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On the greatest and least prime factors of n! + 1, II

By C. L. STEWART (Waterloo)

In memory of Béla Brindza

Abstract. Let ε be a positive real number. We prove that for infinitely
many odd integers n the least prime factor of n! + 1 is at most (

√
145−1

8 + ε)n
and that for infinitely many positive integers n the greatest prime factor of n!+1
exceeds ( 11

2 − ε)n.

1. Introduction

In 1856, Liouville [6] proved that (p− 1)! + 1 is not a power of p for
any prime p larger than 5. More than a century later Erdős and Graham

[2] asked if the equation

(p− 1)! + ap−1 = pk (1)

has only finitely many solutions in positive integers a, k, p with p an odd
prime. In 1991 Brindza and Erdős [1] resolved the question by proving
that all solutions of (1) are smaller than an effectively computable number.
A few years later Yu and Liu [10] and then Le [5] determined the complete
list of solutions.
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In 1976 we investigated with Erdős [3] the arithmetical character of
integers of the form n! + 1 where n is a positive integer. For any integer
m larger than 1 let P (m) denote the greatest prime factor of m and let
p(m) denote the least prime factor of m. By Wilson’s theorem p divides
(p− 1)! + 1 whenever p is a prime. Since all prime factors of n! + 1 exceed
n we see that p(n! + 1) = n + 1 whenever n + 1 is a prime. We showed
with Erdős [3] that if n + 1 is not a prime then

p(n! + 1) > n + (1− o(1))
log n

log log n
. (2)

Further, for almost all integers n,

p(n! + 1) > n + ε(n)n
1
2 , (3)

where ε(n) is any positive function that decreases to 0 as n →∞.
In [3] we indicated how to prove that for infinitely many integers n for

which n + 1 is not a prime p(n! + 1) is less than 2n. We observed, as a
direct consequence of Wilson’s theorem, that if p is a prime then

(p− 1− i)! i! ≡ (−1)i+1 (mod p), 0 ≤ i ≤ p− 1. (4)

Thus if p | i!+1 for some odd integer i (> 1) then, from (4), p | (p−i−1)!+1.
For any positive real numbers θ and t with t > 1

θ we have

max
(

θ,
1

t− θ−1

)
≥ 2

t
(5)

and

min
(

θ,
1

t− θ−1

)
≤ 2

t
. (6)

Note that p
p−i−1 = 1

p−1
p
− i

p

and so on taking θ = p
i and t = p−1

p we see from

(5) and (6) that

max
(

p

i
,

p

p− i− 1

)
≥ 2p

p− 1
= 2 +

2
p− 1

,

and

min
(

p

i
,

p

p− i− 1

)
≤ 2 +

2
p− 1

,
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for 0 < i < p − 1. As i tends to infinity so also do p and p − i. Thus for
each ε > 0,

p(n! + 1) < (2 + ε)n, (7)

for infinitely many composite integers n + 1. Further

P (n! + 1) > 2n, (8)

for infinitely many positive integers n. We indicated in [3] that 2+ε in (7)
could be replaced by 2−δ for some positive number δ. Our first result will
be of this character.

Theorem 1. Let ε > 0. There are infinitely many odd integers n for

which

p(n! + 1) <

(√
145− 1

8
+ ε

)
n. (9)

Observe that
√

145−1
8 = 1.38019 . . . .

With Erdős [3] we proved that (2) holds with P (n! + 1) in place of
p(n! + 1) for all positive integers n. Of course this only is an improvement
on (2) for those integers n for which n + 1 is a prime. Recently Luca and
Shparlinski [7] sharpened this result by proving that

P (n! + 1) > n +
(

1
4

+ o(1)
)

log n; (10)

indeed they established (10) with P (n!+1) replaced by P (n!+f(n)) where
f is any non-zero polynomial with integer coefficients. In 2002 Murty and
Wong [8] showed that if the abc conjecture holds, then

P (n! + 1) > (1 + o(1))n log n.

In 1976 we improved on (8) with Erdős [3] by proving that there is a
positive number δ such that

P (n! + 1) > (2 + δ)n, (11)

for infinitely many integers n. Luca and Shparlinski [7] established (11)
with (2 + δ)n replaced by (5

2 + o(1))n and showed that their result applies
with n! + f(n) in place of n! + 1 where f is any non-zero polynomial with
integer coefficients. Our next result gives a further improvement on (11).
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For any set X we denote the cardinality of X by |X|. For any set A of
positive integers and any positive integer n we put A(n) = A∩ {1, . . . , n}.
The lower asymptotic density of A is lim inf |A(n)|

n .

Theorem 2. Let ε > 0. The set of positive integers n for which

P (n! + 1) >

(
11
2
− ε

)
n (12)

has positive lower asymptotic density.

As we remarked in [3] estimates (2), (3), (7), (8) and (11) hold with
n! + 1 replaced by n!− 1 and the same comment applies to the estimates
(9) and (12). Further, the same techniques used to prove Theorems 1
and 2 allow one to prove, for instance, that for each positive real number
ε there exist infinitely many positive integers n for which P ((2n)! + 1) >(

17+
√

145
8 − ε

)
2n and there exist infinitely many positive integers n for

which P ((n! + 1)(n!− 1)) >
(

11+
√

85
2 − ε

)
n.

2. Preliminary lemmas

Let p1, p2, . . . denote the sequence of prime numbers and put dk =
pk+1 − pk for k = 1, 2, . . . . Our first lemma, due to Heath-Brown, gives
a bound on the frequency of large differences between consecutive prime
numbers.

Lemma 1. Let ε be a positive real number. There is a positive num-

ber c, which depends on ε, such that
∑

pk≤x

d2
k < cx

23
18

+ε.

Proof. This is Theorem 1 of [4]. ¤

Our next result gives a bound for the size of the greatest common
divisor of a collection of terms of the form k! + 1.

Lemma 2. Let n and t be positive integers with t ≥ 2 and let i1, . . . , it
be distinct positive integers from a subinterval of [1, n] of length `. Then

gcd(i1! + 1, . . . , it! + 1) < n
`

t−1 . (13)
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Further, there exists a positive number c1 such that if n exceeds c1 and

t ≥ 3 then

gcd(i1! + 1, . . . , it! + 1) < enn
2`

(t−1)2 . (14)

Furthermore, let δ and ε be positive real numbers. There exists a positive

number c2, which depends on ε and δ, such that if n exceeds c2,

3 ≤ t < n
13
18
−δ, (15)

and

` >
n

(log n)
1
2

, (16)

then

gcd(i1! + 1, . . . , it! + 1)

< exp

(
(1 + ε)`

(
log t

t
+

log
(

ne
`

)

t
+

2 log nmax(1, log log t)
(t− 1)2

))
. (17)

We remark that it is possible to replace the term max(1, log log t) on
the right hand side of inequality (17) by f(t) where f is any real valued
function to the real numbers of size at least 1 for which lim

t→∞f(t) = ∞
provided that c2 is modified to depend on f .

Proof of Lemma 2. Let A be a positive integer and let (k1, k2) and
(k3, k4) be distinct pairs of integers with n ≥ k1 > k2 ≥ 1 and n ≥ k3 >

k4 ≥ 1 for which
A | ki! + 1, (18)

for i = 1, 2, 3, 4. Suppose, without loss of generality, that

k1 − k2 ≥ k3 − k4. (19)

(Note that {k1, k2, k3, k4} may only contain 3 elements.) Then, by (18),

A | ki!− ki+1!, for i = 1, 3,

and so

A | ki+1!(ki(ki − 1) · · · (ki+1 + 1)− 1), for i = 1, 3.
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But, by (18), gcd(A, ki+1!) = 1 for i = 1, 3 hence

A | ki · · · (ki+1 + 1)− 1, (20)
for i = 1, 3. Therefore

A | k1 · · · (k2 + 1)− k3 · · · (k4 + 1).
Since

k1 · · · (k2 + 1)− k3 · · · (k4 + 1) = (k3 − k4)!
(

(k1 − k2)!
(k3 − k4)!

(
k1

k2

)
−

(
k3

k4

))
,

gcd(A, (k3 − k4)!) = 1 and k1 − k2 ≥ k3 − k4, we find that

A | ((k3 − k4)!)−1(k1 · · · (k2 + 1)− k3 · · · (k4 + 1)). (21)

Notice that
|k1 · · · (k2 + 1)− k3 · · · (k4 + 1)| < nk1−k2 . (22)

Thus, provided that

k1 · · · (k2 + 1) 6= k3 · · · (k4 + 1), (23)

we deduce from (21), (22) and the fact that m! ≥ (
m
e

)m, when m is a
positive integer, that

A < n(k1−k2)−(k3−k4)

(
ne

k3 − k4

)k3−k4

. (24)

Since g(x) =
(

ne
x

)x attains its maximum value at x = n we see that, when
(23) holds,

A < n(k1−k2)−(k3−k4)en. (25)
We now put

A = gcd(i1! + 1, . . . , it! + 1).

We shall prove (13) first. Put

µ = min{ia − ib | ia > ib, a, b ∈ {1, . . . , t}}
and let k1, k2 be elements of {i1, . . . , it} with k1 − k2 = µ. Since µ ≤ `

(t−1)

we see from (20) with i = 1 that

A < nk1−k2 ≤ n
`

(t−1) ,

as required.
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We shall prove (14) next. There are
(

t
2

)
pairs of integers (i, i′) with

i > i′ which can be chosen from {i1, . . . , it}. Associated to each such pair
is the difference i − i′ and 0 < i − i′ ≤ `. Therefore there are two such
pairs, (k1, k2) and (k3, k4) say, for which

0 ≤ (k1 − k2)− (k3 − k4) ≤ `((
t
2

)− 1
) . (26)

Thus, provided that (23) holds, by (25) and (26),

A < n

`

((t
2)−1) en,

hence, since t ≥ 3 and
(

t
2

)− 1 ≥ (t−1)2

2 ,

A < enn
2`

(t−1)2 .

It remains only to ensure that (23) holds. We may assume that A

exceeds en since otherwise the result is immediate. Note that if k1 = k3

then, since the pairs (k1, k2) and (k3, k4) are distinct, k2 6= k4 and so (23)
holds. Thus we may assume that k1 > k3; a similar argument applies if
k3 < k1. Further, we may assume, after renumbering k2, k3, k4 if necessary,
that k2 ≥ k3 > k4. Since, as in (20), A divides k1 · · · (k2 + 1) − 1 we see
that A ≤ nk1−k2 . But A exceeds en and so

k1 − k2 ≥ n

log n
.

By a version of the prime number theorem with an explicit error term, for n

sufficiently large there is a prime p between k1 and k2. As a consequence p

divides k1 · · · (k2 + 1) and not k3 · · · (k4 + 1) and so (23) holds and (14)
follows.

Finally, we shall prove (17). Let c3, c4, . . . denote positive numbers
which are effectively computable in terms of ε and δ. Without loss of
generality we may suppose that

n ≥ i1 > i2 > · · · > it ≥ 1.

Note that we may also suppose that

t− 1 ≥ (log n)
1
8 , (27)
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since otherwise, by (16),

2` log n

(t− 1)2
≥ 2`(log n)

3
4 ≥ 2n(log n)

1
4

and therefore, by (14),

A < exp
(

(1 + ε)
2`(log n)
(t− 1)2

)
,

for n larger than c3, whence (17) holds.
We consider the consecutive integers ij+1+1, . . . , ij for j = 1, . . . , t−1.

Notice that A divides ij !+1 and ij+1!+1 hence A divides ij · · · (ij+1+1)−1.
Therefore A is at most nij−ij+1 . If for some j, with 1 ≤ j ≤ t− 1,

ij − ij+1 <
n

t(log n)
3
2

,

then

A ≤ exp

(
n

t(log n)
1
2

)
,

and, by (16), (17) holds. Thus we may suppose that

ij − ij+1 ≥ n

t(log n)
3
2

,

for j = 1, . . . , t−1. Let m denote the number of the intervals [ij+1+1, ij ] for
j = 1, . . . , t−1 which do not contain a prime number. Let p1, p2, . . . denote
the sequence of prime numbers and put dk = pk+1 − pk for k = 1, 2, . . . .
Then

∑

pk≤n

d2
k ≥ m

(
n

t(log n)
3
2

)2

.

But, by Lemma 1, ∑

pk≤n

d2
k < n

23
18

+ δ
2 ,

for n > c4. In particular

m <
t2(log n)3

n
13
18
− δ

2

,
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and by (15), since t ≤ n,

m < tn−
δ
2 (log n)3 < t1−

δ
3 , (28)

for n > c5.
Put

t1 = t− 1−m, (29)

and order the differences ij − ij+1 with 1 ≤ j ≤ t− 1 for which there is a
prime in the interval [ij+1 + 1, ij ] according to size. Let us denote these
differences by γ1, . . . , γt1 so that

γ1 ≤ γ2 ≤ · · · ≤ γt1 . (30)

Observe that
γ1 + · · ·+ γt1 ≤ i1 − it ≤ `. (31)

For any real number x let [x] denote the largest integer of size at most x.
Put

t2 =
[
t1/(log log t1)

1
2

]
. (32)

Then, by (30) and (31),
γt2(t1 − t2) ≤ `.

Thus, by (27), (28), (29), (30) and (32), for n > c6,

γh <
(
1 +

ε

2

) `

t
, (33)

for h = 1, . . . , t2.
Next note that

(γt2 − γt2−1) + (γt2−1 − γt2−2) + · · ·+ (γ1 − 0) = γt2

(γt2−1 − γt2−2) + · · ·+ (γ1 − 0) = γt2−1

. . .
...

. . .
...

(γ1− 0) = γ1
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hence

(γt2 − γt2−1) + 2(γt2−1 − γt2−2) + · · ·+ t2γ1 = γt2 + · · ·+ γ1. (34)

Put
θ = min(γt2 − γt2−1, . . . , γ2 − γ1, γ1).

Then, by (31) and (34),
t2(t2 + 1)

2
θ ≤ `.

Therefore, by (27), (28), (29) and (32), for n > c7,

θ < (1 + ε)
2` log log t

t2
. (35)

We have γ1 = ir − ir+1 for an integer r with 1 ≤ r ≤ t− 1. Then

A | ir · · · (ir+1 + 1)− 1.

If θ = γ1, we see that
A < nθ,

and by (35) our result follows.
Thus we may suppose that θ = γs − γs−1 for some integer s from

{2, . . . , t2}. In particular,

θ = (ia − ia+1)− (ib − ib+1)

with a and b distinct integers from {1, . . . , t− 1}. Put k1 = ia, k2 = ia+1,
k3 = ib and k4 = ib+1. By construction there is a prime among the integers
k2 + 1, . . . , k1 and another prime among the integers k4 + 1, . . . , k3. Thus
the larger of the two primes divides one of k1 · · · (k2 +1) and k3 · · · (k4 +1)
and not the other whence (23) holds. Note also that

(
ne
x

)x is an increasing
function of x for x positive and less than n. Therefore, by (24), (27), (33)
and (35), we find that

A < n(1+ε) 2` log log t

t2

(
net

(1 + ε)`

)(1+ε) `
t

,

hence that

A < exp

(
(1 + ε)`

(
2 log n log log t

t2
+

log t

t
+

log
(

ne
(1+ε)`

)

t

))
(36)

for n > c8, as required. ¤
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For any prime p let t(p) denote the number of positive integers k for
which p | k! + 1. In [9, Theorem 7.5] we noted that

t(p) <
(m + 1)(m + 2)

2
where m = (3p)

1
3 . (37)

To see this observe that if n and s are positive integers and p divides both
n! + 1 and (n+ s)!+ 1 then p divides (n+s)!−n! hence (n+s) · · · (n+1)≡1
(mod p). In particular, n is a solution of the polynomial congruence (x+s)
· · · (x + 1) ≡ 1 (mod p), and by Lagrange’s theorem the number of such
solutions is at most s. Let I be an interval of length ` (≥ 1) and let
n1 < n2 < · · · < nk denote all the solutions of x! + 1 ≡ 0 (mod p) in I.
Plainly

k−1∑

i=1

(ni+1 − ni) ≤ `, (38)

and by our earlier observation at most s of the terms in brackets in the
above sum are equal to s. Therefore

k−1∑

i=1

(ni+1 − ni) ≥
u∑

s=1

s2, (39)

where u is defined by the inequalities
u∑

s=1

s ≤ k − 1 <
u+1∑

s=1

s.

Thus k is at most (u+1)(u+2)
2 and by (38) and (39)

` ≥ u(u + 1)(2u + 1)
6

>
u3

3
. (40)

Since all integers n for which p | n! + 1 lie in the interval [1, p − 1], (37)
follows from (40) with ` = p. Further, from (40) we obtain Lemma 3 below,
a result which is the special case of Lemma 2 of Luca and Shparlinski

[7] with f(x) equal to 1.

Lemma 3. There exists a positive number c such that if p is a prime

number and I is an interval of the positive real numbers of length ` with

` ≥ 1 then the number of integers k in I for which p divides k! + 1 is at

most c`
2
3 .
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For any non-zero integer m and any prime p we denote by ordp m the
exponent of the largest power of p which divides m. As usual |m|p is the
p-adic absolute value of m normalized so that

|m|p = p− ordp m.

Lemma 4. There exists a positive number c1 such that if p is a prime

number, n a positive integer and I a subinterval of [1, n] of length ` ≥ 2
then

(log p) ordp

( ∏

i∈I

(i! + 1)
)

<
2
3
` log ` log n + c1` log n + n log n. (41)

Further, for each pair of positive real numbers ε and ε1 there exist positive

numbers c2 and c3 such that if ` exceeds ε1n and n exceeds c3 then

(log p) ordp

(∏

i∈I

(i! + 1)
)

< (1 + ε)
2
9
`(log `)2 + c2n log n. (42)

Proof. Let i1, . . . , iu be the integers i in I for which p divides i! + 1.
By Lemma 3 there is a positive number c such that

u ≤ c`
2
3 . (43)

Put ht = ordp(it! + 1) for t = 1, . . . , u. We may suppose that

h1 ≥ · · · ≥ hu.

Then, by (13) of Lemma 2,

pht < n
`

(t−1) , (44)

for t = 2, . . . , u. In particular by (43) and (44),

(log p)(h2 + · · ·+ hu) < ` log n

(
1 +

∫ c`
2
3

2

1
t− 1

dt

)

<
2
3
` log ` log n + c4` log n, (45)

where c4 is a positive number. Since

h1 log p ≤ n log n (46)
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and

ordp

(∏

i∈I

(i! + 1)
)

= h1 + · · ·+ hu, (47)

(41) follows from (45) and (46).
Let c5, c6, . . . denote positive numbers which depend on ε and ε1 and

suppose that ` exceeds ε1n. Then by (43),

u ≤ cn
2
3 < n

13
18
− 1

36 ,

for n > c5. Thus for n > c6, (15) of Lemma 2 holds with δ = 1
36 and, since

` > ε1n, (16) of Lemma 2 also holds. Therefore by (17) of Lemma 2, for
n > c7,

(log p)ht < (1 + ε)`

(
log t

t
+

log
(

e
ε1

)

t
+

2 log n ·max(1, log log t)
(t− 1)2

)
(48)

for t = 3, . . . , u. Since the expression on the right hand side of (48) is a
decreasing function of t for t > e, we see that

(log p)(h4 + · · ·+ hu)

< (1 + ε)`
∫ c`

2
3

3

log t

t
+

log
(

e
ε1

)

t
+

2 log nmax(1, log log t)
(t− 1)2

dt

and so

(log p)(h4 + · · ·+ hu) < (1 + ε)
2
9
`(log `)2 + c8n log n. (49)

Since
(h1 + h2 + h3) log p < 3n log n, (50)

(42) now follows from (47), (49) and (50). ¤

Lemma 5. Let ε be a positive real number. There exists a positive

number c, which depends on ε, such that if p is a prime number, n an

integer with n ≥ 2 and I a subinterval of [1, n] of length ` then

(log p) ordp

(∏

i∈I

(i! + 1)
)

<
2
9
`(log n)2 + εn(log n)2 + cn log n. (51)
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Proof. Let c1, c2, . . . denote positive numbers which depend on ε.
By (42) of Lemma 4, if ` exceeds εn and n exceeds c1,

(log p) ordp

( ∏

i∈I

(i! + 1)
)

<
2
9
`(log n)2 +

2
9
εn(log n)2 + c2n log n. (52)

On the other hand if 2 ≤ ` ≤ εn then by (41) of Lemma 4,

(log p) ordp

(∏

i∈I

(i! + 1)
)

<
2
3
εn(log n)2 + c3n log n; (53)

plainly (53) holds if ` ≤ 2. Therefore from (52) and (53), we obtain (51)
with c4 in place of c for n > c1, hence (51) holds for n ≥ 2 and our result
follows. ¤

3. Proof of Theorem 1

Let δ be a positive real number with δ < 1
100 . Put δ′ = 10δ,

λ =
√

145− 1
8

+ δ′, (54)

and λ1 = λ + δ′. Note that λ < 3
2 . Let c1, c2, . . . denote positive numbers

which depend on δ. We may suppose that there exist only finitely many
odd positive integers n for which

p(n! + 1) ≤ λ1n,

since otherwise the theorem holds. Thus there exists a positive integer c1

such that for each odd integer n with n > c1,

p(n! + 1) > λ1n. (55)

We shall show that this leads to a contradiction and the theorem then
follows.

Since (55) holds, we also have

P (n! + 1) <
λ

λ− 1
n, (56)
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for all odd integers n with n > c2. To see this, observe that if q = P (n!+1)
with n > 1 and

q ≥ λ

λ− 1
n, (57)

then q is odd and, by (4),

q | (q − n− 1)! + 1.

But then
p((q − n− 1)! + 1) ≤ q =

1
1− n+1

q

(q − n− 1).

We have q > λ and, by (57), n
q ≤ λ−1

λ hence

1
1− n+1

q

≤ 1
1− 1

q −
(

λ−1
λ

) =
qλ

q − λ
.

But qλ
q−λ < λ1 for n > c3 since q > n. Thus

p((q − n− 1)! + 1) ≤ λ1(q − n− 1).

Furthermore, q − n− 1 > c1 for n > c4 by (57) and this contradicts (55).
Therefore (56) holds.

The proof now proceeds by a comparison of estimates for

Z =
N∏

n=1
n odd, n>c2

(n! + 1).

Put R = {n ∈ Z | n odd, c2 < n ≤ N}. Observe that if p | n! + 1 with n

in R then, by (55), p > λ1n and, by (56), p < λ
λ−1n. In particular,

λ− 1
λ

p < n <
1
λ1

p.

Put

Ip =
(

λ− 1
λ

p, min
(

N,
1
λ1

p

))
.

Since n! ≥ (
n
e

)n,

Z > exp

(∑

n∈R

(n log n− n)

)
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so

log Z > (1− δ)
N2

4
log N, (58)

provided that N exceeds c5.
On the other hand

Z =
∏
p

|Z|−1
p ≤

∏
p

∣∣∣∣∣
∏

n∈Ip∩R

(n! + 1)

∣∣∣∣∣
−1

p

.

Put

A(p) = (log p) ordp

( ∏

n∈Ip∩R

(n! + 1)
)

.

Then

Z ≤ exp
( ∑

p< λ
λ−1

N

A(p)
)

.

Thus by (51) of Lemma 5, with ε = δ,

log Z ≤ 2
9
(log N)2

∑

p< λ
λ−1

N

`(p)

+ (δN(log N)2 + c6N log N)π
(

λ

λ− 1
N

)
, (59)

where `(p), the length of Ip, is given by

`(p) =
(

1
λ1
− λ− 1

λ

)
p when p ≤ λ1N

and by

`(p) = N −
(

λ− 1
λ

)
p when p ≥ λ1N.

By (54), (59) and the prime number theorem,

log Z ≤ 2
9
(log N)2

∑

p< λ
λ−1

N

`(p) + 4δN2 log N + c7N
2. (60)



On the greatest and least prime factors of n! + 1, II 477

Further
∑

p< λ
λ−1

N

`(p) =
∑

p≤λ1N

(
1
λ1
− λ− 1

λ

)
p +

∑

λ1N<p< λ
λ−1

N

(
N − λ− 1

λ
p

)

=
1
λ1

∑

p≤λ1N

p + N

( ∑

λ1N<p< λ
λ−1

N

1
)
− λ− 1

λ

∑

p< λ
λ−1

N

p.

Thus by the prime number theorem and Abel summation, for N > c8,
∑

p< λ
λ−1

N

`(p) < (1 + δ)
(

λ1

2
+

(
λ

λ− 1
− λ1

)
− λ

2(λ− 1)

)
N2

log N

< (1 + δ)
(

λ

2(λ− 1)
− λ1

2

)
N2

log N
,

and so by (60), and the fact that λ1 exceeds λ,

log Z <
(1 + δ)

9

(
λ

λ− 1
− λ

)
N2 log N + 4δN2 log N + c7N

2. (61)

Comparing (58) and (61) we find that for N > c9,

1− δ

4
<

(1 + δ)
9

λ(2− λ)
(λ− 1)

+ 4δ +
c8

log N
.

By (54) we obtain a contradiction for N sufficiently large and the result
now follows.

4. Proof of Theorem 2

We may suppose that 0 < ε < 1
4 . Put γ = 11

2 − 18ε and let B(γ) be
the set of positive integers for which

P (n! + 1) ≥ γn. (62)

We shall show that for n sufficiently large the set B(γ) ∩ {1, . . . , n} has
cardinality at least ε

3n and hence the result follows. Accordingly suppose
that N is a positive integer for which

|B(γ) ∩ {1, . . . , N}| ≤ ε

3
N. (63)
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Let c1, c2, . . . denote positive numbers which depend on ε. Our proof
proceeds by a comparison of estimates for

Z =
N∏

n=1
n6∈B(γ)

(n! + 1).

Since n! ≥ (
n
e

)n,

Z > exp

(
N∑

n=2

(n log n− n)− |B(γ) ∩ {1, . . . , N}|N log N

)

whence, by (63),

log Z > (1− ε)
N2 log N

2
, (64)

provided that N > c1.
Notice that if p | n! + 1 and n 6∈ B(γ) then n < p < γn hence

1
γ p < n < p. Put

Ip =
(

1
γ

p, min{N, p}
)

,

and

A(p) = (log p) ordp

( ∏

n∈Ip

(n! + 1)
)

.

Then

Z ≤ exp
( ∑

p<γN

A(p)
)

.

Thus, by (51) of Lemma 5 with ε
6 in place of ε,

log Z <
2
9
(log N)2

∑

p<γN

`(p) +
(ε

6
N(log N)2 + c2N log N

)
π(γN), (65)

where `(p), the length of Ip, is given by

`(p) =
(

1− 1
γ

)
p for p ≤ N

and
`(p) = N − 1

γ
p for p > N.
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Since γ < 11
2 it follows from (65) and the prime number theorem that

log Z <
2
9
(log N)2

∑

p<γN

`(p) + εN2 log N + c3N
2. (66)

Further
∑

p<γN

`(p) =
∑

p≤N

(
1− 1

γ

)
p +

∑

N<p<γN

(
N − 1

γ
p

)

=
∑

p≤N

p +
∑

N<p<γN

N − 1
γ

∑

p<γN

p.

Thus, by the prime number theorem and Abel summation, for N > c4,

∑

p<γN

`(p) < (1 + ε)
(

N2

2 log N
+

(γ − 1)N2

log N
− γ

2
N2

log N

)

and so by (66),

log Z <
(1 + ε)

9
(γ − 1)N2 log N + εN2 log N + c3N

2. (67)

Comparing (64) and (67) we find that for N > c5,

(1− ε)
2

< (1 + ε)
(γ − 1)

9
+ ε +

c3

log N
.

But γ < 11
2 and so for N sufficiently large we obtain a contradiction. Thus

(63) does not hold for N sufficiently large and the result now follows.
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