Corollary 2. Lei λ and θ be non-zero real algebraic numbers with | | > 1. If λθη is
not an integer then

for n greater than Ci4, a number which is effectively computable in terms of λ and θ only.
In this connexion we remark that if θ is a real irrational algebraic number, n is

a positive integer composed of the primes q i , . . . , qs only and ε is any positive real
number then

for n greater than C15, a number which is effectively computable in terms of qi9. . ., qs
and θ only. The proof of this result is similar to that of Theorem 4.

I would like to thank l'Universite de Strasbourg for its hospitality since it was
during a visit to l'Universite de Strasbourg that this paper was prepared for publication.

2. Preliminary lemmas

Let α ΐ 5 . . . , α η be non-zero algebraic numbers. Put ^=Q(a l9. . ., oc„) and denote
the degree of K over 0 by D. We shall defme the height of an algebraic number β to be

\ad\ nmax{ l , IAI> ,
i=l

d
where αάΧά·\ ----- Ηβο — α* Π (^~ β ι) *s the minimal polynomial of β in Z [A"]. Let

AI,. , ., An be upper bounds for the heights of αΐ 9 . . ., a* respectively and let 61?. . ., b„
be rational integers with absolute values at most B. We shall assume that A^...,An
and B are all at least 3. Let / l 9 . . . , / w be complex numbers satisfying eif = af for
i=l,. . ,, n and put
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For any non-zero complex number z we shall denote the principal braneh of the loga-

rithm of z by log z and for any positive integer m we shall denote exp ( - ] by zm.
\m )

For y = l,. .., «, put

By choosing indices for the α/s appropriately we may assume that

Vi£V2£-£Vn.
Recently Waldschmidt proved the following result.

i i
Lemma 1. Let q be a prime number such that the field T(af, . . ., oc£) has degree qn

over K. If ΛΦΟ then
(11) \

where c is a positive number which is effectively computable in terms of D and q only.
Proof. This is Proposition 3. 8 of [24].

Waldschmidt established the above inequality s a step in the proof of a more
l i

general result where no hypothesis is made on the degree of #(a?,. . ., a·}) over K.
i i

However, in removing the condition on the degree of #(α?,. . ., a-j) over K he is
forced to replace nn by n2n in the expression on the right band side of (11). The
weaker estimate n2n leads to inequalities like (8) and (9) of Theorem 4 but with l —ε

replaced by — — ε. In [14], Loxton and van der Poorten obtained an inequality similar

to that of Lemma l with a dependence on n of the form nn+o(n) and their result could
also be used here. To profitably apply Lemma l we shall need, because of the condition

i i
on the degree of ^(af, . . ., a·*) over K, the following three lemmas which enable us to
rework the "final descent" in Waldschmidt's proof of bis general result.

Lemma 2. I f l i 9 . . ., /„ are linear ly dependent over Q then there exist rational integer s
/!,..., /„, not all zero, such that

with

Proof. This is Lemma 4. l of [24]. A similar result is Theorem l of [15].

Lemma 3. If Ii9...9ln are linear ly independent over Q then there exist algebraic
number s αί,. . ., a'n from K with heights at most A'i9..., n respectively and /i,..., l'n
satisfying el* = a} for j = l, . . . , n such that :

a) For each prime number q such that K contains the q-th roots of unity, the field
l I

αί)β,. . ., «)*) has degree q" over K.
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b) For l^s^n,

max

c) There exist rational integers mStj with l^s^n and O^j^s such that for

s
j r̂-n jf

with wSt0>0, and

Proof. This is Proposition 4. 3 of [24].

Lemma 4. Let q be a prime number and let K be an algebraic number eld which
contains the q-th roots of unity and the non-zero algebraic numbers α1? . . . ,απ . If

i i
ΑΓ(α?, . . . , α·}) has degree less than qn over K then for some γ in K we have

where r l5..., rn are rational integers, not all zero, with O^r^q—ί for i'= l,..., H.

Proof. This is Lemma 3 of [2].

Denote by p a prime ideal of JR, the ring of algebraic integers of K, lying above
the rational prime number/? and for any non-zero χ in K let ordp(;c) denote the exponent
of p in the canonical decomposition of the fractional ideal generated by χ into prime
ideals of . Write βφ for the ramification index of p and put

and

Gp = (NormK/0 p*) (NormK/0 p -1).

In 1976, van der Poorten [13] obtained the following result.

LemmaS. If ^ ••·ο#ι-1Φθ then

where C is a positive number which is effectively computable in terms of n and D only.

Proof. This is Theorem 2 of [13],

We shtjl use Lemma 5 in our proof of Theorem 1. Our next result, which gives
an estimate for the rate of growth of a non-degenerate binary recurrence sequence, is
used in the proofs of Theorem l and Theorem 3.
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Lemma 6. Let u„~aan + bßn be the n-th term of a non-degenerate binary recurrence
sequence. Then

for n>Cl9 where Q and Q are positive numbers which are effectively computable in
terms of a and b only.

Proof. This is Lemma 5 of [19] and Lemma 3. 2 of [21]. The proof depends upon
a result of Baker [1].

Let (tn)£=o be a Lucas sequence. Since i0 = 0 ai*d it = l we have from (1),

(12) ··-££·
for «^0. For the proof of Theorem 2 we require the following result concerning
characteristic divisors of Lucas numbers.

Lemma 7. Let (t„)™=o be a Lucas sequence, äs in (12). If p is a prime number
which does not divide aß then p divides tn for some positive integer n and if l is the
smallest positive integer for which p divides t{ then

Proof. We first remark that if p is a prime number which divides 1 2 = % + then
the result holds. Further, the result applies for /? = 2 since either 2 divides t2 or 2
divides <xßt3. Next, äs in Lemma 4 of [22], we observe that if p is a prime number
which does not divide t2<xß(ci — )2 then/? divides - + and again our result applies.
Finally, äs in Lemma 5 of [22], if p is greater than 2 and p divides (a — ß)2 then p
divides tp. The assumption is made in [22] that aß and +ß are coprime integers but
this assumption is not used in the proofs of the preceding two assertions.

Our final lemma is used in the proof of Theorem 3. For any rational number
let |JC|P denote the /?-adic value of x, normalized so that |p|p=p~1.

Lemma 8. Let (tn)%Lo be a Lucas sequence^ äs in (12), with (a + j8) and aß coprime.
Let p be a prime number which does not divide aj8, let l be the smallest positive integer
for which p divides tl and let n be a positive integer. If l does not divide n then

If9 for some integer k, n — kl then, for p>29

W,H'iU*l„
while for p = 2,

\tn\2~\ti\* forkodd,
and

forkeven.
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Proof. We remark that Lemma 7 assures us that / exists. For any positive integers
n and / we have (tn, ί|) —/(„,ο by Theorem VI of [4]. Thus if p divides tn then p divides
t(„t l} and, by the minimality of /, (n, /) =* /. Thus / divides n and this proves our first
assertion.

If n = kl the lemma follows from Theorem X of [4].

3. The proof of Theorem l

Recall that un = aa,n + b n for n^Q and wn = rw n _ 1 +5w„_ 2 for « = 2,3, . . . . Put
(r2, s) = k and for any θ in the ring of algebraic integers of 0(a) let [ ] denote the

a2 2

ideal generated by θ in that ring. Note that — and — are the roots ofκ K·

and so are algebraic integers in Q(a). Further — - — and l — l are coprime hences 2

2

and
V2\n

for « = 0, 1,2,... . Since

n) and

by considering the non-degenerate binary recurrence sequences (uj^o an(^ (vv«)*=o in

place of (wn)^=0 we may assume, without loss of generality, that ([a], [/?]) = [1]. Further,
we may assume that |α|Ξ£|/?|. Since α and β are non-zero algebraic integers of degree

ocat most 2 and — is not a root of unity we have
P

(15) \*\£]/2.

Let Ci, c2,. . . denote positive numbers which are effectively computable in terms
of a and b only. From (15) and Lemma 6 we have

(16)

for n>cl. We shall assume hencef^rth that
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Let p be a prime ideal of the ring of algebraic integers of Q(oc) lying above the
rational prime number /?. For any je in 0(a) let \ \@ denote the /?-adic value of je

normalized so that |*L =p~ j wherey = — -^—. Ifp divides aß then, since ([a], [/?]) = [1],

(17) |w„lP>P~C 2 .

On the other hand if p does not divide /J then

and plainly

(18)

— ü (X,
We now employ Lemma 5 with ^=-7-, a2 = -^, &! = ! and b2 = n. Since rf, the degree

* p
of a, is at most 2, ep is also at most 2 hence g = 0 for p > 5. Thus Gp < c4jpd and
consequently

* J\ß
where ^4 denotes the maximum of 3 and the height of —. From (17), (18) and (19) we>

P
conclude that

(20) log(|Wn|;1)<c6/log^(logW)2,

for any prime number p. Write

\u„\ =?{>-· P1;,
where pl9.. .,pr are distinct primes and Ii9..., lr are positive integers. Certainly A is at
most 3|a|2 and so, by (15), at most |a|6. Thus, from (20),

(21) log|«„| <c7 log |a| (log/i)2

* i

Comparing (16) and (21) we find

(22)

Put /?r = P(w„). The right harid side of inequality (22) is at most r p* and so by the prime
number theorem

Cg (log n)2 logpp

Journal für Mathematik. Band 333
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Thus

5FT

as required. Furthermore,
r V
Π Α) £Σ
i=l / i = l

and so the desired estimate for Q(un) follows from (22).

4. The proof of Theorem 2

Let m be an integer larger than 3 and let p be a characteristic divisor of wm.
Assume first that p divides α/J. Let p be a prime ideal which lies above p in the

ring of algebraic integers of 0(a). If pli exactly divides [a], the ideal generated by a,
and p*2 exactly divides [j3] then one at least of /t and /2 is non-zero. If we assume that
both 4 and 12 are positive then the recurrence relation

(23) ii.H« + / «,,-i-a/to,.-2,

for n = 2, 3,. . ., shows that p, and hence [/?], divides [w2] and [w3]. Since m is greater
than 3 we have Μ2 = Μ3 = 0. In this case, however, (wM)J?=o *s a degenerate sequence
contrary to our assumption. Thus one of /t and /2 is zero, and without loss of generality
we may assume that /2 is zero. Since p is a characteristic divisor of um = aa,m + b m

and m > 3 we deduce that p divides [(j8 — a) 6] = [H! — w0a] whence p divides [wj. Thus
M! = O and by (23) p divides u2 hence M2 = 0. Again we find that (tOJJ°=o is degenerate
contrary to our assumption. Therefore p does not divide a .

—Let tn = - — be the w-th term of the Lucas sequence associated with («π)£=ο·α — ρ
Since p does not divide a there exists, by Lemma 7, a smallest positive integer / for
which p divides th and / satisfies the inequality

(24)

If m</then, by (24),

(25)
and (4) holds. Therefore we may assume that m^L We have

and thus, since a(&— ) is an algebraic integer and p does not divide α/?, ρ divides
um„t* But /? is a characteristie divisor of um so um^l^Q. From Lemma 6, m — /^ C7 — l
whence, from (24),

This establishes inequality (4).
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We shall now assume that umvmj*Q for w^O. By the preceding paragraph m<l
and so

Plainly p divides vt-m. Thus
(26) p^\bal-

since i?,_m=t=0. We may assume that |a|^| | hence, from (25) and (26),

We have |a| ̂ J/2, s in (15), so

logw<(/— m)
whence

for a positive number cv which is effectively computable in terms of a, b, α and .
The Theorem now follows from (24).

5. The proof of Theorem 3

We may assume, s in the proof of Theorem l, that ([a], [ ]) = [l]
|<x| ̂  \ \. To obtain our result we shall assume that there exists a function e(m) which
tends to zero s m tends to infinity and a positive constant δ such that

(27) P(um)<B(m)mlogm,

for a set of integers m of positive upper density δ and we shall show that this leads
to a contradiction. Plainly we may assume that e(m) is strictly decreasing and that
ε (m) > (log m)"1 for m > l . Accordingly, we can find arbitrarily large integers n such

that between n and 2n there are at least — integers m which satisfy (27).

Put Τ=ε(η) 2n log 2« and for each prime p less than T let um(p} be the term with
n^m(p)^2n which is divisible by the highest power of p; if more than one term is
divisible by p raised to the largest exponent then denote the one with least index by
um(p)- F°r n sufficiently large ε(η) is less than — and by the prime number theorem

there are at most — integers of the form m(p). Denote by M the set of those integers

m between n and 2n which are not associated with a prime'/? less than T and for
*

which (27) holds. Plainly M has at least — members. To obtain a contradiction we
6

compare estimates for | Π um \ .
m 6 M
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We first estimate the product from below. From Lemma 6 \um\ > |a|m~Cologm,
where CQ is a positive number which is effectively computable in terms of a and b

only. For n sufficiently large, m-Q)logm>— and thus

(28) Ι Π
meM

Alternatively, we can prove, in an elementary way, that at most three integers m
with n^m^2n satisfy

ι ι ι iZm

|wJ<M ,
and then estimate (28) again follows. This approach has the virtue that the proof be-
comes completely elementary. Accordingly, assume that |w,J < |a|?n' for integers HI and
n2 with ni>n2^n. Certainly |a| = | \ in this case. Then

<\a\~l\ \ 4 ,

<2\αΓί\β\ *·,

«1-?Π2

for i equal to l and 2. Thus

and so

Since the left-hand side of the above inequality is at least l we see that HI > — n2 for n
/g \4

sufficiently large and since I — ] > 2 this establishes our claim.

We next estimate the product from above. Put

Clearly

(29) Ι Π ι
meM

and for our purpose it will be sufficient to estimate \S(p)\f for p less than T.

We first estimate |S(p)\p for those primes p which divide a . Let p be a prime
ideal divisor of |j?] with ramification index e#>. Then p divides either [a] or [/T] and
we shall assume, without loss of generality, that φ divides [a]. Put a' = (j5 — a) a
and £'=(0-*-«)£. If [j?}1, heface also #?e*'i, exac y divides [«„,] it exactly divides \b'~\
for m sufficiently large. Thus
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whence

(30) Π
p<T
p\a

Γ 1 ^ Π \afbf\-\
p<T
P\<*

Kn— n
Assume now that p does not divide α/J and let tn = — be the «-th term of

oc — β
the Lucas sequence associated with (Μη)η°=ο· For positive integers m and r with m^r ,

On setting m = m(p) in (31) and letting r run over those integers such that m(p) — r^n
ΛΧ/Α flTlH tVldtwe find that

(32)
l A

Let / be the smallest integer for which p divides f f ; / exists by Lemma 7. By Lemma 8,
if p > 2 then

(33)

t = U?_—^ l wh e if p = 2

Π U r l 2 = U l l

m(p)-n
!«,,,(„_, ...«.|ρ^ Π (\tr\P\a'b'\p}.

m(p)-n

where

(34) a,

where s2 = \ —^~,— · Similarly on setting m — r = m(p) in (31) and letting r run over

those integers such that m(p) + r^2n we find that for p>2

(35) l«m<p) + l ·'·

while for p = 2,

(36)
S4

I I l /i 'A'l2 B~m<P'M2 lfl O 12 '

where and j4 =e 53 = P" W(j?)1

that if p is a prime number which does not divide 2 Ά β then

= —

Thus, from (32), (33) and (35), we see

where s

(37)

From, (32), (34) and (36),

(38)

and therefore, since |ί,|^
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Thus, from (30), (37) and (38),

(39) Π \S(p)\;^ Π ((2|<x|)3"|,i!|;V*V).
p<T p<T

Further, we have

(40) Π (\n\\~i \afbrp
n}^nn\a'b'\n.

p<T

Since e(n)>(logn)~i and Τ=ε(η) 2nlog2n it follows from the prime number theorem,
(39), and (40), that

(41) Π \S(p)\il£(2\a\YM**n*\<fbr,
p<T

for n sufficiently large. We have |a| ̂ ]/2 since |a| ̂ \ \ and (un)™=o is non-degenerate.
Thus, from (29) and (41),

Π "J^M
meM

Comparing the estimate with (28) we obtain a contradiction for n sufficiently large.
This establishes the theorem.

6. The proof of Theorem 4

We may assume, by replacing f(ri) by — f(ri) if necessary, that α is a positive
real number. Further, we shall suppose throughout that n exceeds a sufficiently large
number C A ; here cl9 c2,... are positive numbers which are eflfectively computable in
terms of ε, <5, α, /, D and the discriminant of K.

The proof proceeds by a comparison of estimates for |log/?|, where

(42) R--^-(42) R ~~f(n)<f

We have R = l+—— — - and for « sufficiently large
"

since for any real number χ with \x\ <— we have |log(l +x)j^2|^:|. Thus, from (7),

(43)
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We shall n w derive a lower bound for |log/?| with the aid of Lemmas l, 2, 3
and 4. Let a and b be the smallest positive integers, such that af(n) and 6α are alge-
braic integers and denote by <7i , . . . ,<? s the prime numbers which divide either
a, b, Normte (A a) or the discriminant of K. Note that s is less than c2. Write

(44) «W^^-A^r-tf,
where a l5. . ., as are non-negative integers, 6 l5. . ., bt are positive integers and /*i,. . .,pf
are distinct prime numbers different from # l5. . ., qs. Put

(45) αηη)=ρ?···ρϊ/Μ,
where di9. ..9dt are non-negative integers which are chosen as large as possible subject
to the restriction that/i(«) is an algebraic integer. Note that dt<c3 log n for i = l,. . ., /.
Put ki^bi — di for l,. . ., t and, by reindexing the #/s if necessary, write

(46) ai\ogqi + --+as\ogqs + loga = kt+1logqi + ··· + &,+,. log #r,

where fc,+i,. ..,/:,+ r are positive integers and r^s. Since α is a positive real number
we have log (of1) = n log α and thus, from (42), (44) and (46),

(47)
log R = ki log/?! + .··+£, log/?, + fcr+ 1 log ̂  -h · · · + kt +r log qr - log/! (w) - n log α .

We remark that \kt\^c4n for /=!,.. . ,

Assume now that log^,. . ., loggr, log α and log/ (n) are linearly independent
over 0 and put a^^,. . ., αΓ = 0Γ, ar+1 = a and arH.2=/i(«). By Lemma 3 there exist
numbers aj,. . ., aJ+2 from ΑΓ with heights at most Af

i9. . ., Af
r+£ respectively, /i,. . ., l'r+2

satisfying eij = a} for y = l,. . ., r + 2 and rational integers mitj with lg i^ r + 2 and
O^yg/ such that for l ^ / ^ r + 2, m i > 0>0,

(48) mit0log*t= Σ Mijl'j,

and
max | wis j\ ̂  (log n)C5.

Further, #(j/ [,..., |/<x;+2) has degree 2Γ+2 over K and if we put

then

(49)

for y = l,..., r+1 and
(50)

Therefore, from (47) and (48),
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where

and

(51)

We shall now show that K(]/p^,. . ., \/p„ ]/ [,. . ., |/ά;+2) has degree 2 i+r+2 over
K. If it does not then by Lemma 4 there exist integers z l9. . ., z i+r+2, not all zero, with
0^z t <2 for i = l,..., / + r + 2 such that

(52) />p -/>ί'(«ί)*+1 - (a;+2)zt^2 = 72

for some algebraic number γ in /ST. We shall show first that z — O for /=! , . . . , / .
Write

where pi,. . ., p„ are distinct prime ideals of the ring of algebraic integers of K and
ei9. ..9ev are positive integers. Indeed e^ — ··· = £„ = l since /?f does not divide the dis-
criminant of #. By our choice of di9 recall (45), there is some prime ideal pf which
does not divide [/(«)]. From (48), we have

(53) α Γ ° = Π (α})"*·',
7=1

with w i i 0>0 for / = !,..., r + 2. Arguing inductively from (53) we find that p, does
not occur in the canonical decomposition of the fractional ideal generated by a,
for j= l,..., r + 2. Thus, from (52), ordpi(y2) = zi. Since ordpj(y2) = 2 ordpl(y) and
Q^z i <2 we conclude that zt = 0 for i=l,. . ., /. Thus we have

with z f+1,. . ., z f+ r + 2 not all zero, hence the degree of # ( | , . . ., |/a^2) over K i
than 2r+2 and this is a contradiction. Therefore, K(]/p^,. . ., }fpt, |/ [,. . ., ]/a^+2) has
degree 2 i+r+2 over K.

If, on the other hand, Iog^l5. . ., log#r, log α and log/! (H) are linearly dependent
over 0 then, by Lemma 2, there exist integers A1?. . ., A r+2 , not all zero, such that

(54) A! log ql + · · - + hr log qr + hr+ i log α -h h, +2 log/ (w) = 0 ,

with max ΙΑ;) <c10 log«. One of A r+1 and A r+2 is non-zero since Iog#l9. . ., log#r are
l^i^r + 2

linearly independent over 0. If hr+i is non^zero then, from (47) and (54),
Ar + 1 log Λ = &1 log/?! + · · · + &; log/?, + ̂

with \ki\^cnnlogn for /=!,..., t + r + l. In a similar fashion if A r+2 is non-zero we
can express Ar+2 log Λ s a linear combination of log/?i,. . ., log/?f, log^i,. . ., logqr and
log α with integer coefficienta less than ci2n log« in absolute value. If in the foqner case
log#i,. . ., logqr and log/(w) are linearly dependent, or in the latter case log#i,. . ., log^r
and log α are linearly independent, then a second application of Lemma 2 shows that
for some non-zero integer M0 with |Af0| <c13(log«)2 we have

MQ log« ̂
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with \k"\ <c14«(log«)2. Therefore, after at most two applications of Lemma 2, we
produce a non-zero multiple of logjR which is expressed s a linear combination of
logarithms which are linearly independent over 0. We may now employ Lemmas 3 and 4
s we did in the preceding two paragraphs to obtain a non-zero multiple of log/?

which is expressed s a linear combination of logarithms of algebraic numbers, the
square roots of which generate a field of maximal degree over K.

Thus, whether log^,. . ., log#s, log α and log^/i) are linearly independent over 0
or not, there exist, for y equal to r, r + 1 or r + 2, algebraic numbers a'/, . . . , aj with
heights Αϊ, ...9Ay respectively, some non-zero integer M with

(55)

/Ϊ,. . ., ly such that elj' = a"j for j= l,. . ., y, and integers H> I ? . . ., wt+y such that

(56) M logR = ΚΙ log/?! + ··· + wt log/?, + w f + 1 /'/ + ··· + w i+y/; ,

and such that K^/p[, . . . , |/̂ , ]/<, . . . , j/o£) has degree 2t+y over #. Further, s in (51),

(57) max \wt\ <n(logn)Ci6
l^i^t + y

and if we put

for 7 = l , . . . , y then, s in (49) and (50),

(58) F/<c17,

for 7 = 1,.. . ,>>-!, and

(59) F;<c18log«.

We may now use Lemma l with # = 2 to estimate |MlogR| from below. We remark
that M log R Φ 0 since M and h(n) are non-zero. Further we may assume that pt^n,
where pt= max {/jj, for otherwise the theorem holds. From (56), (57), (58), (59) and

Lemma l we find

(60) log |Mlog/?| > -cf9mmlogpl ··· log/?,(log«)3,

where m = t+y. By contrast, it follows from (43) and (55) that

(61) log|AflogjR|<-c2 0fl ,

for n sufflciently large, and a comparison of (60) and (61) reveals that

(62) log n - 3 log log n - c21 < c22m + m log m 4- log log/?! -h · · * + log logpt.
Journal f r Mathematik. Band 333 5
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Certainly the left band side of inequality (62) is at least (l—^-)log« for « suffi-

ciently large and thus, since we may assume that 0<ε<1, m is at least c23l/log«.
Since m = t+y and y<c2* we deduce that

/ ε \ / ε \
(63) i l -—J log« < i l +—J t logt + log log/*! + - + log log/7,,

for w sufficiently large. By the arithmetic-geometric mean inequality

Since Π Pi^Q ("(«)), it follows from (63) that

/ Λ ε / ν1-— log«< — tlogt + t loglog (w(«)).V ioy 10

If we assume that / is less than ( l — —-1 -—; then / log t is less than log n hence1 5/loglog«

i l log/i < i log log Q (u(n))>

from which it follows that (w(«))>«, s required. Thus we may assume that i is at

least ( l l-—^— and in this case the product of the first t primes is at least\ 5/loglog«
«*~ε for « sufficiently large. Therefore,

β (u(n)) * Π Pi >nl-£,

and this establishes (9).

For the proof of (8) we may assume that pt is less than log«. As a consequence
/ s\ ( ε \

the right-hand side of (63) is less than l l +— 11 log i, whence 11 — — l log« < t log t,

for n sufficiently large. Thus
/ ε \ log«

/> l—ir h—Γ—·\ 3/log log«

Certainly pt is greater than or equal to the Mh prime number and so by the prime
number theorem

for n suffitiently large. Since P(u(n))^pt9 this completes the proof of the theorem.
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