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CONGRUENCE PROPERTIES OF THE g2-FUNCTION

ON SUMSETS

J. RIVAT, A. SARKZYAND C. L. STEWART

ABSTRACT. In this article we investigate the behaviour of the omega function, which counts the number
of prime factors of an integer with multiplicity, as one runs over those integers of the form a + b where a is
from a set A and b is from a set B. We prove, for example, that if A and B are sufficiently dense subsets of
the first N positive integers and k is a positive integer then the number of pairs (a, b) for which the omega
function of a + b lies in a given residue class modulo k is roughly the total number of pairs divided by k.

1. Notation

Throughout this paper, we shall use the following notation: c ,C2 denote posi-
tive absolute constants. Z, N and N0 denote the set of integers, positive integers and
non-negative integers respectively. The cardinality of a set S is denoted by ISI. [xJ
and {x} denote the integer part and the fractional part of x and IIx denotes the dis-
tance from x to the nearest integer: Ilxll min({x}, {x}). We write e2ni e(ot).
If f (n) O (g (n)), then we write f (n) << g (n); if the implied constant depends
on a certain parameter c, then we write f(n) <<. g(n). 4,/3 denote subsets of
No and .A +/3 denotes the set of the non-negative integers n that can be represented
in the form n a + b with a .,4, b 13. w(n) denotes the number of distinct
prime factors of n and f2 (n) denotes the number of prime factors of n counted with
multiplicity. .(n) is the Liouville function: .(n) (-1)a’). The divisor function
is denoted by r (n).

2. The results

In 1988, Sirk6zy[1 1] proved the following result. If H > 0, N > N0(H),
.A,/3 c {1,2 N} and 141, 1/31 > N(log N)-H, then both equations

k(a + b) +1 (a 4, b /3)
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and

)(a’ + b’) -1 (a’ 4, b’ B)

can be solved. In this paper our goal is to study two problems motivated by this
theorem.

The first problem to study is the following related conjecture of Slirk/3zy[ 12] which
partly generalizes the result above.

CONJECTURE 1. Ilk N, e > O, N N, N > N(e,k), .,4, 15 C {1,2 N}
and [A[, It3[ > eN then there are a .A, b 13 with k lf2(a + b).

The conjecture in this form follows readily from a recent result of Tenenbaum
[15]. However, by using an extension of Selberg’s formula 13] (which is the crucial
tool in Tenenbaum’s paper as well) in order to attack this problem directly, we shall
be able to obtain a sharper result than the one that can be derived from Tenenbaum’s
result.

THEOREM 1. For all k 1%I, h Z there exist effectively computable positive
numbers c, E E(k) and N2 such that ifN > N2 and 4, 3 C {1,2 N}, then

I{(a,b):a64, b6/3, f2(a+b)=-hmodk}[

< c, (IAII31)/: N
(1)

(log N)e

In particular, for (IAIII) /2 > c2kN(log N)-e there are a 4, b 13 with
2 (a + b) --_ h mod k.

How far is Siirk6zy’s result [11] quoted above (and also Theorem 1) from being
best possible? In other words, how large can subsets .,4,/3 of 1,2 N} be with
the property that f2 (a + b) is of the same parity for all a 6 4, b 6 3? Two principles
used in [4] and 10] give the following two theorems easily.

THEOREM 2. Let N N, N, < log N. There is an effectively computable
constant IV3 such that if N > N3 then there exist 4, 13 c {l, 2 N} such that

N
3

and f2 (a + b) is evenfor all a A, b 13.

Indeed the result is an easy consequence of the following lemma of Erd6s, Stewart
and Tijdeman [4] (see also [10]).
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LEMMA 1. IfN N, 79 C {1,2 N}, 79 :/: 0, b] and < IDI, then there
are sets C 79 and .T" C No such that

We apply the lemma with 79 {n 2 < n < N, 212 (n)}, and use the fact that,
by a well-known consequence of the Prime Number Theorem, 1791 (1/2 + o(l))N.
We choose 4 as the set ,5’ in the lemma shifted down by and/3 as the set .T" in the
lemma shifted up by 1. It is easy to see that these sets 4 and/3 satisfy the conditions
in Theorem 2.

In the special case 4 =/3, Theorem 7 in 10] yields:

THEOREM 3. For all large N there is a set ,A c {IN/4], [N/4I 4- N}
such that I,AI > log log N andfor each pair a, a’ with a, a’ t and a :/: a’ we have

(a + a’) 2.

(See the remark at the end of 0] on the role of the condition a - a’ in this result.)
In [1 1], Sirktizy also studied the special case of/3 -4 (= {-a a 6 4}), and

he showed that there is an 4 C 1,2 N} such that 141 >> log N and (a a’)
is even for all a, a’ 6 4, a -7/: a’. The proof is based on a Ramsey theorem of Erd6s
and Szekeres from graph theory.
A common feature of all these lower bound results is that in each case the bound

is provided by a counting argument of combinatorial nature so that the proofs are
purely existence proofs. One might like to prove results of a more constructive type.
To make a small step in this direction, one may start out from the fact that a "large"
set of integers with even values is the set of the squares. Thus one might like to
look for "dense" sets ,A,/3 such that a 4- b is a square for all a 6 4, b 6/3.

Indeed, let f(N) be the greatest integer f such that there are sets ,A,/3 with

.A,/3 c {1,2 N}, f I.AI IZl 2 (2)

and

a + b is a square for all a 6 A, b 6/3. (3)

(We exclude the trivial case 1/31 1.) If (3) holds then we shall say that the pair 4,
/3 has the property P. We shall prove the following result.

THEOREM 4. Let be a positive real number. There exists a positive number
N4() which is effectively computable in terms of such that ifN exceeds N4() then

( (< f(N) <exp (log2+e)loglogN (4)exp (log2 e)
loglogN
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(We remark that it is easy to establish the weaker lower bound for f(N) obtained
by replacing log 2 with log 2 in the exponent on the left hand side of inequality (4).)

Again one might like to study the special case A =/3, i.e, sums a -t- a’. If a a’ is
allowed, then a -I-a x 2 forces a to be of the form a 2y2 which makes the problem
much easier; thus we shall exclude this case. Correspondingly, we shall say that a
set of integers Z has property Q if z -t- z’ is a square whenever z and z’ are distinct
elements of Z. Sets Z with property Q have been studied extensively. Independently,
Erd6s(Problem 40 in [3]) and Moser (Problem 94 in [14]) asked whether there are
arbitrary large sets with property Q. For any positive integer N, let g(N) denote the
greatest integer g such that there is a set 4 C {1,2 N} with AI g and with
property Q. J. Lagrange [7] found a set Z of property Q with IZI 6. This example
is

Z {-15863902, 17798783, 21126338, 49064546, 82221218, 447422978}. (5)

The same example was found by Nicolas [9] using computers. Moreover, Lagrange
gave a parametric representation of 6-tuples (z, z2, z3, z4, zs, z6) with the property
that at least 14 of the 15 sums zi + zj with < < j < 6 are squares. His formula
forz is

zt 2x8 24x7 -t- 100x6 24x 334x4 q-48x -I-400x2 + 192x + 32

(and the other five z’s are represented by similar polynomials in x). One obtains the
set (5) by taking x 5/7. Based on these considerations, he conjectured that there
are infinitely many 6-tuples with property Q. However, since then computer searches
by M. Del6glise, Nicolas, Rivat and others have failed to produce further 6-tuples
with property Q, either along these lines or by using any other approach. In fact we
do not know of any 6-tuple of positive integers with property Q.

Lagrange’s method produces 6-tuples (zl, z2, z3, z4, zs, z6) which depend on two
parameters x and rn and he specializes to the case where rn to obtain his parametric
representation in terms of x. The general representation is given below.

zl 2mlx8- (Sm I + 16m8)x7 + (20m 1 -t- 80m6)x6

+ (8 m 0 32 m8 64 m6 + 64 m4) X5

(14m -I- 96m6 + 224m2) x4

-(16m8-64m6- 128m4-t 128m2)x
--I-(80 m6 -I- 320m2) x2 + (64 m4 -t" 128 m2) x -I- 32 m:z,

Z2 2m’x8 + (8m ! + 16mS)x7 + (20m 1 + 80m6)x6

(8 rn l0 32 m8 64 m6 -I- 64 m4) x
(14m -t- 96m6 -t- 224m2) x4

+(16m8-64m6- 128m4-t 128m2)x

(6)
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+ (80m6 + 320m2) x2 (64m4 + 128m2) x + 32m2,

z3 --(2m 10-4mS) x8

+ (4 m 2 4 m Io + 8 m8 16 m6 32 m4) X6

(2 m o + 60 m8 + 32 m6 320 m4 q- 32 m2 64) X4

+ (16m8 16m6 + 32m4 64m2 128)x2 32m2 + 64,

Z4 2mlx8- (8m 10- 16m8)x7- (12m 10 +48m6)x6

+ (8 m o + 32 m8 64 m6 64 m4) x5

-’1-(18m 10 --[-- 160m6 -F 288 m2) x4

+(16m8+64m6- 128m4- 128m2)x
(48 m6 + 192 m2) X2 (64 m4 128 m2) x + 32 m2,

z5 2mlx8+(8m’- 16m8)x7-(12ml+48m6) x6

(8 m Io + 32 m8 64 m6 64 m4) x5

+ (18m 10 + 160m6 + 288m2) x4

--(16m8+64m6- 128m4- 128mZ)x
(48 rn6 + 192 m2) x2 + (64 m4 128 m2) x + 32 m2,

Z6 (m I:z 2 m Io) x8

(2 m 12 + 4 m o 8 m8 + 16 m6 64 m4) X6

+ (m 12 2 m o + 80ms 32 m6 240 m4 32 m2) x4

(8 ms + 16 m6 32 m4 -+- 64 m2 256) X2

+16m4 32m2.

(7)

(8)

(9)

(10)

(11)

The failure of the computer search suggests that, perhaps, one can obtain only finitely
many 6-tuples with property Q in this way. We shall show that this is so for any fixed
value for m.

THEOREM 5. For any rational number m there are only finitely many rational
numbers x such that a, a2, a3, an, as, a6 in (6)-(11) are distinct integers whichform
a set with property Q, and similarly,for any rational number x there are onlyfinitely
many rational numbers m with this property.

The computer searches described above and Theorem 5 seem to suggest that g(N)
is bounded or, equivalently, that the answer to the question of Erd6s and Moser is
negative. While we are not able to establish such a result we are able to show that
g(N) must grow slowly as a function of N.

THEOREM 6. There is an effectively computable real number N5 such that if N
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exceeds N5 then

g(N) < 37 log N. (12)

An interesting feature of this result is that the proof is based on a sieve result
(Gallagher’s larger sieve). It is unusual to obtain so small an upper bound by using a
sieve method.

3. A lemma

The argument in this section is essentially based on [15].
The proof of Theorem will be based on the following lemma.

LEMMA 2. For k I1, k > 2, h 6 Z and ot we have

e(not) << (log N)
e(not) -f2(n)hmodk

4with E(k) min(l, 2sin2(-)) > > O.

(13)

The proofof the lemma will require several steps. First we will show that Lemma 2
can be deduced from the following result.

LEMMA 3. Let N N, N > 2, z C, Izl 1, and ot . We have

E e(nc)z
n<N

<< N(log N)max(-l’ll(z)-I)

Indeed, using

we can write

n<N
(n)=hmodk

1 () { ifn=0modk
e n

0 otherwisek

n<N e (g2(nl-h)e(not) e(not)-
/=0

1 (l) (I)e -h e)ek t=0 n<N- Z e(not)
n<N

e -h- e(not) e+ - =



Hence
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y e(not)-- ye(not)
n<N n<N

2(n)=h modk

max e(na) e
<l<k-

zeC.Izl=l
tl(z)cos(2

and cos () -2 sin2 (-) so Lemma 2 follows from Lemma 3.
It remains to prove Lemma 3.
Let Q > 1. By Dirichlet’s theorem there exist coprime integers a and q with

a< q < Q and lot 1 < -0" We will treat the "large" and "small" values of q
separately.
We now recall Corollary of Montgomery and Vaughan [8].

LEMMA 4. Let A be an arbitrary constant with A > 1, and let f be a multiplica-
N 12tivefunction such that If(P)l < Afor allprimes p and Y,,= If(n) < A2Nfor all

natural numbers N.
Suppose that lot a/ql < q-2, (a, q) and 2 < R < q < N/R. Then

N N
f(n)e(not) ((A

log Nn=l
+ NR- /2 (log R)3/2.

We now choose Q N(log N)-3. We can use Lemma 4 with R (log N)3, and
for (log N) < q < Q, get

sup
N

log N

In order to complete the proof of Lemma 3 it is sufficient to show that for lot
a/ql < (qQ)-, (a, q)= 1, < q < (log N)3, z E C, Izl- we have

e(not)z(n)

n<N
<< N(log N):(z)-

The key argument is the following generalized Selberg formula, which is a weak
version of Lemma 4 of Dupain, Hall, and Tenenbaum [2] (see also Lemma of
Tenenbaum 15]).
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LEMMA 5.
We have

Let z C, Izl- 1, N N, N > 3, (a, q) 1, < q < (log N)3.

a ( r2(z, q)
e(n-)zu’) N(logN)z-I r(z,q) + logNn<N q

+O(N(log N)}z)-4 (log log 3q)7)

r3(z, q) )(log N)2

with some rj(z, q), j 1,2, 3, such that rj(z, q) << (log log 3q)j+3

Furthermore, writing

we have r(z, q) F(z)z2(q)-w(q)+l(z l)q)(o(q))- << 1.

Using this lemma we will be able to conclude our proof by partial summation.

PROPOSITION 1.
have

Let f, G l, G2 be arithmeticfunctions, and a, b N0. We then

_, f(n)(G(n) G(n 1)) f(n)(G2(n) Gz(n 1))
a<n<b a<n<b

< ((b- a)maXa<n<b If(n+ l)- f(n)l+2 max a<n<bmax ](GI-G2)(n),

This proposition is an immediate consequence of the following partial summation
formula with G G G2:

Z f(n)(G(n) G(n 1))
a<n<b

(f(n) f(n + l))G(n) f(a + l)G(a) + f(b)G(b 1)
a<n<b

Now we wil use this proposition with a replaced by O, b replaced by N + and

f(n) e(n(ot-a))q

(a)zm)Gl(n)-- e m-<m<n

G2(x) x(logx)z- (r(z, q) + rz(z, q) + r3(z, q) )logx (logi-
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Using the estimates

Gz(n)- Gz(n- 1) << (log N)tz)-

2zr
If(n+l)-f(n)l < 2rrlot-al<

q -qa’
(G2 G)(n) << N(log N):lz)-4(log log 3q)7

we finally obtain

e(not)z
n<N

’) << N(IogN)(z)-

2zr ) N):,ttz)_4 )v+ N+I N(log (log log3q

<< N(log N)tz)-

(log N)3

N):l(z)_4+ N(log (log log 3q)7

q

<< N(log N):tz)-,

which completes the proof of Lemma 3.

4. Completion of the proof of Theorem I

Write

and

so that, by Lemma 2,

for all a. Set

Clearly,

F() e(aot), G(a) y e(bot)
a.A b l

H (ot) y e(not)
<n<2N

f2(n)=lt modk

2N

H(ot) - e(na)
n=l

<< N(logN)-e

,.7" F ot G ot H ot dot

,.7 e((a + b n)ot)dot
aE bE/3 <n<2N

(n =-_hmodk

I{(a,b)’a6.A, b6B, fl(a+b)hmodk}l.

(14)

(15)
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On the other hand, we have

’. 7. F(ct)G(ot) e(-not) d
\n=l

+ F(o)G(o) tt(-o)- 7.

_
e(-no) da

J+&,

(16)

say. Clearly we have

f01
2N

,.7, - EEEe((a + b n)ot)dot
a.A b/3 n=l

a.A

(17)

Moreover, by (14), Cauchy’s inequality and Parseval’s formula we have

IJ2l IF()IIG(c)I H(-c) Ee(-nt)
n--I

<< N(log N)-e IF(a)llG(ot)ld

((Yo’)(fo’< N(log N)-e ]F(ct)]2dct

(IAI 1/31) I/2N(log N)-E.

do

1/2

(18)

(1) follows from (15),(16), (17),(18) and this completes the proof of Theorem 1.

5. Proof of Theorem 4, upper bound

First we shall prove the upper bound in (4). Fix N and assume that 4,/3 satisfy
(2) and (3), and A is maximal, so that

IAI f f(N). (19)

Write 4 {a, a2 af},/3 {b, b2 (where b < b2 < ...). Then by (2)
and (3), for each of 1,2 f, there exist positive integers xi, Yi such that

ai + b2 x’ (20)

and

ai + b, y2 (21)
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so that

Write

x/2 y/2 b2 b l.

so that

Xi Yi di (> 0), xi + Yi d (22)

did b2 b for 1,2 f. (23)

Clearly, b2 -b can be factorized in at most r(b2 -b) ways in form (23), and by (22),
di and d determine xi and yi uniquely. Finally, by (20), xi determines ai uniquely.
Thus IAI f, the number of ai’s, is at most r (b2 b).

By (2) and Wigert’s Theorem [16], it follows that

IAI maxn_<u r(n) < exp (log 2 + e)
log log N

(24)

if N is large enough in terms of e. The upper bound in (4) follows from (19) and (24).

6. Proof of Theorem 4, lower bound

The proof will be based on the following lemma.

LEMMA 6. For all 6 > 0, A > 0 there are numbers no n0(6, A), K K (6, A)
such that ifn > no andfor all Pl ln we have

p < (log n)A (25)

thenfor all but 6 r (n) divisors d ofn we have

log n log d < K (log n log log n) 1/2 (26)

(Note that a much sharper version of this result will be published soon in a joint
paper by H. Maier and A. Sirk6zy.)

ProofofLemma 6. Write n p’ p2 pr,.. Consider the independent random
variables , se2 r defined in the following way: for 1,2 r, let i
assume the values 0, log Pi, 2 log Pi ol log Pi, each with probability -7’ Then
the expectation and standard deviation of i are

M(i) -z- log Pi (27)
z
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and

D(i) (oti(oti + 2) ) l/2
oti

12
log Pi < - log Pi. (28)

respectively. Write r/ + 2 +"" + r so that r/assumes the values log d with
d In, and it assumes each of these values with probability l/r (n). Then by (25), (27)
and (28) we have

and

M(r/) M( + 2 +"" + :r) log n

D(r/) D2(i)
i=1

)2< (ci log Pi2
i=l

log(log n)A cti log pi<
i=1

A/2
(log log n log n) /2.

2

(29)

(30)

By Chebyshev’s inequality, it follows from (29) and (30) that there is a number
L L(g) such that

8 > P (It/- M(r/)l > LD(o))

d d n, log d log n > LD(r/)
r(n)

{ LA 1/2 }> d d n log d log n > (log n log log n) I/2
r(n) 2

whence the statement of the lemma follows with K LA /2/2.
Now we shall prove the lower bound in (4). Let Pi denote the i-th prime, define

by

P2P3"’" Pt <_ N-/2 < P2P3"’" Pt+! (31)

and write

B P2P3""Pt.

Then by the prime number theorem we have

t=(l+o(l)) 1- log logN

so that,

r(B) 2t- exp (1 +o(l))(log2)
loglogN

(32)

(33)
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Consider all the divisors d < d2 < < dv of B with

B I/2-/4 < di < B !/2- (for _< _< v). (34)

By (33) and Lemma 6, their number is

v > r(B) > exp (log2-e)loglog N (35)

for N sufficiently large in terms oft. Letb 1, b2 B / 1, and/3 {b, b2}. Then
by (31) and (32), clearly we have/3 C {1,2 N}. For each di with < < v,
define d by

did[= B b2 b (36)

so that, by the right hand side of inequality (34),

di + 2 < d. (37)

Next, define xi and Yi by (22) so that

di q- d; d; di
xi and Yi (38)

2 2

Note that B is odd and thus xi, yi are integers. Finally define ai by (21) for v
and put.A {a av}. Observe that.A {1,2 N}, since by (21), (31), (32),
(34), (36), and (38),

O< ai y b < y2i < (d)2 (B)2-/
< (Bl/2+e/4)2: B I+e/2 <_.(NI-e/2) I+e/2 < N

for 1,2 v. Since (20) and (21) hold for v, 4 and/3 have the
property P. Thus by (35),

.f(N) >_ v > exp (log2-e)loglog N
which completes the proof of Theorem 4.

Proofof Theorem 5. It suffices to consider the equation y2 z -+- Z2 or equiva-
lently y2 4m2f(x, m) where

f(x, m) m8x8-+-(lOm8 +40m4)x6-(7m8 +48m4 + 112)x4 +(40m4-+- 160)x2 q-- 16

in rationals y, x and m.
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We shall treat first the case when m is fixed. Notice that if m 0, then z z2
and so property Q does not hold. For m a fixed non-zero rational number, f(x, m) is
a polynomial of degree 8 in x with discriminant.

248m24(m2 2m + 2)8(m2 --t- 2m + 2)8gl(m)2g2(m)2

where

and

g (m) 7m8 + 40m6 -I-- 40m4 -I-- 160m2 --I-- 112

g2(m) 7m8 40m6 + 40m4 160m2 -+- 12,

as computed in MAPLE. The discriminant is non-zero for m rational and so f (x, m)
has no repeated roots. Thus the curve y2 f (x, m) has genus 3 and so by Faltings’
Theorem [5] there are only finitely many rational points (x, y) on the curve and the
result follows.

Next we consider the cases when x is fixed. We may assume that x is not 0,
or since otherwise z z2, z2 z4 or z z5 respectively. Then f(x, m) is a
polynomial of degree 8 in m with discriminant

--272X28(X- l)8(X -t- l)8(X2 -t- l)8(X4 + lOx2- 7)3(7X4- lOx2- 1)

The discriminant was computed with the help of MAPLE. It is non-zero for x rational
and different from 0, and 1. Thus the curve y2 f (x, m), this time with x fixed,
has genus 3 and again by Faltings’ Theorem there are only finitely many rational
points (m, y) on the curve. The result now follows.

In order to prove Theorem 6, we shall need two lemmas.

LEMMA 7.
implies that

If p is a prime number with p > 2,/3 C Z, and b, b’ 13, b b’

b b’ mod p (39)

and

either b + b’ =- 0 mod p or +1
P

(where ( ) denotes the Legendre symbol), then we have

(40)

IBI < 6p I/2.
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ProofofLemma 7.

and

Write

G(h, p) Ze Tx’-O

so that

and

Go G(I, p)

IGol pl/2

Go for (-) +1,

G(h, p)
-Go for 7 -1’

p for plh.

(See [1].) Assume that/3 satifies the assumptions in Lemma 7, and write

p-I bx2
S= E e----x--O

Then, by (39), (40), (41) and (42), we have

ISI
p-I

( (b + b,)x2 )EF Ee
x=0 b/ b’ P

EE G(b + b’, p)
bel3 b’l

>- 1/31216I-EIG-G(Nb’p)I- Z IGo-G(0, p)I
b/

l(b+h

(b+bt

lslap I/2 21BIP- 2IBIp lslap I/2 --4181p.

On the other hand, we have

p-I

15

(41)

(42)

(43)
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If x runs over 0, p 1, then X2 meets every residue class at most twice. Thus
by (39), it follows that

p-I

ISI
v--0

2ZZe
v=0 b/3 b’/3 P

2Z Z -’]e 2 1= 21/31p.
b/3 b’/3 v=O P bt y=O

(44)

By (43) and (44) we have

IBI2p /2 41BIP _< 21BIp

whence the statement of the lemma follows.

LEMMA 8 (Gallagher). Let t be a set ofintegers in the interval [M + 1, M + N].
For each prime p let v(p) denote the number ofresidue classes modulo p that contain
an element of .A. Thenfor anyfinite set ofprimes 72 we have

ylog p log N

IAI _< P (45)
’log_...__ff_e log N-,
v(p)pT’

provided that the denominator is positive.

ProofofLemma 8. This is Gallagher’s "larger sieve" [6].

7. Proof of Theorem 6

Let t C 1,2 N} be a set with property Q. Then for every a, a’ 6 .A, a a’
there is an x 6 1 with

a + a’ X
2

This clearly implies that for every prime p either p l(a + a’) or (a+) +1. From
each residue class modulo p that meets .A pick an element of .A and’lenote by/3t, the
set obtained in this way. Then clearly/3 =/3p satisfies the conditions in Lemma 7
and thus we have

Iz,I < 6P /2. (46)
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Write

79 {p" p prime, p < 36(1og N)2}
Defining v(p) as in Lemma 8, by (46) for all p 79 we have

v(p) Ipl < 6p /2 (47)

By Lemma 8, (45) holds. By (47) and the prime number theorem, for N +c the
denominator in (45) is

log pZ v(p)pep

log p
logN > g p/2

logN
p<36(log N)

18(log N)

+o(1) (ulogu)/2du -logN
(2 + o(1)) log N log N (1 + o(1)) log N (48)

(which is positive) and the numerator is

logp-logN Z logp-logN (36+o(1))(logN)2. (49)
pet) p<36(log N)

(12) follows from (45), (48) and (49), and this completes the proof of Theorem 6.
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