Publ. Math. Debrecen
65/3-4 (2004), 461-480

On the greatest and least prime factors of $n!+1$, II

By C. L. STEWART (Waterloo)
In memory of Béla Brindza

Abstract

Let ε be a positive real number. We prove that for infinitely many odd integers n the least prime factor of $n!+1$ is at most $\left(\frac{\sqrt{145}-1}{8}+\varepsilon\right) n$ and that for infinitely many positive integers n the greatest prime factor of $n!+1$ exceeds $\left(\frac{11}{2}-\varepsilon\right) n$.

1. Introduction

In 1856 , Liouville [6] proved that $(p-1)!+1$ is not a power of p for any prime p larger than 5 . More than a century later Erdős and Graham [2] asked if the equation

$$
\begin{equation*}
(p-1)!+a^{p-1}=p^{k} \tag{1}
\end{equation*}
$$

has only finitely many solutions in positive integers a, k, p with p an odd prime. In 1991 Brindza and Erdős [1] resolved the question by proving that all solutions of (1) are smaller than an effectively computable number. A few years later Yu and LiU [10] and then Le [5] determined the complete list of solutions.

[^0]In 1976 we investigated with ERDŐs [3] the arithmetical character of integers of the form $n!+1$ where n is a positive integer. For any integer m larger than 1 let $P(m)$ denote the greatest prime factor of m and let $p(m)$ denote the least prime factor of m. By Wilson's theorem p divides $(p-1)!+1$ whenever p is a prime. Since all prime factors of $n!+1$ exceed n we see that $p(n!+1)=n+1$ whenever $n+1$ is a prime. We showed with Erdős [3] that if $n+1$ is not a prime then

$$
\begin{equation*}
p(n!+1)>n+(1-o(1)) \frac{\log n}{\log \log n} \tag{2}
\end{equation*}
$$

Further, for almost all integers n,

$$
\begin{equation*}
p(n!+1)>n+\varepsilon(n) n^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

where $\varepsilon(n)$ is any positive function that decreases to 0 as $n \rightarrow \infty$.
In [3] we indicated how to prove that for infinitely many integers n for which $n+1$ is not a prime $p(n!+1)$ is less than $2 n$. We observed, as a direct consequence of Wilson's theorem, that if p is a prime then

$$
\begin{equation*}
(p-1-i)!i!\equiv(-1)^{i+1} \quad(\bmod p), \quad 0 \leq i \leq p-1 \tag{4}
\end{equation*}
$$

Thus if $p \mid i!+1$ for some odd integer $i(>1)$ then, from (4), $p \mid(p-i-1)!+1$. For any positive real numbers θ and t with $t>\frac{1}{\theta}$ we have

$$
\begin{equation*}
\max \left(\theta, \frac{1}{t-\theta^{-1}}\right) \geq \frac{2}{t} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left(\theta, \frac{1}{t-\theta^{-1}}\right) \leq \frac{2}{t} \tag{6}
\end{equation*}
$$

Note that $\frac{p}{p-i-1}=\frac{1}{\frac{p-1}{p}-\frac{i}{p}}$ and so on taking $\theta=\frac{p}{i}$ and $t=\frac{p-1}{p}$ we see from (5) and (6) that

$$
\max \left(\frac{p}{i}, \frac{p}{p-i-1}\right) \geq \frac{2 p}{p-1}=2+\frac{2}{p-1}
$$

and

$$
\min \left(\frac{p}{i}, \frac{p}{p-i-1}\right) \leq 2+\frac{2}{p-1}
$$

for $0<i<p-1$. As i tends to infinity so also do p and $p-i$. Thus for each $\varepsilon>0$,

$$
\begin{equation*}
p(n!+1)<(2+\varepsilon) n \tag{7}
\end{equation*}
$$

for infinitely many composite integers $n+1$. Further

$$
\begin{equation*}
P(n!+1)>2 n, \tag{8}
\end{equation*}
$$

for infinitely many positive integers n. We indicated in [3] that $2+\varepsilon$ in (7) could be replaced by $2-\delta$ for some positive number δ. Our first result will be of this character.

Theorem 1. Let $\varepsilon>0$. There are infinitely many odd integers n for which

$$
\begin{equation*}
p(n!+1)<\left(\frac{\sqrt{145}-1}{8}+\varepsilon\right) n \tag{9}
\end{equation*}
$$

Observe that $\frac{\sqrt{145}-1}{8}=1.38019 \ldots$.
With Erdős [3] we proved that (2) holds with $P(n!+1)$ in place of $p(n!+1)$ for all positive integers n. Of course this only is an improvement on (2) for those integers n for which $n+1$ is a prime. Recently LUCA and Shparlinski [7] sharpened this result by proving that

$$
\begin{equation*}
P(n!+1)>n+\left(\frac{1}{4}+o(1)\right) \log n \tag{10}
\end{equation*}
$$

indeed they established (10) with $P(n!+1)$ replaced by $P(n!+f(n))$ where f is any non-zero polynomial with integer coefficients. In 2002 Murty and Wong [8] showed that if the $a b c$ conjecture holds, then

$$
P(n!+1)>(1+o(1)) n \log n .
$$

In 1976 we improved on (8) with Erdős [3] by proving that there is a positive number δ such that

$$
\begin{equation*}
P(n!+1)>(2+\delta) n, \tag{11}
\end{equation*}
$$

for infinitely many integers n. Luca and Shparlinski [7] established (11) with $(2+\delta) n$ replaced by $\left(\frac{5}{2}+o(1)\right) n$ and showed that their result applies with $n!+f(n)$ in place of $n!+1$ where f is any non-zero polynomial with integer coefficients. Our next result gives a further improvement on (11).

For any set X we denote the cardinality of X by $|X|$. For any set A of positive integers and any positive integer n we put $A(n)=A \cap\{1, \ldots, n\}$. The lower asymptotic density of A is $\lim \inf \frac{|A(n)|}{n}$.

Theorem 2. Let $\varepsilon>0$. The set of positive integers n for which

$$
\begin{equation*}
P(n!+1)>\left(\frac{11}{2}-\varepsilon\right) n \tag{12}
\end{equation*}
$$

has positive lower asymptotic density.
As we remarked in [3] estimates (2), (3), (7), (8) and (11) hold with $n!+1$ replaced by $n!-1$ and the same comment applies to the estimates (9) and (12). Further, the same techniques used to prove Theorems 1 and 2 allow one to prove, for instance, that for each positive real number ε there exist infinitely many positive integers n for which $P((2 n)!+1)>$ $\left(\frac{17+\sqrt{145}}{8}-\varepsilon\right) 2 n$ and there exist infinitely many positive integers n for which $P((n!+1)(n!-1))>\left(\frac{11+\sqrt{85}}{2}-\varepsilon\right) n$.

2. Preliminary lemmas

Let p_{1}, p_{2}, \ldots denote the sequence of prime numbers and put $d_{k}=$ $p_{k+1}-p_{k}$ for $k=1,2, \ldots$ Our first lemma, due to HEATH-Brown, gives a bound on the frequency of large differences between consecutive prime numbers.

Lemma 1. Let ε be a positive real number. There is a positive number c, which depends on ε, such that

$$
\sum_{p_{k} \leq x} d_{k}^{2}<c x^{\frac{23}{18}+\varepsilon}
$$

Proof. This is Theorem 1 of [4].
Our next result gives a bound for the size of the greatest common divisor of a collection of terms of the form $k!+1$.

Lemma 2. Let n and t be positive integers with $t \geq 2$ and let i_{1}, \ldots, i_{t} be distinct positive integers from a subinterval of $[1, n]$ of length ℓ. Then

$$
\begin{equation*}
\operatorname{gcd}\left(i_{1}!+1, \ldots, i_{t}!+1\right)<n^{\frac{\ell}{t-1}} \tag{13}
\end{equation*}
$$

Further, there exists a positive number c_{1} such that if n exceeds c_{1} and $t \geq 3$ then

$$
\begin{equation*}
\operatorname{gcd}\left(i_{1}!+1, \ldots, i_{t}!+1\right)<e^{n} n^{\frac{2 \ell}{(t-1)^{2}}} \tag{14}
\end{equation*}
$$

Furthermore, let δ and ε be positive real numbers. There exists a positive number c_{2}, which depends on ε and δ, such that if n exceeds c_{2},

$$
\begin{equation*}
3 \leq t<n^{\frac{13}{18}-\delta}, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\ell>\frac{n}{(\log n)^{\frac{1}{2}}}, \tag{16}
\end{equation*}
$$

then

$$
\begin{align*}
& \operatorname{gcd}\left(i_{1}!+1, \ldots, i_{t}!+1\right) \\
& \quad<\exp \left((1+\varepsilon) \ell\left(\frac{\log t}{t}+\frac{\log \left(\frac{n e}{\ell}\right)}{t}+\frac{2 \log n \max (1, \log \log t)}{(t-1)^{2}}\right)\right) . \tag{17}
\end{align*}
$$

We remark that it is possible to replace the term $\max (1, \log \log t)$ on the right hand side of inequality (17) by $f(t)$ where f is any real valued function to the real numbers of size at least 1 for which $\lim _{t \rightarrow \infty} f(t)=\infty$ provided that c_{2} is modified to depend on f.

Proof of Lemma 2. Let A be a positive integer and let $\left(k_{1}, k_{2}\right)$ and $\left(k_{3}, k_{4}\right)$ be distinct pairs of integers with $n \geq k_{1}>k_{2} \geq 1$ and $n \geq k_{3}>$ $k_{4} \geq 1$ for which

$$
\begin{equation*}
A \mid k_{i}!+1, \tag{18}
\end{equation*}
$$

for $i=1,2,3,4$. Suppose, without loss of generality, that

$$
\begin{equation*}
k_{1}-k_{2} \geq k_{3}-k_{4} . \tag{19}
\end{equation*}
$$

(Note that $\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$ may only contain 3 elements.) Then, by (18),

$$
A \mid k_{i}!-k_{i+1}!, \quad \text { for } i=1,3,
$$

and so

$$
A \mid k_{i+1}!\left(k_{i}\left(k_{i}-1\right) \cdots\left(k_{i+1}+1\right)-1\right), \quad \text { for } i=1,3 .
$$

But, by $(18), \operatorname{gcd}\left(A, k_{i+1}!\right)=1$ for $i=1,3$ hence

$$
\begin{equation*}
A \mid k_{i} \cdots\left(k_{i+1}+1\right)-1 \tag{20}
\end{equation*}
$$

for $i=1,3$. Therefore

$$
A \mid k_{1} \cdots\left(k_{2}+1\right)-k_{3} \cdots\left(k_{4}+1\right)
$$

Since

$$
k_{1} \cdots\left(k_{2}+1\right)-k_{3} \cdots\left(k_{4}+1\right)=\left(k_{3}-k_{4}\right)!\left(\frac{\left(k_{1}-k_{2}\right)!}{\left(k_{3}-k_{4}\right)!}\binom{k_{1}}{k_{2}}-\binom{k_{3}}{k_{4}}\right)
$$

$\operatorname{gcd}\left(A,\left(k_{3}-k_{4}\right)!\right)=1$ and $k_{1}-k_{2} \geq k_{3}-k_{4}$, we find that

$$
\begin{equation*}
A \mid\left(\left(k_{3}-k_{4}\right)!\right)^{-1}\left(k_{1} \cdots\left(k_{2}+1\right)-k_{3} \cdots\left(k_{4}+1\right)\right) \tag{21}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\left|k_{1} \cdots\left(k_{2}+1\right)-k_{3} \cdots\left(k_{4}+1\right)\right|<n^{k_{1}-k_{2}} \tag{22}
\end{equation*}
$$

Thus, provided that

$$
\begin{equation*}
k_{1} \cdots\left(k_{2}+1\right) \neq k_{3} \cdots\left(k_{4}+1\right) \tag{23}
\end{equation*}
$$

we deduce from $(21),(22)$ and the fact that $m!\geq\left(\frac{m}{e}\right)^{m}$, when m is a positive integer, that

$$
\begin{equation*}
A<n^{\left(k_{1}-k_{2}\right)-\left(k_{3}-k_{4}\right)}\left(\frac{n e}{k_{3}-k_{4}}\right)^{k_{3}-k_{4}} \tag{24}
\end{equation*}
$$

Since $g(x)=\left(\frac{n e}{x}\right)^{x}$ attains its maximum value at $x=n$ we see that, when (23) holds,

$$
\begin{equation*}
A<n^{\left(k_{1}-k_{2}\right)-\left(k_{3}-k_{4}\right)} e^{n} \tag{25}
\end{equation*}
$$

We now put

$$
A=\operatorname{gcd}\left(i_{1}!+1, \ldots, i_{t}!+1\right)
$$

We shall prove (13) first. Put

$$
\mu=\min \left\{i_{a}-i_{b} \mid i_{a}>i_{b}, a, b \in\{1, \ldots, t\}\right\}
$$

and let k_{1}, k_{2} be elements of $\left\{i_{1}, \ldots, i_{t}\right\}$ with $k_{1}-k_{2}=\mu$. Since $\mu \leq \frac{\ell}{(t-1)}$ we see from (20) with $i=1$ that

$$
A<n^{k_{1}-k_{2}} \leq n^{\frac{\ell}{(t-1)}}
$$

as required.

We shall prove (14) next. There are $\binom{t}{2}$ pairs of integers $\left(i, i^{\prime}\right)$ with $i>i^{\prime}$ which can be chosen from $\left\{i_{1}, \ldots, i_{t}\right\}$. Associated to each such pair is the difference $i-i^{\prime}$ and $0<i-i^{\prime} \leq \ell$. Therefore there are two such pairs, $\left(k_{1}, k_{2}\right)$ and $\left(k_{3}, k_{4}\right)$ say, for which

$$
\begin{equation*}
0 \leq\left(k_{1}-k_{2}\right)-\left(k_{3}-k_{4}\right) \leq \frac{\ell}{\left(\binom{t}{2}-1\right)} \tag{26}
\end{equation*}
$$

Thus, provided that (23) holds, by (25) and (26),

$$
A<n^{\frac{\ell}{\left(\binom{t}{2}-1\right)}} e^{n}
$$

hence, since $t \geq 3$ and $\binom{t}{2}-1 \geq \frac{(t-1)^{2}}{2}$,

$$
A<e^{n} n^{\frac{2 \ell}{(t-1)^{2}}}
$$

It remains only to ensure that (23) holds. We may assume that A exceeds e^{n} since otherwise the result is immediate. Note that if $k_{1}=k_{3}$ then, since the pairs $\left(k_{1}, k_{2}\right)$ and $\left(k_{3}, k_{4}\right)$ are distinct, $k_{2} \neq k_{4}$ and so (23) holds. Thus we may assume that $k_{1}>k_{3}$; a similar argument applies if $k_{3}<k_{1}$. Further, we may assume, after renumbering k_{2}, k_{3}, k_{4} if necessary, that $k_{2} \geq k_{3}>k_{4}$. Since, as in (20), A divides $k_{1} \cdots\left(k_{2}+1\right)-1$ we see that $A \leq n^{k_{1}-k_{2}}$. But A exceeds e^{n} and so

$$
k_{1}-k_{2} \geq \frac{n}{\log n}
$$

By a version of the prime number theorem with an explicit error term, for n sufficiently large there is a prime p between k_{1} and k_{2}. As a consequence p divides $k_{1} \cdots\left(k_{2}+1\right)$ and not $k_{3} \cdots\left(k_{4}+1\right)$ and so (23) holds and (14) follows.

Finally, we shall prove (17). Let c_{3}, c_{4}, \ldots denote positive numbers which are effectively computable in terms of ε and δ. Without loss of generality we may suppose that

$$
n \geq i_{1}>i_{2}>\cdots>i_{t} \geq 1
$$

Note that we may also suppose that

$$
\begin{equation*}
t-1 \geq(\log n)^{\frac{1}{8}} \tag{27}
\end{equation*}
$$

since otherwise, by (16),

$$
\frac{2 \ell \log n}{(t-1)^{2}} \geq 2 \ell(\log n)^{\frac{3}{4}} \geq 2 n(\log n)^{\frac{1}{4}}
$$

and therefore, by (14),

$$
A<\exp \left((1+\varepsilon) \frac{2 \ell(\log n)}{(t-1)^{2}}\right),
$$

for n larger than c_{3}, whence (17) holds.
We consider the consecutive integers $i_{j+1}+1, \ldots, i_{j}$ for $j=1, \ldots, t-1$. Notice that A divides $i_{j}!+1$ and $i_{j+1}!+1$ hence A divides $i_{j} \cdots\left(i_{j+1}+1\right)-1$. Therefore A is at most $n^{i_{j}-i_{j+1}}$. If for some j, with $1 \leq j \leq t-1$,

$$
i_{j}-i_{j+1}<\frac{n}{t(\log n)^{\frac{3}{2}}}
$$

then

$$
A \leq \exp \left(\frac{n}{t(\log n)^{\frac{1}{2}}}\right)
$$

and, by (16), (17) holds. Thus we may suppose that

$$
i_{j}-i_{j+1} \geq \frac{n}{t(\log n)^{\frac{3}{2}}},
$$

for $j=1, \ldots, t-1$. Let m denote the number of the intervals $\left[i_{j+1}+1, i_{j}\right]$ for $j=1, \ldots, t-1$ which do not contain a prime number. Let p_{1}, p_{2}, \ldots denote the sequence of prime numbers and put $d_{k}=p_{k+1}-p_{k}$ for $k=1,2, \ldots$. Then

$$
\sum_{p_{k} \leq n} d_{k}^{2} \geq m\left(\frac{n}{t(\log n)^{\frac{3}{2}}}\right)^{2}
$$

But, by Lemma 1,

$$
\sum_{p_{k} \leq n} d_{k}^{2}<n^{\frac{23}{18}+\frac{\delta}{2}}
$$

for $n>c_{4}$. In particular

$$
m<\frac{t^{2}(\log n)^{3}}{n^{\frac{13}{18}-\frac{\delta}{2}}},
$$

and by (15), since $t \leq n$,

$$
\begin{equation*}
m<t n^{-\frac{\delta}{2}}(\log n)^{3}<t^{1-\frac{\delta}{3}} \tag{28}
\end{equation*}
$$

for $n>c_{5}$.
Put

$$
\begin{equation*}
t_{1}=t-1-m \tag{29}
\end{equation*}
$$

and order the differences $i_{j}-i_{j+1}$ with $1 \leq j \leq t-1$ for which there is a prime in the interval $\left[i_{j+1}+1, i_{j}\right]$ according to size. Let us denote these differences by $\gamma_{1}, \ldots, \gamma_{t_{1}}$ so that

$$
\begin{equation*}
\gamma_{1} \leq \gamma_{2} \leq \cdots \leq \gamma_{t_{1}} \tag{30}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\gamma_{1}+\cdots+\gamma_{t_{1}} \leq i_{1}-i_{t} \leq \ell \tag{31}
\end{equation*}
$$

For any real number x let $[x]$ denote the largest integer of size at most x. Put

$$
\begin{equation*}
t_{2}=\left[t_{1} /\left(\log \log t_{1}\right)^{\frac{1}{2}}\right] \tag{32}
\end{equation*}
$$

Then, by (30) and (31),

$$
\gamma_{t_{2}}\left(t_{1}-t_{2}\right) \leq \ell
$$

Thus, by (27), (28), (29), (30) and (32), for $n>c_{6}$,

$$
\begin{equation*}
\gamma_{h}<\left(1+\frac{\varepsilon}{2}\right) \frac{\ell}{t} \tag{33}
\end{equation*}
$$

for $h=1, \ldots, t_{2}$.
Next note that

$$
\left.\begin{array}{rl}
\left(\gamma_{t_{2}}-\gamma_{t_{2}-1}\right)+\left(\gamma_{t_{2}-1}-\gamma_{t_{2}-2}\right)+\cdots+\left(\gamma_{1}-0\right) & =\gamma_{t_{2}} \\
\left(\gamma_{t_{2}-1}-\gamma_{t_{2}-2}\right)+\cdots+\left(\gamma_{1}-0\right) & =\gamma_{t_{2}-1} \\
\ddots & \\
& \ddots
\end{array}\right] \vdots .
$$

hence

$$
\begin{equation*}
\left(\gamma_{t_{2}}-\gamma_{t_{2}-1}\right)+2\left(\gamma_{t_{2}-1}-\gamma_{t_{2}-2}\right)+\cdots+t_{2} \gamma_{1}=\gamma_{t_{2}}+\cdots+\gamma_{1} \tag{34}
\end{equation*}
$$

Put

$$
\theta=\min \left(\gamma_{t_{2}}-\gamma_{t_{2}-1}, \ldots, \gamma_{2}-\gamma_{1}, \gamma_{1}\right) .
$$

Then, by (31) and (34),

$$
\frac{t_{2}\left(t_{2}+1\right)}{2} \theta \leq \ell .
$$

Therefore, by (27), (28), (29) and (32), for $n>c_{7}$,

$$
\begin{equation*}
\theta<(1+\varepsilon) \frac{2 \ell \log \log t}{t^{2}} \tag{35}
\end{equation*}
$$

We have $\gamma_{1}=i_{r}-i_{r+1}$ for an integer r with $1 \leq r \leq t-1$. Then

$$
A \mid i_{r} \cdots\left(i_{r+1}+1\right)-1 .
$$

If $\theta=\gamma_{1}$, we see that

$$
A<n^{\theta}
$$

and by (35) our result follows.
Thus we may suppose that $\theta=\gamma_{s}-\gamma_{s-1}$ for some integer s from $\left\{2, \ldots, t_{2}\right\}$. In particular,

$$
\theta=\left(i_{a}-i_{a+1}\right)-\left(i_{b}-i_{b+1}\right)
$$

with a and b distinct integers from $\{1, \ldots, t-1\}$. Put $k_{1}=i_{a}, k_{2}=i_{a+1}$, $k_{3}=i_{b}$ and $k_{4}=i_{b+1}$. By construction there is a prime among the integers $k_{2}+1, \ldots, k_{1}$ and another prime among the integers $k_{4}+1, \ldots, k_{3}$. Thus the larger of the two primes divides one of $k_{1} \cdots\left(k_{2}+1\right)$ and $k_{3} \cdots\left(k_{4}+1\right)$ and not the other whence (23) holds. Note also that $\left(\frac{n e}{x}\right)^{x}$ is an increasing function of x for x positive and less than n. Therefore, by (24), (27), (33) and (35), we find that

$$
A<n^{(1+\varepsilon) \frac{2 \ell \log \log t}{t^{2}}}\left(\frac{n e t}{(1+\varepsilon) \ell}\right)^{(1+\varepsilon) \frac{\ell}{t}},
$$

hence that

$$
\begin{equation*}
A<\exp \left((1+\varepsilon) \ell\left(\frac{2 \log n \log \log t}{t^{2}}+\frac{\log t}{t}+\frac{\log \left(\frac{n e}{(1+\varepsilon) \ell}\right)}{t}\right)\right) \tag{36}
\end{equation*}
$$

for $n>c_{8}$, as required.

For any prime p let $t(p)$ denote the number of positive integers k for which $p \mid k!+1$. In $[9$, Theorem 7.5$]$ we noted that

$$
\begin{equation*}
t(p)<\frac{(m+1)(m+2)}{2} \quad \text { where } m=(3 p)^{\frac{1}{3}} \tag{37}
\end{equation*}
$$

To see this observe that if n and s are positive integers and p divides both $n!+1$ and $(n+s)!+1$ then p divides $(n+s)!-n!$ hence $(n+s) \cdots(n+1) \equiv 1$ $(\bmod p)$. In particular, n is a solution of the polynomial congruence $(x+s)$ $\cdots(x+1) \equiv 1(\bmod p)$, and by Lagrange's theorem the number of such solutions is at most s. Let I be an interval of length $\ell(\geq 1)$ and let $n_{1}<n_{2}<\cdots<n_{k}$ denote all the solutions of $x!+1 \equiv 0(\bmod p)$ in I. Plainly

$$
\begin{equation*}
\sum_{i=1}^{k-1}\left(n_{i+1}-n_{i}\right) \leq \ell \tag{38}
\end{equation*}
$$

and by our earlier observation at most s of the terms in brackets in the above sum are equal to s. Therefore

$$
\begin{equation*}
\sum_{i=1}^{k-1}\left(n_{i+1}-n_{i}\right) \geq \sum_{s=1}^{u} s^{2} \tag{39}
\end{equation*}
$$

where u is defined by the inequalities

$$
\sum_{s=1}^{u} s \leq k-1<\sum_{s=1}^{u+1} s
$$

Thus k is at most $\frac{(u+1)(u+2)}{2}$ and by (38) and (39)

$$
\begin{equation*}
\ell \geq \frac{u(u+1)(2 u+1)}{6}>\frac{u^{3}}{3} \tag{40}
\end{equation*}
$$

Since all integers n for which $p \mid n!+1$ lie in the interval $[1, p-1]$, (37) follows from (40) with $\ell=p$. Further, from (40) we obtain Lemma 3 below, a result which is the special case of Lemma 2 of LUCA and ShPARLINski [7] with $f(x)$ equal to 1 .

Lemma 3. There exists a positive number c such that if p is a prime number and I is an interval of the positive real numbers of length ℓ with $\ell \geq 1$ then the number of integers k in I for which p divides $k!+1$ is at most cl ${ }^{\frac{2}{3}}$.

For any non-zero integer m and any prime p we denote by $\operatorname{ord}_{p} m$ the exponent of the largest power of p which divides m. As usual $|m|_{p}$ is the p-adic absolute value of m normalized so that

$$
|m|_{p}=p^{-\operatorname{ord}_{p} m}
$$

Lemma 4. There exists a positive number c_{1} such that if p is a prime number, n a positive integer and I a subinterval of $[1, n]$ of length $\ell \geq 2$ then

$$
\begin{equation*}
(\log p) \operatorname{ord}_{p}\left(\prod_{i \in I}(i!+1)\right)<\frac{2}{3} \ell \log \ell \log n+c_{1} \ell \log n+n \log n \tag{41}
\end{equation*}
$$

Further, for each pair of positive real numbers ε and ε_{1} there exist positive numbers c_{2} and c_{3} such that if ℓ exceeds $\varepsilon_{1} n$ and n exceeds c_{3} then

$$
\begin{equation*}
(\log p) \operatorname{ord}_{p}\left(\prod_{i \in I}(i!+1)\right)<(1+\varepsilon) \frac{2}{9} \ell(\log \ell)^{2}+c_{2} n \log n \tag{42}
\end{equation*}
$$

Proof. Let i_{1}, \ldots, i_{u} be the integers i in I for which p divides $i!+1$. By Lemma 3 there is a positive number c such that

$$
\begin{equation*}
u \leq c \ell^{\frac{2}{3}} \tag{43}
\end{equation*}
$$

Put $h_{t}=\operatorname{ord}_{p}\left(i_{t}!+1\right)$ for $t=1, \ldots, u$. We may suppose that

$$
h_{1} \geq \cdots \geq h_{u}
$$

Then, by (13) of Lemma 2,

$$
\begin{equation*}
p^{h_{t}}<n^{\frac{\ell}{(t-1)}} \tag{44}
\end{equation*}
$$

for $t=2, \ldots, u$. In particular by (43) and (44),

$$
\begin{align*}
(\log p)\left(h_{2}+\cdots+h_{u}\right) & <\ell \log n\left(1+\int_{2}^{c \ell^{\frac{2}{3}}} \frac{1}{t-1} d t\right) \\
& <\frac{2}{3} \ell \log \ell \log n+c_{4} \ell \log n \tag{45}
\end{align*}
$$

where c_{4} is a positive number. Since

$$
\begin{equation*}
h_{1} \log p \leq n \log n \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\prod_{i \in I}(i!+1)\right)=h_{1}+\cdots+h_{u} \tag{47}
\end{equation*}
$$

(41) follows from (45) and (46).

Let c_{5}, c_{6}, \ldots denote positive numbers which depend on ε and ε_{1} and suppose that ℓ exceeds $\varepsilon_{1} n$. Then by (43),

$$
u \leq c n^{\frac{2}{3}}<n^{\frac{13}{18}-\frac{1}{36}},
$$

for $n>c_{5}$. Thus for $n>c_{6}$, (15) of Lemma 2 holds with $\delta=\frac{1}{36}$ and, since $\ell>\varepsilon_{1} n$, (16) of Lemma 2 also holds. Therefore by (17) of Lemma 2, for $n>c_{7}$,

$$
\begin{equation*}
(\log p) h_{t}<(1+\varepsilon) \ell\left(\frac{\log t}{t}+\frac{\log \left(\frac{e}{\varepsilon_{1}}\right)}{t}+\frac{2 \log n \cdot \max (1, \log \log t)}{(t-1)^{2}}\right) \tag{48}
\end{equation*}
$$

for $t=3, \ldots, u$. Since the expression on the right hand side of (48) is a decreasing function of t for $t>e$, we see that

$$
\begin{aligned}
& (\log p)\left(h_{4}+\cdots+h_{u}\right) \\
& \quad<(1+\varepsilon) \ell \int_{3}^{c^{\frac{2}{3}}} \frac{\log t}{t}+\frac{\log \left(\frac{e}{\varepsilon_{1}}\right)}{t}+\frac{2 \log n \max (1, \log \log t)}{(t-1)^{2}} d t
\end{aligned}
$$

and so

$$
\begin{equation*}
(\log p)\left(h_{4}+\cdots+h_{u}\right)<(1+\varepsilon) \frac{2}{9} \ell(\log \ell)^{2}+c_{8} n \log n \tag{49}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left(h_{1}+h_{2}+h_{3}\right) \log p<3 n \log n, \tag{50}
\end{equation*}
$$

(42) now follows from (47), (49) and (50).

Lemma 5. Let ε be a positive real number. There exists a positive number c, which depends on ε, such that if p is a prime number, n an integer with $n \geq 2$ and I a subinterval of $[1, n]$ of length ℓ then

$$
\begin{equation*}
(\log p) \operatorname{ord}_{p}\left(\prod_{i \in I}(i!+1)\right)<\frac{2}{9} \ell(\log n)^{2}+\varepsilon n(\log n)^{2}+c n \log n . \tag{51}
\end{equation*}
$$

Proof. Let c_{1}, c_{2}, \ldots denote positive numbers which depend on ε. By (42) of Lemma 4, if ℓ exceeds εn and n exceeds c_{1},

$$
\begin{equation*}
(\log p) \operatorname{ord}_{p}\left(\prod_{i \in I}(i!+1)\right)<\frac{2}{9} \ell(\log n)^{2}+\frac{2}{9} \varepsilon n(\log n)^{2}+c_{2} n \log n . \tag{52}
\end{equation*}
$$

On the other hand if $2 \leq \ell \leq \varepsilon n$ then by (41) of Lemma 4 ,

$$
\begin{equation*}
(\log p) \operatorname{ord}_{p}\left(\prod_{i \in I}(i!+1)\right)<\frac{2}{3} \varepsilon n(\log n)^{2}+c_{3} n \log n \tag{53}
\end{equation*}
$$

plainly (53) holds if $\ell \leq 2$. Therefore from (52) and (53), we obtain (51) with c_{4} in place of c for $n>c_{1}$, hence (51) holds for $n \geq 2$ and our result follows.

3. Proof of Theorem 1

Let δ be a positive real number with $\delta<\frac{1}{100}$. Put $\delta^{\prime}=10 \delta$,

$$
\begin{equation*}
\lambda=\frac{\sqrt{145}-1}{8}+\delta^{\prime}, \tag{54}
\end{equation*}
$$

and $\lambda_{1}=\lambda+\delta^{\prime}$. Note that $\lambda<\frac{3}{2}$. Let c_{1}, c_{2}, \ldots denote positive numbers which depend on δ. We may suppose that there exist only finitely many odd positive integers n for which

$$
p(n!+1) \leq \lambda_{1} n,
$$

since otherwise the theorem holds. Thus there exists a positive integer c_{1} such that for each odd integer n with $n>c_{1}$,

$$
\begin{equation*}
p(n!+1)>\lambda_{1} n . \tag{55}
\end{equation*}
$$

We shall show that this leads to a contradiction and the theorem then follows.

Since (55) holds, we also have

$$
\begin{equation*}
P(n!+1)<\frac{\lambda}{\lambda-1} n, \tag{56}
\end{equation*}
$$

On the greatest and least prime factors of $n!+1$, II
for all odd integers n with $n>c_{2}$. To see this, observe that if $q=P(n!+1)$ with $n>1$ and

$$
\begin{equation*}
q \geq \frac{\lambda}{\lambda-1} n \tag{57}
\end{equation*}
$$

then q is odd and, by (4),

$$
q \mid(q-n-1)!+1
$$

But then

$$
p((q-n-1)!+1) \leq q=\frac{1}{1-\frac{n+1}{q}}(q-n-1)
$$

We have $q>\lambda$ and, by (57), $\frac{n}{q} \leq \frac{\lambda-1}{\lambda}$ hence

$$
\frac{1}{1-\frac{n+1}{q}} \leq \frac{1}{1-\frac{1}{q}-\left(\frac{\lambda-1}{\lambda}\right)}=\frac{q \lambda}{q-\lambda}
$$

But $\frac{q \lambda}{q-\lambda}<\lambda_{1}$ for $n>c_{3}$ since $q>n$. Thus

$$
p((q-n-1)!+1) \leq \lambda_{1}(q-n-1)
$$

Furthermore, $q-n-1>c_{1}$ for $n>c_{4}$ by (57) and this contradicts (55). Therefore (56) holds.

The proof now proceeds by a comparison of estimates for

$$
Z=\prod_{\substack{n=1 \\ n \text { odd, } n>c_{2}}}^{N}(n!+1)
$$

Put $R=\left\{n \in \mathbb{Z} \mid n\right.$ odd, $\left.c_{2}<n \leq N\right\}$. Observe that if $p \mid n!+1$ with n in R then, by (55), $p>\lambda_{1} n$ and, by (56), $p<\frac{\lambda}{\lambda-1} n$. In particular,

$$
\frac{\lambda-1}{\lambda} p<n<\frac{1}{\lambda_{1}} p .
$$

Put

$$
I_{p}=\left(\frac{\lambda-1}{\lambda} p, \min \left(N, \frac{1}{\lambda_{1}} p\right)\right) .
$$

Since $n!\geq\left(\frac{n}{e}\right)^{n}$,

$$
Z>\exp \left(\sum_{n \in R}(n \log n-n)\right)
$$

so

$$
\begin{equation*}
\log Z>(1-\delta) \frac{N^{2}}{4} \log N \tag{58}
\end{equation*}
$$

provided that N exceeds c_{5}.
On the other hand

$$
Z=\prod_{p}|Z|_{p}^{-1} \leq\left.\left.\prod_{p}\right|_{n \in I_{p} \cap R}(n!+1)\right|_{p} ^{-1} .
$$

Put

$$
A(p)=(\log p) \operatorname{ord}_{p}\left(\prod_{n \in I_{p} \cap R}(n!+1)\right) .
$$

Then

$$
Z \leq \exp \left(\sum_{p<\frac{\lambda}{\lambda-1} N} A(p)\right)
$$

Thus by (51) of Lemma 5 , with $\varepsilon=\delta$,

$$
\begin{align*}
\log Z \leq \frac{2}{9}(\log N)^{2} & \sum_{p<\frac{\lambda}{\lambda-1} N} \ell(p) \\
& \quad+\left(\delta N(\log N)^{2}+c_{6} N \log N\right) \pi\left(\frac{\lambda}{\lambda-1} N\right) \tag{59}
\end{align*}
$$

where $\ell(p)$, the length of I_{p}, is given by

$$
\ell(p)=\left(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{\lambda}\right) p \quad \text { when } p \leq \lambda_{1} N
$$

and by

$$
\ell(p)=N-\left(\frac{\lambda-1}{\lambda}\right) p \quad \text { when } p \geq \lambda_{1} N .
$$

By (54), (59) and the prime number theorem,

$$
\begin{equation*}
\log Z \leq \frac{2}{9}(\log N)^{2} \sum_{p<\frac{\lambda}{\lambda-1} N} \ell(p)+4 \delta N^{2} \log N+c_{7} N^{2} . \tag{60}
\end{equation*}
$$

Further

$$
\begin{aligned}
\sum_{p<\frac{\lambda}{\lambda-1} N} \ell(p) & =\sum_{p \leq \lambda_{1} N}\left(\frac{1}{\lambda_{1}}-\frac{\lambda-1}{\lambda}\right) p+\sum_{\lambda_{1} N<p<\frac{\lambda}{\lambda-1} N}\left(N-\frac{\lambda-1}{\lambda} p\right) \\
& =\frac{1}{\lambda_{1}} \sum_{p \leq \lambda_{1} N} p+N\left(\sum_{\lambda_{1} N<p<\frac{\lambda}{\lambda-1} N} 1\right)-\frac{\lambda-1}{\lambda} \sum_{p<\frac{\lambda}{\lambda-1} N} p .
\end{aligned}
$$

Thus by the prime number theorem and Abel summation, for $N>c_{8}$,

$$
\begin{aligned}
\sum_{p<\frac{\lambda}{\lambda-1} N} \ell(p) & <(1+\delta)\left(\frac{\lambda_{1}}{2}+\left(\frac{\lambda}{\lambda-1}-\lambda_{1}\right)-\frac{\lambda}{2(\lambda-1)}\right) \frac{N^{2}}{\log N} \\
& <(1+\delta)\left(\frac{\lambda}{2(\lambda-1)}-\frac{\lambda_{1}}{2}\right) \frac{N^{2}}{\log N}
\end{aligned}
$$

and so by (60), and the fact that λ_{1} exceeds λ,

$$
\begin{equation*}
\log Z<\frac{(1+\delta)}{9}\left(\frac{\lambda}{\lambda-1}-\lambda\right) N^{2} \log N+4 \delta N^{2} \log N+c_{7} N^{2} \tag{61}
\end{equation*}
$$

Comparing (58) and (61) we find that for $N>c_{9}$,

$$
\frac{1-\delta}{4}<\frac{(1+\delta)}{9} \frac{\lambda(2-\lambda)}{(\lambda-1)}+4 \delta+\frac{c_{8}}{\log N}
$$

By (54) we obtain a contradiction for N sufficiently large and the result now follows.

4. Proof of Theorem 2

We may suppose that $0<\varepsilon<\frac{1}{4}$. Put $\gamma=\frac{11}{2}-18 \varepsilon$ and let $B(\gamma)$ be the set of positive integers for which

$$
\begin{equation*}
P(n!+1) \geq \gamma n \tag{62}
\end{equation*}
$$

We shall show that for n sufficiently large the set $B(\gamma) \cap\{1, \ldots, n\}$ has cardinality at least $\frac{\varepsilon}{3} n$ and hence the result follows. Accordingly suppose that N is a positive integer for which

$$
\begin{equation*}
|B(\gamma) \cap\{1, \ldots, N\}| \leq \frac{\varepsilon}{3} N \tag{63}
\end{equation*}
$$

Let c_{1}, c_{2}, \ldots denote positive numbers which depend on ε. Our proof proceeds by a comparison of estimates for

$$
Z=\prod_{\substack{n=1 \\ n \notin B(\gamma)}}^{N}(n!+1)
$$

Since $n!\geq\left(\frac{n}{e}\right)^{n}$,

$$
Z>\exp \left(\sum_{n=2}^{N}(n \log n-n)-|B(\gamma) \cap\{1, \ldots, N\}| N \log N\right)
$$

whence, by (63),

$$
\begin{equation*}
\log Z>(1-\varepsilon) \frac{N^{2} \log N}{2} \tag{64}
\end{equation*}
$$

provided that $N>c_{1}$.
Notice that if $p \mid n!+1$ and $n \notin B(\gamma)$ then $n<p<\gamma n$ hence $\frac{1}{\gamma} p<n<p$. Put

$$
I_{p}=\left(\frac{1}{\gamma} p, \min \{N, p\}\right)
$$

and

$$
A(p)=(\log p) \operatorname{ord}_{p}\left(\prod_{n \in I_{p}}(n!+1)\right)
$$

Then

$$
Z \leq \exp \left(\sum_{p<\gamma N} A(p)\right)
$$

Thus, by (51) of Lemma 5 with $\frac{\varepsilon}{6}$ in place of ε,

$$
\begin{equation*}
\log Z<\frac{2}{9}(\log N)^{2} \sum_{p<\gamma N} \ell(p)+\left(\frac{\varepsilon}{6} N(\log N)^{2}+c_{2} N \log N\right) \pi(\gamma N) \tag{65}
\end{equation*}
$$

where $\ell(p)$, the length of I_{p}, is given by

$$
\ell(p)=\left(1-\frac{1}{\gamma}\right) p \quad \text { for } p \leq N
$$

and

$$
\ell(p)=N-\frac{1}{\gamma} p \quad \text { for } p>N
$$

Since $\gamma<\frac{11}{2}$ it follows from (65) and the prime number theorem that

$$
\begin{equation*}
\log Z<\frac{2}{9}(\log N)^{2} \sum_{p<\gamma N} \ell(p)+\varepsilon N^{2} \log N+c_{3} N^{2} \tag{66}
\end{equation*}
$$

Further

$$
\begin{aligned}
\sum_{p<\gamma N} \ell(p) & =\sum_{p \leq N}\left(1-\frac{1}{\gamma}\right) p+\sum_{N<p<\gamma N}\left(N-\frac{1}{\gamma} p\right) \\
& =\sum_{p \leq N} p+\sum_{N<p<\gamma N} N-\frac{1}{\gamma} \sum_{p<\gamma N} p
\end{aligned}
$$

Thus, by the prime number theorem and Abel summation, for $N>c_{4}$,

$$
\sum_{p<\gamma N} \ell(p)<(1+\varepsilon)\left(\frac{N^{2}}{2 \log N}+\frac{(\gamma-1) N^{2}}{\log N}-\frac{\gamma}{2} \frac{N^{2}}{\log N}\right)
$$

and so by (66),

$$
\begin{equation*}
\log Z<\frac{(1+\varepsilon)}{9}(\gamma-1) N^{2} \log N+\varepsilon N^{2} \log N+c_{3} N^{2} \tag{67}
\end{equation*}
$$

Comparing (64) and (67) we find that for $N>c_{5}$,

$$
\frac{(1-\varepsilon)}{2}<(1+\varepsilon) \frac{(\gamma-1)}{9}+\varepsilon+\frac{c_{3}}{\log N}
$$

But $\gamma<\frac{11}{2}$ and so for N sufficiently large we obtain a contradiction. Thus (63) does not hold for N sufficiently large and the result now follows.

References

[1] B. Brindza and P. Erdős, On some Diophantine problems involving powers and factorials, J. Austral. Math. Soc. Ser. A 51 (1991), 1-7.
[2] P. Erdős and R. Graham, Old and new problems and results in combinatorial number theory, Monographie 28 de L'Enseignement Mathématique, Genève, 1980.
[3] P. Erdős and C. L. Stewart, On the greatest and least prime factors of $n!+1$, J. London Math. Soc. 13, no. 2 (1976), 513-519.
[4] D. R. Heath-Brown, The difference between consecutive primes, III, J. London Math. Soc. 20, no. 2 (1979), 177-178.

480 C. L. Stewart : On the greatest and least prime factors of $n!+1$, II
[5] M. Le, On the Diophantine equation $x^{p-1}+(p-1)!=p^{n}$, Publ. Math. Debrecen 48 (1996), 145-149.
[6] J. Liouville, Sur l'équation $1 \cdot 2 \cdot 3 \cdots(p-1)+1=p^{m}$, J. Math. Pure Appl. 1 (1856), 351-352.
[7] F. Luca and I. E. Shparlinski, Prime divisors of shifted factorials (to appear).
[8] M. R. Murty and S. Wong, The $A B C$ conjecture and prime divisors of the Lucas and Lehmer sequences, Number Theory for the Millenium, III, (Urbana, IL, 2000), A. K. Peters, Natick, MA, 2002, 43-54.
[9] C. L. Stewart, On divisor properties of arithmetical sequences, Ph.D. thesis, University of Cambridge, 1976.
[10] K. Yu and D. Liu, A complete resolution of a problem of Erdős and Graham, Rocky Mountain J. Math. 26 (1996), 1235-1244.

CAMERON L. STEWART
DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO, N2L 3G1
CANADA
E-mail: cstewart@uwaterloo.ca
URL: http://www.math. uwaterloo.ca/PM_Dept/Homepages/Stewart/stewart.html
(Received March 19, 2004; revised May 27, 2004)

[^0]: Mathematics Subject Classification: 11D75, 11J25.
 Key words and phrases: shifted factorials, prime factors.
 This research was supported in part by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada and by the Canada Research Chairs Program.

