On the number of solutions of polynomial congruences

by C.L. Stewast ${ }^{\bullet}$, P.R.S.C.

Let f be a polynomial with integer coefficienta, degree $r(\geq 2)$ and nonzero discriminant D. Let p be a prime number and let p denote the largest power of p which divides D. Assume that p does not divide the content of f. For each positive integer k we denote by $\boldsymbol{N}(k)$ the number of solutions of the congruence

$$
\begin{equation*}
f(x) \equiv 0 \quad\left(\bmod p^{b}\right) \tag{1}
\end{equation*}
$$

in congruence clases modulo p^{b}.
In 1921 Nagell [2] and Ore [3] proved that for all positive integers k,

$$
N(k) \leq r p^{2 l}
$$

This was improved by Síndor [4] in 1952 to

$$
\begin{equation*}
N(k) \leq r p^{1 / 2} \tag{2}
\end{equation*}
$$

for $k>l$. In 1981 Huxley [1] obtained (2) for all positive integers k. For any real number x let $\{x]$ denote the greatest integer lese than or equal to x. We have recently shown [5] that

$$
\begin{equation*}
N(k) \leq 2 p^{[1 / 2]}+r-2 \tag{3}
\end{equation*}
$$

[^0]for all positive integers \boldsymbol{k}. Estimate (3) is, in general, best possible as the following example shows. Let r be an integer with $r \geq 2$, let p be a prime number with $p>r$ and let m be a positive integer. Put
$$
f(x)=\left(x+p^{m}\right)\left(x+2 p^{m}\right)(x+3) \cdots(x+r)
$$

Then l, the p-adic order of the discriminant of f, is $2 m$. Let k be an integer with $k>l$. The complete solution of the congruence (1) is given by $x \equiv-p^{m}\left(\bmod p^{k-m}\right)$ or $x \equiv-2 p^{m}\left(\bmod p^{k-m}\right)$ or $x \equiv-i\left(\bmod p^{k}\right)$ for $i=3, \ldots, r$ hence, for this example,

$$
N(k)=2 p^{m}+r-2=2 p^{1 / 2}+r-2
$$

whenever $k>l$.
Let r, k and l be integers with $r \geq 2, k \geq 1$ and $l \geq 0$. Define $T=T(r, k, l)$ by

$$
T= \begin{cases}{\left[\frac{l}{2}\right]} & \text { if } k \geq l, \\ {\left[\frac{1}{(j+1)(j+2)}+\left(\frac{j}{j+2}\right) k\right]} & \text { if } \frac{1}{j} \geq k \geq \frac{1}{j+1} \text { for } j=1, \ldots, r-2, \\ {\left[\left(\frac{r-1}{r}\right) k\right]} & \text { if } \frac{1}{r-1} \geq k \geq 1,\end{cases}
$$

and note that

$$
T=\min \left(\left[\left(\frac{r-1}{r}\right) k\right], \min _{j=0, \ldots, r-2}\left(\left[\frac{l}{(j+1)(j+2)}+\left(\frac{j}{j+2}\right) k\right]\right)\right) .
$$

Theorem Let f be a polynomial with integer coefficients, degree $r(\geq 2)$ and non-zero discriminant D. Let p be a prime number and let l be the p adic order of D. Assume that p does not divide the content of f. Lel k be a positive integer. There is an integer t with $0 \leq t \leq r$ and there are nonnegative integers b_{1}, \ldots, b_{t} and u_{1}, \ldots, u_{t} such that the complete solution of the congruence (1) is given by the t congruences

$$
x \equiv b_{i} \quad\left(\bmod p^{k-u_{i}}\right)
$$

for $i=1, \ldots, t$. Further

$$
0 \leq u_{i} \leq T
$$

for $i=1, \ldots, t$ and

$$
\begin{equation*}
u_{1}+\cdots+u_{t} \leq \min \left(2\left[\frac{l}{2}\right], r\left[\left(\frac{r-1}{r}\right) k\right]\right) \tag{5}
\end{equation*}
$$

The above result is a special case of Theorem 2 of [5]. Since

$$
N(k)=p^{u_{1}}+p^{u_{3}}+\cdots+p^{u_{4}},
$$

we may use (4) and (5) to deduce (3) and indeed to sharpen (3) when $k \leq l$. For details we refer to Corollary 2 of [5].

References

[1] Huxley, M.N., A note on polynomial congruences. In : Recent progress in analytic number theory, Volume 1, Halberatam, H., Hooley, C. eds., pp. 193-196. London: Academic Press, 1981.
[2] Nagell, T., Généralisation d'un theórème de Tchebicheff. Journ. de Math. 8 (1921) 343-356.
[3] Ore, O., Anzahl der Wurzeln höherer Kongruenzen. Norsk Matematisk Tidsskrift, 3 Aagang, Kristiana (1921) 343-356.
[4] Sándor, G., Uber die Anzahl der Lösungen einer Kongruenz. Acta. Math., 87 (1952) 13-17.
[5] Stewart, C.L., On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc., to appear.
C.L. Stewart

Department of Pure Mathematics
$\overline{\text { Received October 4, } 1991}$
The University of Waterloo
Waterloo, Ontario
Canada
N2L 3G1

[^0]: * Research supported in part by a Killam Research Fellowship and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

