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On the number of solutions of 
polynomial congruences 

by CL. Stewart •, F.R.S.C. 

Lei / b e a polynomial witb integer coefficient*, degree r(> 2) uid noo-
xero ditcriminant D. Let p be a prime number and let pf denote the Urge.t 
power of p which divide* D. Assume thai p doe* not divide the conleol of 
/ . For each potilive integer k we denote by N{k) the number of tolution* of 
the congruence 
0 ) / ( * ) S 0 (mod p*) 
in congruence daice* modulo pV 

In 1921 Nagell |2) and Ore |3J proved that for all poaitive integer* Jk, 

^(*) < rp». 

Thi* w u improved by Sindor (4] in 1052 to 

(2) N(k) < rp"* 

for k>l.la 1981 Huxiey (l) obtained (2) for all potilive integer* k. For any 
teal number x let \z\ denote the greate*l integer le** than or equal lo i . We 
have recently shown |5) that 

.(3) N(k) < ij"* + r - 2 
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for all positive integers k. Estimate (3) is, in general, best possible as the 
following example shows. Let r be an integer with r > 2, let p be a prime 
number with p > r and let m be a positive integer. Put

/(*) = (* + Pm)(* + 2p~)(* + 3) • • • (r + r).

Then /, the p-adic order of the discriminant of /, is 2m. Let k be an integer 
with k > /. The complete solution of the congruence (1) is given by 
z = — pm (mod pfc_m) or x = —2p"* (mod p*-"’) or i = —i (mod pfc) 
for i = 3,...,r hence, for this example,

W(*) = 2p" + r - 2 = 2p,/7 + r - 2,

whenever k > l.
Let r, fc and 1 be integers with r > 2, k > 1 and / > 0. Define T = T(r, k, l)

by

if k > /,

+ (jii) k] if for 2 = 1,-

if ^T>*>1,

T = •,r-2,(i+tXJ+»

[(*?) ‘1
and note that

(K^H a )*]»/T = min min +' i=° (i + l)(> + 2)

Theorem
and non-rero discriminant D. Let p be a prime number and let l be the p- 
adic order of D. Assume that p does not divide the content of f. Let k be 
a positive integer. There is an integer t with 0 < t < r and there 
negative integers 6j,...,6| and uj,..., tij such that the complete solution of the 
congruence (1) is given by the t congruences

Let f be a polynomial with integer coefficients, degree r(> 2)

are non-

x = bi (mod p4-u<),

for i = Further
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(4) 0 < tu<T,
for i = and

(■(:]■-l(^)‘O'(5) «i + • • • + Uj < min

The above result is a special case of Theorem 2 of [5j. Since

+P-+... + P-,
we may use (4) and (5) to deduce (3) and indeed to sharpen (3) when k < I. 
For details we refer to Corollary 2 of [5],
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