ON THE AVERAGE VALUE FOR THE NUMBER OF DIVISORS OF SUMS $a+b$

A. SÁrközy ${ }^{1}$ and C.L. Stewart ${ }^{2}$

1. Introduction

For any set X we shall denote its cardinality by $|X|$. Let N be a positive integer and let A and B be subsets of $\{1, \ldots, N\}$. In recent years several authors have investigated, subject to various assumptions on the cardinalities of A and B, the arithmetical character of the sums $a+b$ with a from A and b from B, see for instance [1], [3], [5], [6] and [8]. If A and B are sufficiently dense subsets of $\{1, \ldots, N\}$ then many of the arithmetical properties of the sumset $A+B$ are similar to those of the set of consecutive integers $\{1, \ldots, 2 N\}$. In [3], Erdös, Maier and Sárközy developed this analogy by proving that if A and B are sufficiently dense then the sums $a+b$ with a from A and b from B satisfy a theorem of Erdös-Kac type. This work was refined later by Elliott and Sárközy [2] and by Tenenbaum [9]. For any positive integer n let $\omega(n)$ denote the number of distinct prime factors of n. In particular, it follows from [2] that if A and B are subsets of $\{1, \ldots, N\}$ with

$$
\begin{equation*}
(|A||B|)^{1 / 2}=N / \exp \left(o\left((\log \log N)^{1 / 2} \log \log \log N\right)\right) \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{1}{|A||B|} \sum_{a \in A, b \in B} \omega(a+b) \sim \log \log N \tag{2}
\end{equation*}
$$

The asymptotic result (2) need not hold if (1) is replaced by the less stringent condition

$$
(|A||B|)^{1 / 2}>N / \exp (\delta \log \log N \log \log \log N)
$$

[^0]where δ is any positive real number, see [8]. Nevertheless Sárközy and Stewart [8] proved that, for each $\varepsilon>0$,
\[

$$
\begin{equation*}
\frac{1}{|A||B|} \sum_{a \in A, b \in B} \omega(a+b)>(1-\varepsilon) \log \log N \tag{3}
\end{equation*}
$$

\]

for N sufficiently large as A and B run over subsets of $\{1, \ldots, N\}$ with

$$
\begin{equation*}
(|A||B|)^{1 / 2}=N \exp \left(-(\log N)^{o(1)}\right) \tag{4}
\end{equation*}
$$

For any positive integer n we denote the number of positive divisors of n by $\tau(n)$. In this article we shall investigate the average value of $\tau(a+b)$ as a and b run over the elements of A and B respectively where A and B are sufficiently dense subsets of $\{1, \ldots, N\}$. In this context the τ function is more difficult to treat than the ω function for the following reasons. First the average of $\tau(a+b)$ over a and b grows exponentially more quickly than the average of $\omega(a+b)$ over a and b. Secondly the main contribution to the average

$$
\frac{1}{|A||B|} \sum_{a \in A, b \in B} \tau(a+b)
$$

comes from a sparse set of pairs (a, b) for which $\tau(a+b)$ is large. This phenomenon also holds for the set of consecutive integers. By Theorem 319 of [7],

$$
\frac{1}{n} \sum_{j=1}^{n} \tau(j) \sim \log n
$$

whereas it can be shown that, for each positive real number ε, the set of positive integers n for which

$$
\tau(n)>(\log n)^{\log 2+\varepsilon}
$$

is a set of positive upper density zero.
Since $\tau(n) \geq 2^{\omega(n)}$ for all positive integers n, we have from (3) and the arithmetic-geometric mean inequality that for each positive real number ε,

$$
\frac{1}{|A||B|} \sum_{a \in A, b \in B} \tau(a+b)>(\log N)^{\log 2-\varepsilon}
$$

provided that N is sufficiently large and that A and B run over subsets of $\{1, \ldots, N\}$ for which (4) holds. Our principal result is the following.

Theorem 1. Let ε be a positive real number, N be a positive integer and A and B be subsets of $\{1, \ldots, N\}$ with

$$
\begin{equation*}
\min (|A|,|B|)>\varepsilon N \tag{5}
\end{equation*}
$$

There exist effectively computable positive constants C_{0}, C_{1} and C_{2} such that if N exceeds C_{0} and

$$
\begin{equation*}
\exp \left(-C_{1}(\log N)^{1 / 2}\right)<\varepsilon<\frac{1}{8} \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{1}{|A||B|} \sum_{a \in A, b \in B} \tau(a+b)>\frac{C_{2} \log N}{\left(\log \left(\frac{1}{\varepsilon}\right)\right)^{5} \log \log \left(\frac{1}{\varepsilon}\right)} \tag{7}
\end{equation*}
$$

In particular is $|A| \gg N$ and $|B| \gg N$ then the average of $\tau(a+b)$ is $\gg \log N$, which is best possible as can be seen on taking $A=B=\{1, \ldots, N\}$. Moreover whenever ε tends to zero as N tends to infinity there exists a sequence of sets A and B satisfying (5) for which the average of $\tau(a+b)$ is $o(\log N)$, as our next result shows.

Theorem 2. There exist effectively computable positive constants C_{3}, C_{4} and C_{5} such that if N is a positive integer which exceeds C_{3} and ε is a real number satisfying

$$
\begin{equation*}
\exp (-\log N / \log \log N)<\varepsilon<C_{4} \tag{8}
\end{equation*}
$$

then there is a subset A of $\{1, \ldots, N\}$ with $|A|>\varepsilon N$ for which

$$
\begin{equation*}
\frac{1}{|A|^{2}} \sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right)<\frac{C_{5} \log N}{\log \log \left(\frac{1}{\varepsilon}\right)} \tag{9}
\end{equation*}
$$

We suspect that the upper bound given by (9) is closer to the truth than the lower bound given by (7).

Our final result shows that if ε tends to zero as N tends to infinity there exists a sequence of sets A with $|A|>\varepsilon N$ for which

$$
\frac{1}{|A|^{2} \log N} \sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right) \rightarrow \infty
$$

Theorem 3. For each real number δ with $\delta>0$ there are positive numbers C_{6} and C_{7}, which are effectively computable in terms of δ, such that if N
exceeds C_{6} and ε is a real number with

$$
\begin{equation*}
N^{-1 / 8}<\varepsilon<C_{7} \tag{10}
\end{equation*}
$$

then there is a subset A of $\{1, \ldots, N\}$ with

$$
\begin{equation*}
|A|>\varepsilon N \tag{11}
\end{equation*}
$$

for which

$$
\begin{equation*}
\frac{1}{|A|^{2}} \sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right)>\left(\exp \left((1-\delta) \log 2 \log \left(\frac{1}{\varepsilon}\right) / \log \log \left(\frac{1}{\varepsilon}\right)\right)\right) \log N \tag{12}
\end{equation*}
$$

While we have not worked out an upper bound for the average of $\tau(a+b)$ subject to (5) we suspect that (12) cannot be improved on substantially. In particular we conjecture that one cannot replace $-\delta$ in (12) by $+\delta$.

Finally we remark that since $\tau(n) \geq 2^{\omega(n)}$, estimates from below for the quantity

$$
\max _{a \in A, b \in B} \tau(a+b)
$$

may be deduced from lower estimates for the maximum of $\omega(a+b)$ as a and b run over A and B respectively. Such estimates have been obtained in two recent papers [4], [8]. The first paper [4] treats the case when $(|A||B|)^{1 / 2} \gg N$ whereas the second [8] applies to much thinner sets.

2. Preliminary lemmas

Lemma 1. Let u, v and k be integers with v and k positive. There exists an effectively computable positive constant C_{8} such that if

$$
\begin{equation*}
v>C_{8} e^{3 k} \tag{13}
\end{equation*}
$$

and H is a subset of $\{u+1, \ldots, u+v\}$ with

$$
\begin{equation*}
|H|>\left(1-\frac{1}{4} \prod_{p \leq 2 k}\left(1-\frac{1}{p}\right)\right) v \tag{14}
\end{equation*}
$$

then there exist integers $d_{1}, d_{2}, \ldots, d_{k}$ with $d_{i} \in H$ for $i=1, \ldots, k$ for which $\left(d_{i}, d_{j}\right)=1$ whenever $i \neq j$.

Proof. We take

$$
\begin{equation*}
C_{8}=\max _{k \geq 1}\left\{e^{-3 k} 12 k \prod_{p \leq 2 k} p\left(1-\frac{1}{p}\right)^{-1}\right\} \tag{15}
\end{equation*}
$$

and suppose that (13) and (14) hold. That C_{8} is well defined follows from the prime number theorem and Mertens' theorem. Put

$$
P=\prod_{p \leq 2 k} p
$$

and let $H(h)$ denote the set of the terms of H which are congruent to h modulo P. We shall now show that there exists an integer h_{0} which is coprime with P with

$$
\begin{equation*}
\left|H\left(h_{0}\right)\right|>\frac{2}{3} \frac{v}{P} \tag{16}
\end{equation*}
$$

This is so since otherwise

$$
\begin{aligned}
|H| & =\sum_{1 \leq h \leq P}|H(h)|=\sum_{\substack{1 \leq h \leq P \\
(h, P)>1}}|H(h)|+\sum_{\substack{1 \leq h \leq P \\
(h, P)=1}}|H(h)| \\
& =\sum_{\substack{1 \leq h \leq P \\
(h, P)>1}} \sum_{\substack{u<n \leq u+v \\
n=h(\bmod P)}} 1+\sum_{\substack{1 \leq h \leq P \\
(h, P)=1}} \frac{2}{3} \frac{v}{P} \\
& <\sum_{\substack{1 \leq h \leq P \\
(h, P)>1}}\left(\frac{v}{P}+1\right)+\sum_{\substack{1 \leq h \leq P \\
(h, P)=1}} \frac{v}{P}-\frac{1}{3} \frac{v}{P} \sum_{\substack{1 \leq h \leq P \\
(h, P)=1}} 1 \\
& \leq v+P-\frac{1}{3} \frac{v}{P}\left(P \prod_{p \mid P}\left(1-\frac{1}{p}\right)\right)
\end{aligned}
$$

By (13) and (15) we conclude that

$$
|H| \leq\left(1-\frac{1}{4} \prod_{p \leq 2 k}\left(1-\frac{1}{p}\right)\right) v
$$

which contradicts (14). Thus there is an integer h_{0} satisfying (16) and coprime with P. Define m to be that integer which satisfies $m \equiv h_{0}(\bmod P)$
and $m \leq u<m+P$. Then

$$
\begin{array}{r}
H\left(h_{0}\right)=\bigcup_{l=1}^{[v / 2 k P]+1}(H \cap\{n: m+2(l-1) k P<n \leq m+2 l k P \\
\left.\left.n \equiv h_{0}(\bmod P)\right\}\right)
\end{array}
$$

and so, by (13), (15) and (16), there exists an integer l_{0} such that

$$
\begin{aligned}
\mid H & \cap\left\{n: m+2\left(l_{0}-1\right) k P<n \leq m+2 l_{0} k P, n \equiv h_{0}(\bmod P)\right\} \mid \\
& >\frac{2}{3} \frac{v}{P}\left(\left[\frac{v}{2 k P}\right]+1\right)^{-1}>\frac{2}{3} \frac{v}{P}\left(\frac{4}{3} \frac{v}{2 k P}\right)^{-1}=k
\end{aligned}
$$

Thus there exist integers $d_{1}, d_{2}, \ldots, d_{k}$ from H with

$$
\begin{equation*}
m+2\left(l_{0}-1\right) k P<d_{i} \leq m+2 l_{0} k P \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{i} \equiv h_{0}(\bmod P) \tag{18}
\end{equation*}
$$

for $i=1, \ldots, k$. If $1 \leq i<j \leq k$ then by (17) and (18), $d_{i}-d_{j}=y P$ where $0<y<2 k$. Since h_{0} is coprime with P so also are d_{i} and d_{j}. But all the prime divisors of $d_{i}-d_{j}$ are less than $2 k$ and thus $\left(d_{i}, d_{j}\right)=1$.

Lemma 2. Let δ and η be positive real numbers. Let k be a positive integer and let $d_{1}, \ldots, d_{2 k}$ be positive integers with $\left(d_{i}, d_{j}\right)=1$ for $i \neq j$. Put $D=$ $d_{1} \ldots d_{2 k}$. Let R be a subset of $\{1, \ldots, D\}$ and, for any integer j and for $i=1, \ldots, 2 k$, let $R_{i}(j)$ denote the terms of R which are congruent to j modulo d_{i}. If there are k integers d_{i} with $1 \leq i \leq 2 k$ for which there are at least δd_{i} integers j from $\left\{1, \ldots, d_{i}\right\}$ with $\left|R_{i}(j)\right|<\eta D / d_{i}$ then

$$
|R| \leq\left((1-\delta)^{k}+\eta k\right) D
$$

Proof. We shall suppose, without loss of generality, that the k integers d_{i} with $1 \leq i \leq 2 k$ for which there are at least δd_{i} integers j with $\left|R_{i}(j)\right|<$ $\eta D / d_{i}$ are d_{1}, \ldots, d_{k}. We write R as $R_{1} \cup R_{2}$ where R_{1} consists of those terms of R which are not congruent to any of the integers j with $\left|R_{i}(j)\right|<$ $\eta D / d_{i}$ modulo d_{i} for $i=1, \ldots, k$ and R_{2} is the balance of R. Then, by the Chinese Remainder Theorem, $\left|R_{1}\right| \leq(1-\delta)^{k} D$. Plainly

$$
\left|R_{2}\right|<\sum_{i=1}^{k} d_{i} \eta \frac{D}{d_{i}}=\eta k D
$$

and the result follows.

Lemma 3. For each positive integer n, we have

$$
\begin{equation*}
\sum_{d \mid n} \frac{\mu(d) \log d}{d}=-\prod_{p \mid n}\left(1-\frac{1}{p}\right) \sum_{p \mid n} \frac{\log p}{p-1} \tag{19}
\end{equation*}
$$

Proof. For every complex number s we have

$$
-\sum_{d \mid n} \frac{\mu(d)}{d^{s}}=-\prod_{p \mid n}\left(1-\frac{1}{p^{s}}\right)
$$

Differentiating we obtain

$$
\begin{aligned}
\sum_{d \mid n} \frac{\mu(d) \log d}{d^{s}} & =-\prod_{p \mid n}\left(1-\frac{1}{p^{s}}\right) \sum_{p \mid n} \frac{\left(1-\frac{1}{p^{s}}\right)^{\prime}}{1-\frac{1}{p^{s}}} \\
& =-\prod_{p \mid n}\left(1-\frac{1}{p^{s}}\right) \sum_{p \mid n} \frac{\log p}{p^{s}-1}
\end{aligned}
$$

Substituting $s=1$, we obtain (19).

3. Proof of Theorem 1

We have

$$
\begin{align*}
\sum_{a \in A, b \in B} \tau(a+b) & =\sum_{\substack{d \leq 2 N}} \sum_{\substack{a \in A, b \in B \\
d \mid(a+b)}} 1 \\
& =\sum_{x=0}^{[(\log N) / \log 2]+1} \sum_{2^{x} \leq d<2^{x+1}} \sum_{\substack{a \in A, b \in B \\
d \mid(a+b)}} 1 . \tag{20}
\end{align*}
$$

Take

$$
k=\left[\frac{\log \left(C_{12} \varepsilon / \log (1 / \varepsilon)\right)}{\log (2 / 3)}\right]+3
$$

where the constant C_{12} will be defined by (31) and (32). By (20),

$$
\begin{equation*}
\sum_{a \in A, b \in B} \tau(a+b)>\sum_{x=[(\log N) / 6 k \log 2]}^{[(\log N) / 3 k \log 2]} \sum_{2^{x} \leq d<2^{x+1}} \sum_{\substack{a \in A, b \in B \\ d \mid(a+b)}} 1 . \tag{21}
\end{equation*}
$$

Note that for $N \geq 2^{18 k}$,

$$
\begin{equation*}
\left[\frac{\log N}{3 k \log 2}\right]-\left[\frac{\log N}{6 k \log 2}\right]>\frac{\log N}{7 k} \tag{22}
\end{equation*}
$$

Put

$$
\begin{equation*}
\kappa=\frac{1}{4} \prod_{p \leq 4 k}\left(1-\frac{1}{p}\right) \tag{23}
\end{equation*}
$$

For each integer x with

$$
\begin{equation*}
\left[\frac{\log N}{6 k \log 2}\right] \leq x \leq\left[\frac{\log N}{3 k \log 2}\right] \tag{24}
\end{equation*}
$$

we shall prove that for at least $\kappa^{2 x}$ integers d with $2^{x} \leq d<2^{x+1}$,

$$
\begin{equation*}
\sum_{\substack{a \in A, b \in B \\ d \mid(a+b)}} 1>C_{14}(\log (1 / \varepsilon))^{-4} \frac{|A||B|}{d} \tag{25}
\end{equation*}
$$

where C_{14} will be defined by (34). It then follows from (21), (22), (23), (24) and (25) that

$$
\sum_{a \in A, b \in B} \tau(a+b)>\frac{C_{14}}{14}(\log (1 / \varepsilon))^{-4} \frac{\kappa}{k}|A||B| \log N
$$

and employing Mertens' theorem we deduce our result.
Accordingly, suppose that x is an integer satisfying (24) for which there are less than $\kappa 2^{x}$ integers d with $2^{x} \leq d<2^{x+1}$ satisfying (25). Let H_{x} be the set of integers d with $2^{x} \leq d<2^{x+1}$ for which (25) fails. Then $\left|H_{x}\right|>(1-$ $\kappa) 2^{x}$. There exist effectively computable positive constants C_{0} and C_{1} such that if N exceeds C_{0} and (6) holds then

$$
2^{x} \geq 2^{[(\log N) /(6 k \log 2)]}>N^{1 / 7 k}>C_{8} e^{6 k}
$$

Thus we may apply Lemma 1 with $u=2^{x}-1, v=2^{x}$ to deduce that there are $2 k$ integers $d_{1}, \ldots, d_{2 k}$ in H_{x} with $\left(d_{i}, d_{j}\right)=1$ whenever $i \neq j$. Put $D=d_{1} \ldots d_{2 k}$ and let $F(n)$ and $G(n)$ denote the number of integers a in A with $a \equiv n(\bmod D)$, and the number of integers b in B with $b \equiv n(\bmod D)$, respectively. Thus $F(n) \leq N / D+1 \leq 2 N / D$ and similarly, $G(n) \leq 2 N / D$. Write

$$
\mathscr{R}(A, t)=\{n: 1 \leq n \leq D, F(n) \geq t\}
$$

and

$$
\mathscr{R}(B, t)=\{n: 1 \leq n \leq D, G(n) \geq t\} .
$$

We obtain, by partial summation, that

$$
\begin{aligned}
|A|= & \sum_{1 \leq n \leq D} F(n) \leq \sum_{\substack{1 \leq n \leq D \\
F(n) \leq|A| / 2 D}} \frac{|A|}{2 D}+\sum_{\substack{1 \leq n \leq D \\
F(n)>|A| / 2 D}} F(n) \\
\leq & D \cdot \frac{|A|}{2 D}+\sum_{|A| / 2 D<t \leq 2 N / D} t(|\mathscr{R}(A, t)|-|\mathscr{R}(A, t+1)|) \\
= & \frac{|A|}{2}+\sum_{|A| / 2 D+1<t \leq 2 N / D}|\mathscr{R}(A, t)|+([|A| / 2 D]+1) \\
& |\mathscr{R}(A,[|A| / 2 D]+1)| .
\end{aligned}
$$

We now put

$$
\begin{equation*}
M_{A}=\max _{|A| / 2 D<t \leq 2 N / D} t|\mathscr{R}(A, t)| \tag{26}
\end{equation*}
$$

Thus we have

$$
\frac{|A|}{2}<\sum_{|A| / 2 D+1<t \leq 2 N / D} \frac{M_{A}}{t}+M_{A}
$$

C_{9}, C_{10}, \ldots will denote effectively computable positive constants. Then, by (5),

$$
\begin{aligned}
\frac{|A|}{2} & <M_{A}\left(\log \left(\frac{2 N / D}{|A| / 2 D}\right)+C_{9}\right)=M_{A}\left(\log (4 N /|A|)+C_{9}\right) \\
& <M_{A}\left(\log (1 / \varepsilon)+C_{10}\right)
\end{aligned}
$$

whence

$$
M_{A}>C_{11}|A|(\log (1 / \varepsilon))^{-1}
$$

Similarly, writing

$$
\begin{equation*}
M_{B}=\max _{|B| / 2 D<t \leq 2 N / D} t|\mathscr{R}(B, t)|, \tag{27}
\end{equation*}
$$

we have

$$
M_{B}>C_{11}|B|(\log (1 / \varepsilon))^{-1}
$$

Let t_{A}, respectively t_{B}, denote an integer t for which the maximum in (26), respectively (27), is attained so that

$$
\begin{gather*}
|A| / 2 D<t_{A} \leq 2 N / D, \quad|B| / 2 D<t_{B} \leq 2 N / D \tag{28}\\
t_{A}\left|\mathscr{R}\left(A, t_{A}\right)\right|=M_{A}>C_{11}|A|(\log (1 / \varepsilon))^{-1} \tag{29}
\end{gather*}
$$

and

$$
\begin{equation*}
t_{B}\left|\mathscr{R}\left(B, t_{B}\right)\right|=M_{B}>C_{11}|B|(\log (1 / \varepsilon))^{-1} \tag{30}
\end{equation*}
$$

Then

$$
\begin{align*}
\left|\mathscr{R}\left(A, t_{A}\right)\right| & >t_{A}^{-1} C_{11}|A|(\log (1 / \varepsilon))^{-1} \\
& \geq \frac{D}{2 N} C_{11}|A|(\log (1 / \varepsilon))^{-1}>C_{12} \varepsilon(\log (1 / \varepsilon))^{-1} D \tag{31}
\end{align*}
$$

and similarly,

$$
\begin{equation*}
\left|\mathscr{R}\left(B, t_{B}\right)\right|>C_{12} \varepsilon(\log (1 / \varepsilon))^{-1} D \tag{32}
\end{equation*}
$$

We now apply Lemma 2 with $\delta=1 / 3$ and $\eta=\eta_{A}=\left|\mathscr{R}\left(A, t_{A}\right)\right| / 2 k D$. Note that, in view of (31),

$$
\begin{aligned}
\left((1-\delta)^{k}+\eta k\right) D & =\left(\left(\frac{2}{3}\right)^{k}+\frac{\left|\mathscr{R}\left(A, t_{A}\right)\right|}{2 D}\right) D \\
& <C_{12} \varepsilon(\log (1 / \varepsilon))^{-1}\left(\frac{2}{3}\right)^{2} D+\frac{\left|\mathscr{R}\left(A, t_{A}\right)\right|}{2} \\
& <\left|\mathscr{R}\left(A, t_{A}\right)\right|
\end{aligned}
$$

Thus by Lemma 2, we conclude that there are at most $k-1$ integers d_{i} with $1 \leq i \leq 2 k$ for which there are at least $\frac{1}{3} d_{i}$ integers j from $\left\{1, \ldots, d_{i}\right\}$ with

$$
\left|\left\{n: n \in \mathscr{R}\left(A, t_{A}\right), n \equiv j\left(\bmod d_{i}\right)\right\}\right|<\eta_{A} \frac{D}{d_{i}}
$$

Put $\eta_{B}=\left|\mathscr{R}\left(B, t_{B}\right)\right| / 2 k D$. A similar result holds on replacing $\mathscr{R}\left(A, t_{A}\right)$ and η_{A} by $\mathscr{R}\left(B, t_{B}\right)$ and η_{B} respectively. Thus there exists an integer d_{i} from $\left\{d_{1}, \ldots, d_{2 k}\right\}$, d_{1} say, for which there are at most $\frac{1}{3} d_{i}$ integers j from
$\left\{1, \ldots, d_{i}\right\}$ with

$$
\left|\left\{n: n \in \mathscr{R}\left(A, t_{A}\right), n \equiv j\left(\bmod d_{i}\right)\right\}\right|<\eta_{A} \frac{D}{d_{i}}
$$

and at most $\frac{1}{3} d_{i}$ integers j from $\left\{1, \ldots, d_{i}\right\}$ with

$$
\left|\left\{n: n \in \mathscr{R}\left(B, t_{B}\right), n \equiv j\left(\bmod d_{i}\right)\right\}\right|<\eta_{B} \frac{D}{d_{i}}
$$

But then

$$
\begin{align*}
\sum_{\substack{a \in A, b \in B \\
d_{1} \mid(a+b)}} 1 & \geq \sum_{n=1}^{d_{1}}\left(\sum_{\substack{u \in \mathscr{R}\left(A, t_{A}\right) \\
u \equiv n\left(\bmod d_{1}\right)}} \sum_{\substack{a \in A \in A(\bmod D)}} 1\right)\left(\sum_{\substack{v \in \mathscr{R}\left(B, t_{B}\right) \\
v \equiv-n\left(\bmod d_{1}\right)}} \sum_{\substack{b \in b \in b(\bmod D)}} 1\right) \\
& \geq \sum_{n=1}^{d_{1}}\left(\sum_{\substack{u \in \mathscr{R}\left(A, t_{A}\right) \\
u \equiv n\left(\bmod d_{1}\right)}} t_{A}\right)\left(\sum_{\substack{v \in \mathscr{R}\left(B, t_{B}\right) \\
v \equiv-n\left(\bmod d_{1}\right)}} t_{B}\right) \\
& =\sum_{n=1}^{d_{1}} t_{A} t_{B}\left(\sum_{\substack{u \in \mathscr{R}\left(A, t_{A}\right) \\
u \equiv n\left(\bmod d_{1}\right)}} 1\right)\left(\sum_{\substack{v \in \mathscr{R}\left(B, t_{B}\right) \\
v \equiv-n\left(\bmod d_{1}\right)}} 1\right) \tag{33}
\end{align*}
$$

For at least $\frac{2}{3}$ of the residue classes n from $1, \ldots, d_{1}$,

$$
\sum_{\substack{u \in \mathscr{R}\left(A, t_{A}\right) \\ u \equiv n\left(\bmod d_{1}\right)}} 1 \geq \eta_{A} \frac{D}{d_{1}}
$$

and for at least $\frac{2}{3}$ of the residue classes $-n$ from $1, \ldots, d_{1}$,

$$
\sum_{\substack{v \in \mathscr{R}\left(B, t_{B}\right) \\ v \equiv-n\left(\bmod d_{1}\right)}} 1 \geq \eta_{B} \frac{D}{d_{1}} .
$$

Thus, by (29) and (30),

$$
\begin{align*}
& \sum_{n=1}^{d_{1}} t_{A} t_{B}\left(\sum_{\substack{u \in \mathscr{R}\left(A, t_{A}\right) \\
u \equiv n\left(\bmod d_{1}\right)}} 1\right)\left(\sum_{\substack{v \in \mathscr{R}\left(B, t_{B}\right) \\
v \equiv-n\left(\bmod d_{1}\right)}} 1\right) \\
& \quad \geq \frac{1}{3} \eta_{A} \eta_{B} t_{A} t_{B} \frac{D^{2}}{d_{1}}=\frac{1}{12} \frac{1}{k^{2} d_{1}} t_{A}\left|\mathscr{R}\left(A, t_{A}\right)\right| t_{B}\left|\mathscr{R}\left(B, t_{B}\right)\right| \\
& \quad>C_{13}(\log (1 / \varepsilon))^{-2} \frac{|A| B \mid}{k^{2} d_{1}}>C_{14}(\log (1 / \varepsilon))^{-4} \frac{|A||B|}{d_{1}} \tag{34}
\end{align*}
$$

By (33) and (34), $d_{1} \in H_{x}$ contrary to our assumption. Our result now follows.

4. Proof of Theorem 2

C_{15}, C_{16}, \ldots will denote positive effectively computable constants. Also denote the i th prime by p_{i}, so $p_{1}=2, p_{2}=3, \ldots$, and for $n=1,2, \ldots$, and $i=1,2, \ldots$, define the integer $r_{i}(n)$ by

$$
r_{i}(n) \equiv n\left(\bmod p_{i}\right), \quad 0 \leq r_{i}(n)<p_{i}
$$

Let $t=\left[\frac{1}{4} \log (1 / \varepsilon)\right]$ and $P=\prod_{i=2}^{t} p_{i}$. Then, by the prime number theorem and (8),

$$
\begin{equation*}
P<3^{t \log t}<\exp \left(\frac{1}{2} \log (1 / \varepsilon) \log \log (1 / \varepsilon)\right)<\sqrt{N} \tag{35}
\end{equation*}
$$

for $\varepsilon<C_{15}$. Define A by

$$
A=\left\{a: 1 \leq a \leq N, 0<r_{i}(a)<\frac{p_{i}}{2} \text { for } i=2, \ldots, t\right\}
$$

Then, for $N>C_{16}$,

$$
|A|>\frac{1}{2} N \prod_{i=2}^{t} \frac{p_{i}-1}{2 p_{i}}=2^{-t} N \prod_{i=2}^{t}\left(1-\frac{1}{p_{i}}\right)
$$

by the Chinese Remainder Theorem. Thus

$$
|A|>3^{-t} N>\exp (-\log (1 / \varepsilon)) N=\varepsilon N
$$

for $N>C_{16}$. Moreover we have

$$
\begin{align*}
\sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right) & =\sum_{a, a^{\prime} \in A} \sum_{d \mid\left(a+a^{\prime}\right)} 1 \\
& \leq \sum_{a, a^{\prime} \in A} 2 \sum_{\substack{d \mid\left(a+a^{\prime}\right) \\
d \leq \sqrt{N}}} 1 \leq 2 \sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \sum_{\substack{a, a^{\prime} \in A \\
d \mid\left(a+a^{\prime}\right)}} 1 \\
& =2 \sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \sum_{j=1}^{d}\left(\sum_{\substack{a^{\prime} \in A \\
a^{\prime} \equiv j(\bmod d)}} 1\right)\left(\sum_{\substack{a^{\prime} \in A \\
a^{\prime} \equiv-j(\bmod d)}} 1\right), \tag{36}
\end{align*}
$$

since by the construction of the set A, if a and a^{\prime} are from A and d divides $a+a^{\prime}$ then d and P are coprime. By (35) and the Chinese Remainder Theorem, for each positive integer d up to \sqrt{N} which is coprime with P and each integer j,

$$
\begin{aligned}
& \sum_{\substack{a \in A \\
a \equiv j(\bmod d)}} 1 \\
& \quad=\mid\left\{a: 1 \leq a \leq N, 0<r_{i}(a)<p_{i} / 2 \text { for } i=2, \ldots, t, a \equiv j(\bmod d)\right\} \mid \\
& \left.\left.\quad \leq 2 \frac{1}{d} \right\rvert\,\left\{a: 1 \leq a \leq N, 0<r_{i}(a)<p_{i} / 2 \text { for } i=2, \ldots, t\right\} \right\rvert\, \\
& \quad=2 \frac{|A|}{d} .
\end{aligned}
$$

Thus it follows from (36) that

$$
\begin{align*}
& \sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right) \leq 2 \sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \sum_{j=1}^{d}\left(2 \frac{|A|}{d}\right)^{2} \\
&=8|A|^{2} \sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \frac{1}{d} \tag{37}
\end{align*}
$$

Observe that

$$
\begin{aligned}
\sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \frac{1}{d}= & \sum_{d \leq \sqrt{N}}\left(\sum_{D \mid(d, P)} \mu(D)\right) \frac{1}{d} \\
= & \sum_{D \mid P} \mu(D) \sum_{k \leq \sqrt{N} / D} \frac{1}{D k}=\sum_{D \mid P} \frac{\mu(D)}{D} \sum_{k \leq \sqrt{N} / D} \frac{1}{k} \\
\leq & \sum_{D \mid P} \frac{\mu(D)}{D} \log (\sqrt{N} / D) \\
& \left.+\left.\sum_{D \mid P} \frac{|\mu(D)|}{D}\right|_{k \leq \sqrt{N} / D} \frac{1}{k}-\log (\sqrt{N} / D) \right\rvert\, \\
\leq & \frac{1}{2} \log N \sum_{D \mid P} \frac{\mu(D)}{D}-\sum_{D \mid P} \frac{\mu(D) \log D}{D}+C_{17} \sum_{D \mid P} \frac{|\mu(D)|}{D} .
\end{aligned}
$$

Thus, by Lemma 3,

$$
\begin{aligned}
\sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \frac{1}{d} \leq & \frac{1}{2} \log N \prod_{i=2}^{t}\left(1-\frac{1}{p_{i}}\right)+\prod_{i=2}^{t}\left(1-\frac{1}{p_{i}}\right) \sum_{i=2}^{t} \frac{\log p_{i}}{p_{i}-1} \\
& +C_{17} \prod_{i=2}^{t}\left(1+\frac{1}{p_{i}}\right)
\end{aligned}
$$

By Mertens' theorem and the prime number theorem,

$$
\begin{align*}
\sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \frac{1}{d} & <C_{18}\left(\prod_{i=2}^{t}\left(1-\frac{1}{p_{i}}\right)\left(\log N+\sum_{i=2}^{t} \frac{1}{i}\right)+\prod_{i=2}^{t}\left(1-\frac{1}{p_{i}}\right)^{-1}\right) \\
& <C_{19}\left((\log t)^{-1}(\log N+\log t)+\log t\right) \\
& <C_{20}(\log \log (1 / \varepsilon))^{-1} \log N \tag{38}
\end{align*}
$$

We obtain (9) from (37) and (38). This completes the proof of Theorem 2.

5. Proof of Theorem 3

As before for each positive integer i let p_{i} denote the i-th prime number. Let δ be a positive real number. C_{21}, C_{22}, \ldots will denote positive numbers which are effectively computable in terms of δ. Suppose that ε is a real
number satisfying (10) and define the positive integer k by the inequalities

$$
\begin{equation*}
p_{1} \ldots p_{k} \leq \frac{1}{2 \varepsilon}<p_{1} \ldots p_{k+1} \tag{39}
\end{equation*}
$$

Put

$$
P=p_{1} \ldots p_{k}
$$

and define

$$
A=\{n: 1 \leq n \leq N, P \mid n\}
$$

By (10), (30) and the prime number theorem

$$
\begin{equation*}
P<N^{1 / 8} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
|A|=(1+o(1)) \frac{N}{P}>\frac{N}{2 P} \geq \varepsilon N \tag{41}
\end{equation*}
$$

provided that N exceeds C_{21}. Thus (11) holds. It remains to verify (12).
Plainly

$$
\sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right)=\sum_{u, v \leq N / P} \tau(P(u+v))
$$

We shall restrict our attention to those pairs (u, v) of positive integers less than or equal to N / P for which d_{1}, the greatest common divisor of $u+v$ and P^{2}, is square-free. For such a pair (u, v) there is a unique integer t such that

$$
u+v \equiv d_{1} t\left(\bmod P^{2}\right), 1 \leq t \leq P^{2} / d_{1} \text { and }\left(t, P^{2} / d_{1}\right)=1
$$

Thus

$$
\begin{equation*}
\sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right) \geq \sum_{d_{1} \mid P} \prod_{\substack{1 \leq t \leq P^{2} / d_{1} \\\left(t, P^{2} / d_{1}\right)=1}} \sum_{\substack{u, v \leq N / P \\ u+v \equiv d_{1} t\left(\bmod P^{2}\right)}} \tau(P(u+v)) \tag{42}
\end{equation*}
$$

Observe that since $d_{1} \mid P$ and $\left(t, P^{2} / d_{1}\right)=1$ then

$$
\begin{aligned}
\sum_{\substack{u, v \leq N / P \\
u+v \equiv d_{1} t\left(\bmod P^{2}\right)}} \tau(P(u+v)) & \geq \sum_{\substack{N / 2 P<m \leq N / P \\
m \equiv d_{1} t\left(\bmod P^{2}\right)}} \tau(P m) \sum_{\substack{u, v \leq N / P \\
u+v=m}} 1 \\
& \geq \frac{N}{2 P} \sum_{\substack{N / 2 P<m \leq N / P \\
m \equiv d_{1} t\left(\bmod P^{2}\right)}} \tau\left(d_{1}^{2}\right) \tau\left(\frac{P}{d_{1}}\right) \tau\left(\frac{m}{d_{1}}\right) \\
& =\frac{N}{2 P} 3^{\omega\left(d_{1}\right)} 2^{k-\omega\left(d_{1}\right)} \sum_{\substack{N / 2 P<m \leq N / P \\
m \equiv d_{1} t\left(\bmod P^{2}\right)}} \sum_{\substack{d \mid m, P)=1}} 1 \\
& =\frac{N}{2 P}\left(\frac{3}{2}\right)^{\omega\left(d_{1}\right)} 2^{k} \sum_{\substack{d \leq N / P \\
(d, P)=1}} \sum_{d / 2 P d<z \leq N / P d}^{d z d_{1} t\left(\bmod P^{2}\right)}
\end{aligned} 1 .
$$

Thus, by (40),

$$
\begin{align*}
\sum_{\substack{u, v \leq N / P \\
u+v \equiv d_{1} t\left(\bmod P^{2}\right)}} \tau(P(u+v)) & \geq \frac{N}{2 P}\left(\frac{3}{2}\right)^{\omega\left(d_{1}\right)} 2^{k} \sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \sum_{\substack{N / 2 P d<z \leq N / P d \\
d z \equiv d_{1} t\left(\bmod P^{2}\right)}} 1 \\
& \geq \frac{N}{2 P}\left(\frac{3}{2}\right)^{\omega\left(d_{1}\right)} 2^{k} \sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}}\left(\frac{N}{2 P^{3} d}-1\right), \\
& \geq \frac{N^{2}}{8 P^{4}}\left(\frac{3}{2}\right)^{\omega\left(d_{1}\right)} 2^{k} \sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \frac{1}{d}, \tag{43}
\end{align*}
$$

whenever N exceeds C_{22}. As in the proof of Theorem 2 we deduce that

$$
\begin{aligned}
\sum_{\substack{d \leq \sqrt{N} \\
(d, P)=1}} \frac{1}{d} \geq & \frac{1}{2}(\log N) \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)+\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \sum_{i=1}^{k} \frac{\log p_{i}}{p_{i}-1} \\
& -C_{23} \prod_{i=1}^{k}\left(1+\frac{1}{p_{i}}\right)
\end{aligned}
$$

Thus, by Mertens' theorem, the prime number theorem, (10) and (39),

$$
\begin{equation*}
\sum_{\substack{d \leq \sqrt{N} \\(d, P)=1}} \frac{1}{d} \geq \frac{1}{4}(\log N) \prod_{p \mid P}\left(1-\frac{1}{p}\right) \tag{44}
\end{equation*}
$$

whenever N exceeds C_{24}.
Therefore, by (42), (43) and (44),

$$
\begin{align*}
\sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right) & \geq \sum_{\substack{d_{1} \mid P}} \sum_{\substack{1 \leq t \leq P^{2} / d_{1} \\
\left(t, P^{2} / d_{1}\right)=1}} \frac{N^{2} \log N}{32 P^{4}}\left(\frac{3}{2}\right)^{\omega\left(d_{1}\right)} 2^{k} \prod_{p \mid P}\left(1-\frac{1}{p}\right) \\
& =\frac{N^{2} \log N}{32 P^{2}} 2^{k} \prod_{p \mid P}\left(1-\frac{1}{p}\right)^{2} \sum_{d_{1} \mid P} \frac{1}{d_{1}}\left(\frac{3}{2}\right)^{\omega\left(d_{1}\right)} \tag{45}
\end{align*}
$$

for N greater than C_{25}. Note that

$$
\begin{align*}
\sum_{d_{1} \mid P} \frac{1}{d_{1}}\left(\frac{3}{2}\right)^{\omega\left(d_{1}\right)} & =\prod_{p \mid P}\left(1+\frac{3}{2 p}\right) \geq C_{26} \prod_{p \mid P}\left(1+\frac{1}{p}\right)^{3 / 2} \\
& \geq C_{27} \prod_{p \mid P}\left(1-\frac{1}{p}\right)^{-3 / 2} \tag{46}
\end{align*}
$$

It now follows from (41), (45), (46), Mertens' theorem and the prime number theorem that

$$
\begin{equation*}
\sum_{a, a^{\prime} \in A} \tau\left(a+a^{\prime}\right) \geq C_{28}|A|^{2}(\log N) 2^{k}(\log k)^{-1 / 2} \tag{47}
\end{equation*}
$$

for N greater than C_{25}. By (39) and the prime number theorem

$$
k>\left(1-\frac{\delta}{2}\right) \log (1 / \varepsilon) / \log \log (1 / \varepsilon)
$$

provided that $\varepsilon<C_{29}$, and so (12) follows from (47).

References

1. A. Balog and A. Sárközy, On sums of sequences of integers, I, Acta Arith. 44 (1984), 73-86.
2. P.D.T.A. Elliott and A. SÁrközy, The distribution of the number of prime divisors of sums $a+b$, J. Number Theory 29 (1988), 94-99.
3. P. Erdös, H. Maier and A. Sárközy, On the distribution of the number of prime factors of sums $a+b$, Trans. Amer. Math. Soc. 302 (1987), 269-280.
4. P. Erdös, C. Pomerance, A. Sárközy and C.L. Stewart, On elements of sumsets with many prime factors, to appear.
5. P. Erdös, C.L. Stewart and R. Tijdeman, Some diophantine equations with many solutions, Compositio Math. 66 (1988), 37-56.
6. K. Györy, C.L. Stewart and R. Tiddeman, On prime factors of sums of integers, I, Compositio Math. 59 (1986), 81-88.
7. G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5-th ed., Oxford University Press, Oxford, 1979.
8. A. Sárközy and C.L. Stewart, On divisors of sums of integers, V, to appear.
9. G. Tenenbaum, Facteurs premiers de sommes d'entiers, Proc. Amer. Math. Soc. 106 (1989), 287-296.

The University of Waterloo
Waterloo, Ontario, Canada
Mathematical Institute of the Hungarian Academy of Science
Budapest, Hungary

[^0]: Received November 19, 1991.
 1991 Mathematics Subject Classification. Primary 11 N56; Secondary 11 B75.
 ${ }^{1}$ The research of the first author was partially supported by the Hungarian National Foundation for Scientific Research, Grant No. 1901.
 ${ }^{2}$ The research of the second author was supported in part by a Killam Research Fellowship and by a grant from the Natural Sciences and Engineering Research Council of Canada.

