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Removal is desired of the hypothesis of recursive command simpleness,
apparently needed in [infocom] for the proof of Cook-completeness [C] of a
(partial and total) correctness proof system. The present paper is a stop-gap
whose purpose is to present a modified proof system that we conjecture to
‘work’ in complete generality. See the definition of the command language
Rec in [infocom], pp. 7-8, and of the system there. That system is proved
Cook-complete only for the sublanguage Rec− in which all the non-simple
recursions have been removed from Rec. Here we’ll remain in the entire Rec.

It is the author’s opinion that there is slightly more than just entertain-
ment value in the following analogy : Passing from (simple recursion on a
single procedure variable) to (simple recursion on several variables—i.e. sim-
ple mutual recursion) is analogous to passing from (real-valued functions of
a single real variable) to (vector-valued functions of a single real variable).
More ‘ominously’, passing from (simple recursion on a single procedure vari-
able) to (general [non-simple] recursion on a single variable) is analogous to
passing from (real-valued functions of a single real variable) to (real-valued
functions of several real variables). The main point is that the latter two are
rather thornier questions, whereas the earlier two are perhaps more matters
of messier notation than of any need for really new ideas.

In [dpth] we give a fairly thorough treatment of a second set of difficulties
associated with the passage from simple to non-simple recursion. These
difficulties require a careful treatment of substitution (so what else is new?!!),
to avoid ‘procedure-variable clashes’, and consequently require a somewhat
more general way of defining command semantics, using a recursion-depth-
measure with variable depths for different recursions within a command (plus
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proof that we have re-invented the wheel—no, I meant: re-invented fixed-
point semantics, so lusted after by the denotationalizers). The conjecture
referred to in the title here has to do with a modification of the system in
[infocom], mainly by introducing a more general rule for partial correctness
of recursive commands. That conjecture would claim the new system to
be Cook-complete. If true, any thorough proof of it will need to make use
of something like the technicalities on substitution and recursion-depth just
referred to. However, here we have suppressed everything on that, in order
to concentrate on the crucial aspects of the new rule.

The bulk of this paper has to do with two specific examples of non-simple
recursion. We give a fairly detailed description of how to use the new rule
to derive the appropriate partial correctness for one example, and to use the
old total correctness rule in a new way to deal with a slightly simpler but
related example in that more difficult context. We also challenge the reader
to attempt the same, but using his/her favourite system (and we cheekily
suggest that this attempt will land the reader in excessive difficulty in the
partial case, and in a complete lack of success in the total case).

Included here also is a discussion of how to prove soundness of the new
partial correctness rule. But we deal only with a special case, and, as men-
tioned above, suppress some (in my view, subtle) technicalities related to
substitution. Clearly, if and when a proof of Cook-completeness surfaces,
a convincing write-up will need to exhibit a great deal of care on several
matters along these lines.

But the rough discussion just above, and its expansion just below, ought
to generate confidence in there being a sound system along the lines suggested
above. And the examples referred to two paragraphs above, when fleshed out
below, will hopefully have isolated most of the extra ideas needed to concoct
a proof for Cook-completeness.

Everything in this paper concentrates on recursion with a single procedure
variable, as opposed to mutual recursion. We have faith in our analogy above,
and expect that extension to the mutual case will be straightforward, if
possibly messy. But we make no claims in that direction, in contradistinction
to one tradition in the subject.
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1. Some useful examples of breathtaking banality.

We are counting on the reader to get almost all the needed technical defi-
nitions from [infocom]. The final line of this paper gives a generalization of
the rule for partial correctness of recursive commands, called (RCN)[ ] there.
Here is essentially a special case of the old rule, before the generalization
begins to be discussed in Section 2:

` C ∀C ∈ Ω , Ω ∪ {[∇XC]G} `′ [|C|X→∇XC ]G

` [∇XC]G
.

In this, |C|X→∇XC denotes substituting command ∇XC into command C
for free occurrences of procedure variable X. And Ω is a finite set of wfd’s
C which don’t have ∇XC in them, nor does G since it’s just a 1storder
formula. Actually G can more generally be a wfd (not merely a 1storder
formula), again as long as it doesn’t have ∇XC in it, but that stronger rule
is overkill from the completeness point-of-view in that paper. The command
∇XC is ‘recursion on X, using a body which is the command C’. This would
be banal if C had no subcommand callX which could potentially cause the
recursion to ‘kick-in’.

Our first example is exactly that banality, and is hardly surprising:
Suppose that C has no free X. Then ` [C]G =⇒ ` [∇XC]G .
To prove this using the above-displayed rule, the (usually crucial) premiss,

namely [∇XC]G, in the main (the 2nd) antecedent of the rule can be utterly
ignored, and the conclusion in that main antecedent of the rule, which reduces
to just [C]G because there are no free X for which to substitute ∇XC, can
simply be taken as the unique member of what will be a singleton set Ω. But
now the main antecedent is utterly trivial, with no need to know anything
at all about the ‘auxiliary’ proof system `′. And the first antecedent is our
assumption in the example.

So this example gives evidence that the occurrence of potentially non-
empty Ω in the rule cannot be dispensed with (though [sing], 2nd section
appendix, has plenty of other such examples with slightly less banality).

Now consider ∇Y∇XcallY . This hardly exciting nested recursive com-
mand of course diverges on any input. Because of the free Y in the body of
the ∇X, it is non-simple, and about as “simple” a non-simple as we could
get for which the command itself has no free procedure variables. Because
of non-simpleness, the completeness theorem in [infocom] strictly speaking

3



does not apply directly, and we shall see that applying the rules there gets us
into a bit of a vicious circle in trying to derive [∇Y∇XcallY ]1 ≈ 0 without
any new rule.

The main antecedent of the rule above would have the form

Ω ∪ {[∇Y∇XcallY ]1 ≈ 0} `′ [∇X∇Y∇XcallY ]1 ≈ 0 .

For this, we could again ignore the usually crucial half {∇Y∇XcallY ]1 ≈ 0}
and simply take Ω to be the singleton {[∇X∇Y∇XcallY ]1 ≈ 0}. The 1st
antecedent then needs to be derived. For this, the general example in the
previous paragraph, since the body, ∇Y∇XcallY , of ∇X∇Y∇XcallY has
no free X, can be considered. But it requires that we derive the original one,
[∇Y∇XcallY ]1 ≈ 0, first.

So all we seem to be able to establish is an equivalence

` [∇Y∇XcallY ]1 ≈ 0 ⇐⇒ ` [∇X∇Y∇XcallY ]1 ≈ 0

Very soon below, we’ll see how to trivially derive both these from a very
special case of a new rule.

Since the examples are so banal, it is unsurprising that the formal deriva-
tions also are. But these examples at least deter one from attempting to
eliminate the uneliminatable.

2. New rules.

The fully general rule, of which we wrote down a special case in the
previous section, simply has “F → ” in front of each “[−]G” in the rule. We
will delay here to the end of the paper writing down the general form of our
new, generalized rule. Here are two special cases:

` C ∀C ∈ Ω ,

Ω ∪ {F1 → [∇X1C1]G1, F2 → [∇X2C2]G2} `′ (F1 → [|C1|X1→∇X1C1 ]G1) ∧ (F2 → [|C2|X2→∇X2C2 ]G2)

` (F1 → [∇X1C1]G1) ∧ (F2 → [∇X2C2]G2)
;

` C ∀C ∈ Ω , Ω ∪ { [∇XiCi]Gi | i ∈ index set } `′ ∧i [|Ci|Xi→∇XiCi ]Gi

` ∧i [∇XiCi]Gi

.
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In the latter one, ∧i is just ‘iterated anding’ over some finite index set of “i”s.
So the general form of the new rule is pretty obvious, with one caveat: we
need to be more careful and expansive about those substitutions of commands
for free occurrences of procedure variables, since it is exactly in the non-
simple case that variable clashes can occur.

All we shall do in this section is to indicate how one would prove sound-
ness, by treating the intersection of the above two special cases, and with Ω
empty, namely, soundness of

{[∇X1C1]G1 , [∇X2C2]G2} `′ [|C1|X1→∇X1C1 ]G1 ∧ [|C2|X2→∇X2C2 ]G2

` [∇X1C1]G1 ∧ [∇X2C2]G2

.

Before doing that, let’s return briefly to the latter example in the previous
section. The rule displayed above shows

` [∇Y∇XcallY ]1 ≈ 0 ∧ [∇X∇Y∇XcallY ]1 ≈ 0

very trivially. The antecedent becomes virtually tautologous, since the two
wfds to be `′-derived are exactly the two in the premiss set in reverse order!

Returning to the question of soundness for this rule, having suppressed
the subtle technicalities concerning substitutions, we will then also assume
the semantics can be given by a ‘fixed-depth’-measure. So what’s here is
really only convincing, and easy to generalize to the general form of the new
rule, in the case of simple recursion. Filling in the necessary fully general
details can wait till a proof surfaces of Cook-completeness for the system
using the new rules.

For this soundness sketch, as in [sem], we’ll use purported semantic func-
tions, Mn, one for each natural number n, of commands C and of ‘assign-
ments of procedure variables Θ, which produces a set,Mn(C, Θ), of ordered
pairs of states, (input, output) if you like. But here n is just a natural num-
ber (or ‘infinity’) measuring depth, not a function from the set of procedure
variables to the set N ∪ {∞}. We wish to show the consequent true in N,
given that a derivation as in the antecedent actually exists. Fundamental to
this will be the fact that `′ preserves ttn. It suffices to show [∇XiCi]GittnN
for all ‘finite’ n. It will be of the essence that we prove this simultaneously
for both values of i.

So we need to establish that, if (s, s′) ∈ Mn(∇XiCi, Φ), then Gitt@s′,
which will be done by induction on n.
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For n = 0, the setM0(∇XiCi, Φ) is empty by definition, so the induction
starts without needing booster cables.

For the inductive step, the inductive assumption allows that [∇XjCj]GjttnN
for both values of j. From the truth preservation property of `′, and the truth
of the antecedent, we get [|Cj|Xj→∇XjCj ]GjttnN for both values of j. Suppose,
fixing one of the two values of i, that (s, s′) ∈Mn+1(∇XiCi, Φ), from which
we’ll deduce, as required, that Gitt@s′. The crucial identity needed (and the
one which seems to force a more subtle depth-measure when we are truly
considering non-simple recursion) will give

Mn([|Ci|Xi→∇XiCi ]Gi, Φ) = Mn(Ci, ΦXi 7→Mn(∇XiCi,Φ)) .

Now (s, s′) is in the right-hand side of that identity, by the inductive (on n)
definition of Mn+1(∇XiCi, Φ) as being precisely that right-hand side. Thus
it is also in the left-hand side, which from the above mentioned fact that
[|Ci|Xi→∇XiCi ]GittnN gives the required result that Gitt@s′ .

3. The Partial Correctness Example.

Here we shall use the first new rule stated in the previous section to do a
program verification for a mildly non-banal example of non-simple recursion.

First we describe the example non-technically, and issue a couple of chal-
lenges to program-verifiers, including any who may have taken out patents
on their systems, [Hom], with claims of vast generality. We also predict a
somewhat negative outcome to these challenges (so there may be some issue of
“truth in advertising” here which needs to be settled—it’s not one of mathematical error
as far as I know—the deficiency most obvious is that the command language in [Hom]
won’t even permit nesting of recursions, much less non-simple recursions).

We consider a command ∇XC with nested non-simple recursion. Its
more-or-less ‘fine-grained’ behaviour is to increase by 1 the value of 1storder
variable (program variable) x on each ‘loop’ of the outer recursion (on proce-
dure variable X), and, after that, within the same loop, do two loops of the
inner recursion (on Y ), each of which reduces the value of program variable
y by 1. Then a call to X within the inner recursion starts another loop of
the outer recursion. This continues until the value of y becomes 0. This
latter fact, plus the fact that x increases by roughly half the input value of
y, constitute the ‘postcondition’ to be ‘verified’. (There is a minor glitch in
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this rough description when y reaches the value 1, if its initial value is odd,
but there turns out to be no genuine problem with this.)

Two challenges to experts on previous systems for correctness of impera-
tive recursive programs are the following:

(P) As done below using our system, use your favourite system for partial
correctness to derive the partial correctness related to this command (after
formulating such a command in your own command language, but with the
above fine-grained semantics—in particular, keep the call to X inside the
body of the recursion on Y , notation as below—I realize it can be moved
out, but if you insist on that, show me how you’d be able to do the same
to ‘simplicate’ any non-simple recursion in a cogent and efficient manner—of
course, appealing to computability theory, there’s no need for any recursions
at all, which is hardly the point here). My claim is that, if you give details
at about the same level of thoroughness that we do below, those details will
be at least twice as ‘involved’, complicated’, . . . as ours. And the same
would be true for a completely formal version; that is, derivations and line
justifications with no gaps left, including whatever of the various adhoceries,
such as counting variables, auxiliary variables, adaptation rules, contexts,
correctness phrases, etc., which might be required to get your system off the
ground.

(T) Try to use your own system (or any other, such as Harel’s [H]) for
total correctness, to derive that stronger correctness statement for the same
example, or even for the simpler example whose complete details are given
in the next section. My claim here is that you will not be able to even
get started (much less finished) on the job. The reason is that, IMHO, no
system for total correctness of recursive commands exists, where nesting and
non-simpleness are allowed, at least not one which is Cook-complete. In
fact, except for my recent work [infocom] and Harel’s (slightly incomplete,
but easily fixable, unfortunately non-self-contained) system, none exists even
when only simple recursion is allowed, but nesting can happen.

Now we’ll write down the command in a semi-technical manner, just so
the challenges above cannot be said to be vague, program variables being
understood to take natural number values:
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Do a recursion on X :
if y is positive
thendo (increment x by 1;

set z to 0;
Do a recursion on Y :

if z is at least 2
thendo call X
elsedo (increment z by 1;

properly decrement y by 1;
call Y))

elsedo quit.
The fact that the call of X is within the body of the recursion on Y is what
makes this non-simple, by definition. The verification to be done is that, at
termination, the value of y is 0 and the value of x has been increased by u
from its value before execution, where y is either u + u or u + u + 1 before
execution.

Let’s get on with careful details of the example, using the precise com-
mand language Rec . Let

C := ite(0 < y)(x←: x + 1 ; z ←: 0 ; ∇Y D)(bugga) ,

where

D := ite(1 < z)(callX)(z ←: z + 1 ; ‘y ←: y − 1’ ; callY ) ,

using the ‘proper subtraction’ command defined on page 29 of [sing]. There
is an extra program variable in that command, and we won’t mention again
that this variable must be distinct from all others in any discussion involving
the proper subtraction command. We wish to find a derivation for the wfd
F → [∇XC]G, where F is J ∧ x ≈ v with J := y ≈ u + u ∨ y ≈ u + u + 1,
and where G is y ≈ 0 ∧ x ≈ u + v.

Of course, we are taking x, y, z, u and v to be names of distinct 1storder
variables, and assuming that the procedure variables X and Y are distinct.

Now let

E := |D|X→∇XC = ite(1 < z)(∇XC)(z ←: z + 1 ; ‘y ←: y − 1’ ; callY ) .
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Thus

|C|X→∇XC = ite(0 < y)(x←: x + 1 ; z ←: 0 ; ∇Y E)(bugga) ,

and

|E|Y→∇Y E = ite(1 < z)(∇XC)(z ←: z + 1 ; ‘y ←: y − 1’ ; ∇Y E) .

We will find a 1storder formula H such that (H → [∇Y E]G) ttN, and
then use the new rule with consequent

(F → [∇XC]G) ∧ (H → [∇Y E]G) ,

thereby deriving double what was asked. We shall therefore check the truth
of a main antecedent of the form

Γ `′ (F → [|C|X→∇XC ]G) ∧ (H → [|E|Y→∇Y E]G) , with

Γ := Ω ∪ {F → [∇XC]G , H → [∇Y E]G} .

We will take the set Ω to be the singleton containing a wfd

H1 ∧ 0 < u → [‘u←: u− 1’]|H1|u→u+1 .

All such wfd’s have been shown to be derivable as Example 2, p.46 in [sing].
So the other antecedent will need no further comment. We shall delay spec-
ifying H1 till when it is needed near the end of the verification.

After a moderate amount of blood, sweat, tears and calculation, it turns
out that the following is the correct choice for H. We won’t bother to check
directly that H → [∇Y E]G is ttN, since that follows from soundness plus
one fact we are aiming for—that it is derivable :

H := J ∧K with K := L ∨ (1 < z ∧ x ≈ v)

where

L := (z ≈ 0∧y ≈ 0∧x ≈ v) ∨ (z ≈ 0∧0 < y∧x ≈ v+1) ∨ (z ≈ 1∧y od∧x ≈ v+1) ∨ (z ≈ 1∧y ev∧x ≈ v) .

Here y od and y ev are abbreviations for 1storder formulas saying that y is
odd and even, respectively.

9



The earlier expansions of |C|X→∇XC and |E|Y→∇Y E as ‘if-then-else’-commands,
together with the axioms (AX)ite and (AX); of the system `′, reduce our job
to demonstrating the existence of four derivations, as follows.

(A)+ Γ `′ H∧1 < z → [∇XC]G ;

(A)− Γ `′ H∧¬1 < z → [z ←: z+1][‘y ←: y−1’][∇Y E]G ;

(B)+ Γ `′ F∧0 < y → [x←: x+1][z ←: 0][∇Y E]G ;

(B)− Γ `′ F∧¬0 < y → [bugga]G .

This last one is quite a trivial application of the oracle, hypothetical syllogism
and (AX)←: , at the end applying the fact that the “do-nothing-command”,
bugga, has the form x0 ←: x0. All but the last of the following ‘arrows’ is
clearly ttN :

F∧¬0 < y → J∧x ≈ v∧y ≈ 0 → y ≈ u+u∧x ≈ v∧u ≈ 0

→ y ≈ 0∧x ≈ u+v∧u ≈ 0 → G → [bugga]G .

Proving the existence of a derivation for the other three is done in the
following paragraphs.

For (A)+, again here are two ‘arrows’ which are ttN :

H ∧ 1 < z → J ∧ 1 < z ∧ x ≈ v → J ∧ x ≈ v = F .

But F → [∇XC]G is in Γ, so that does it.

For (B)+, here is a sequence of ‘arrows’ doing the trick, as explained after
the display:

F∧0 < y → J∧x ≈ v∧0 < y∧0 ≈ 0 → |J∧x ≈ v+1∧0 < y∧z ≈ 0|x→x+1 , z→0

→ [x←: x + 1][z ←: 0](J ∧ x ≈ v + 1 ∧ 0 < y ∧ z ≈ 0)

→ [x←: x+1][z ←: 0]H → [x←: x+1][z ←: 0][∇Y E]G .

The first two ‘arrows’ are true 1storder number theory formulas. The ‘arrow’
on the 2nd line is a double application of (AX)←: . The next one is a double ap-
plication of (UNAR)[ ] together with the oracle. The final ‘arrow’ is another
double application of (UNAR)[ ] together with the fact that H → [∇Y E]G
is in Γ.
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As for (A)−, rather more work is needed, but, except for using an analogue
of the lemma at the end of the following section, it’s much like what we’ve
been doing. Firstly, we now define the H1 which occurs as an ingredient in
Γ, and also a messy formula L′, which agrees with L except for shifting the
‘values’ of z up by 1, and with 2 being of course an abbreviation for 1 + 1:

H1 := |H|y→y+1+1 , v→v+1 ;

L′ := (z ≈ 1∧y ≈ 0∧x ≈ v) ∨ (z ≈ 1∧0 < y∧x ≈ v+1) ∨ (z ≈ 2∧y od∧x ≈ v+1) ∨ (z ≈ 2∧y ev∧x ≈ v) .

Here come the arrows for this case:

H ∧ ¬1 < z → J ∧ L → |J ∧ L′|z→z+1 → [z ←: z + 1](J ∧ L′)

→ [z ←: z + 1]((J ∧ L′ ∧ 0 < y) ∨ (J ∧ L′ ∧ y ≈ 0))

→ [z ←: z+1][‘y ←: y−1’](|J∧L′|y→y+1) ∨ (y ≈ 0∧u ≈ 0∧z ≈ 1∧x ≈ v) ∨ (y ≈ 0∧u ≈ 0∧z ≈ 2∧x ≈ v) .

For the pair of 1storder components “∨ed” together on the right, we have
used the fact that, quite generally, (K ∧ y ≈ 0 → [‘y ←: y − 1’](K ∧ y ≈ 0))
is `′-derivable.

Clearly, if we could do one more ‘arrow’ so that the arrow’s target agrees
with its source except for changing “|J ∧L′|y→y+1” to a ‘∨ing’ of four 1storder
formulas, and so that all six of the resulting formulas followed by “→ H” was
true in N, then we’d be finished, as with the last sentence of the paragraph
analysing (B)+. This holds for both of the formulas at the right-hand end
of the display above, and also for two of the four formulas alluded to above,
namely

(y + 1 ≈ u + u ∧ z ≈ 1 ∧ x ≈ v + 1) ∨ (y + 1 ≈ u + u ∧ z ≈ 2 ∧ x ≈ v + 1) .

But for the other two of the four, namely

(y+1+1 ≈ u+u∧z ≈ 1∧x ≈ v+1) ∨ (y+1+1 ≈ u+u∧z ≈ 2∧x ≈ v+1) ,

we have instead that each of those formulas followed by “→ H1” is true in
N. Recall that H1 is just obtained from H by substitution of y + 1 + 1 for y
and v + 1 for v. Therefore it is perfectly obvious that H1 → [∇Y E]G is also
true in N, since G depends only on u + v, and the effect of the substitutions
is to increment v but to decrement u (and also because the command ∇Y E
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affects only x, y and z, not u and v). And so a derivation of the wfd should
exist as a result of one for H → [∇Y E]G, which of course we have in the
premiss set. So the example will have been thoroughly verified as soon as
this is proved. That result is an exact analogue of the lemma which appears
at the end of the following section. We have even included the case of `′
there to be convincing with this. But the result we need here is not quite
a special case of the lemma, because the ‘H’ in this section is a bit more
complicated than the ‘H’ in the next section. In any case, we’ll leave the
needed modification to the reader, who may also enjoy the following.

Exercise. Simplify the above example in such a way that y only increases
by 1 each time that x increases, and do the partial correctness as above. The
main creative effort will be to find the appropriate formula H. We will do the
total correctness of this example in the next section. So, on the one hand,
don’t read there till doing the exercise; and on the other hand, the technical
definitions just below will be used in the next section.

To make the example specific, define

C := ite(0 < y)(x←: x + 1 ; z ←: 0 ; ∇Y D)(bugga) ,

where
D := ite(0 < z)(callX)(‘y ←: y − 1’ ; z ←: 1 ; callY ) ,

Find a derivation for the wfd F → [∇XC]G, where F is y ≈ u ∧ x ≈ v, and
where G is y ≈ 0 ∧ x ≈ u + v.
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4. The Total Correctness Example.

Here we shall show how to derive the stronger total correctness results
for the example in the exercise just above. The basic aim is to derive the
wfd F →< ∇XC > G for the objects defined there (not the earlier ones),
using old rules from [infocomp], mainly that for total correctness. The
‘new’ thing here will be that the latter rule, definitely in the form needed
for mutual recursion in that reference, will be employed in an essential way
here only for single recursion (but of course with simpleness not true for the
command in the example).

Now let us continue with the technical definitions.

E := |D|X→∇XC = ite(0 < z)(∇XC)(‘y ←: y − 1’ ; z ←: 1 ; callY ) .

Thus

|C|X→∇XC = ite(0 < y)(x←: x + 1 ; z ←: 0 ; ∇Y E)(bugga) ,

and

|E|Y→∇Y E = ite(0 < z)(∇XC)(‘y ←: y − 1’ ; z ←: 1 ; ∇Y E) .

The magic formula to be used (also in that exercise) is the following.

H := (z ≈ 0∧y ≈ 0∧u ≈ 0∧x ≈ v) ∨ (z ≈ 0∧0 < y∧y ≈ u∧x ≈ v+1) ∨ (0 < z∧y ≈ u∧x ≈ v) .

We will use the old rule more-or-less to derive

(F →< ∇XC > G) ∧ (H →< ∇Y E > G) ,

again doubling our money.
The overall structure of the example is moderately complex, so I’ll first

write down the rules to be used, and then outline the proof before providing
all details. The rule for total correctness is the following, where heretofore,
only the case k = 1 was needed for single recursion:
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` ∧
1≤j≤k ¬|Aj|w→0 , ` ∧

C∈Ω C , Ω ∪ { Aj → Bj | 1 ≤ j ≤ k} `w ∧
1≤j≤k(|Aj|w→w+1 → Bj )

` ∧
1≤i≤k(Ai → Bi)

,

for all variables w, all wfs’s Aj with w not a program variable in any of Aj’s
subcommands, all finite sets Ω of wfs’s, and all wfs’s Bj in which w does not
occur at all.

This rule looks much more abstract than the one for partial correctness,
and is certainly more general than needed. A main point is that one has the
luxury of an extra rule (below) for `w, which is not allowed for `′. (It would
make the partial correctness rule trivially unsound.) This extra rule is the
following, always used by having all the Bi above have the form < ∇XC > C,
whose occurrence on the ‘right-hand side’ of the rule above can, using the
rule below, be replaced by < |C|X→∇XC > C :

∅ / (< |C|X→∇XC > A ←→ < ∇XC > A) .

Now here is how we will proceed. Let

Ω0 := ∅ ; Ω1 := {y ≈ 0 ∧ x ≈ v →< ∇XC > (y ≈ 0 ∧ x ≈ v)} ;

Ω2 := Ω′ ∪ {y ≈ 0 ∧ x ≈ v →< ∇Y E > (y ≈ 0 ∧ x ≈ v)} .

for C, E and G as defined just before and after the start of this section; and
with Ω′ containing any wfds of the form

0 < u ∧ J → [‘u←: u− 1’]|J |u→u+1 .

needed later (All these have been derived in [sing] using the original system,
so verifying that part of the antecedent can be passed over in silence below.)

Then we shall establish (1) to (6) below. Below in (1) to (3), there is no need
for the “0 < w , 0 < w + 1 , 0 < w + 2”, but we’ve included them as a security blanket for
the author. In all cases, the antecedent ` ∧

1≤j≤k ¬|Aj|w→0 is trivial to check.

(1)

Ω0 ∪{y ≈ 0∧ x ≈ v ∧ 0 < w →< ∇XC > (y ≈ 0∧ x ≈ v)} `w

y ≈ 0∧x ≈ v∧0 < w+1→< |C|X→∇XC > (y ≈ 0∧x ≈ v)
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(2) So combining the two rules as indicated above (the case k = 1 of the
first rule being relevant here), we get

` y ≈ 0 ∧ x ≈ v →< ∇XC > (y ≈ 0 ∧ x ≈ v) .

This also uses the truth in N of

y ≈ 0 ∧ x ≈ v → ∃w (y ≈ 0 ∧ x ≈ v ∧ 0 < w) ,

as well as the (PRE)-rule, which allows us to ‘put the ∃w in there’.
In particular, Ω1 is now ‘useable’.

(3)

Ω1∪{y ≈ 0∧x ≈ v∧0 < w+1 → < ∇Y E > (y ≈ 0∧x ≈ v)} `w

y ≈ 0∧x ≈ v∧0 < w+1+1→< |E|Y→∇Y E > (y ≈ 0∧x ≈ v) .

(4) So indeed, just as in (2), this establishes

` y ≈ 0 ∧ x ≈ v →< ∇Y E > (y ≈ 0 ∧ x ≈ v) ,

and ‘makes Ω2 useable’.

(5) Define
Fw := 0 < y ∧ y + y ≈ w ,

and

Hw := 0 < y ∧ ((0 ≈ z ∧ y + y ≈ w + 1) ∨ (0 < z ∧ y + y ≈ w)) .

Then, with

Γ := Ω2 ∪ {F ∧ Fw → < ∇XC > G , H ∧Hw → < ∇Y E > G}

we have

Γ `w (F∧Fw+1 → < |C|X→∇XC > G) ∧ (H∧Hw+1 → < |E|Y→∇Y E > G) .
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(6) So combining the two rules as indicated above (but this time with the
case k = 2 despite the fact that we’re not doing mutual recursion), we get

` (F ∧ 0 < y →< ∇XC > G) ∧ (H ∧ 0 < y →< ∇Y E > G) .

This also uses the truth in N of both

F ∧ 0 < y → ∃w (F ∧ Fw) and H ∧ 0 < y → ∃w (H ∧Hw)

and the (PRE)-rule, as in (2) and (4). (But k > 1 for non-mutual recursion
is the novelty, unheard of in the annals of phoffman@mind, but there’s no
accounting for thickheadedness.)

To actually finish the example, that is, to derive F →< ∇XC > G, recall
from (1) that deriving

F ∧ 0 ≈ y →< ∇XC > G

has basically already been done.

All that remains is to show why derivations exist as in (1), (3) and (5).

For (1), because of the ite-nature of |C|X→∇XC , we must `w-derive from
the premiss both

0 < y ∧ 0 ≈ y ∧ whatever → whateverelse

which clearly presents no problem, and

¬0 < y ∧ 0 ≈ y ∧ x ≈ v ∧ 0 < w + 1 → < bugga > (y ≈ 0 ∧ x ≈ v) ,

which is also trivial.
For (3), because of the ite-nature of |E|Y→∇Y E, we must `w-derive from

the two premisses both

0 < z ∧ 0 ≈ y ∧ x ≈ v ∧ 0 < w + 1 + 1 → < ∇XC > (y ≈ 0 ∧ x ≈ v) ,

which is almost one of the premisses, and

¬0 < z∧0 ≈ y∧x ≈ v∧0 < w+1+1 → < ‘y ←: y−1’ ; z ←: 1 ; ∇Y E > (y ≈ 0∧x ≈ v) .
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Look at the arrows

¬0 < z∧0 ≈ y∧x ≈ v∧0 < w+1+1 → 0 ≈ y∧x ≈ v → < ‘y ←: y−1’ > (0 ≈ y∧x ≈ v) →

< ‘y ←: y−1’ > (0 ≈ y∧x ≈ v∧1 ≈ 1) = < ‘y ←: y−1’ > |0 ≈ y∧x ≈ v∧z ≈ 1|z→1 →

< ‘y ←: y − 1’ >< z ←: 1 > (0 ≈ y ∧ x ≈ v ∧ z ≈ 1) →

< ‘y ←: y − 1’ >< z ←: 1 > (0 ≈ y ∧ x ≈ v ∧ 0 < w + 1) →

< ‘y ←: y − 1’ >< z ←: 1 >< ∇Y E > (0 ≈ y ∧ x ≈ v) .

Each is clearly `w-derivable, the last by the other premiss and two applica-
tions of the rule (UNAR)< >. This is much more trivial than it looks, but details are
of the essence in this notoriously error-prone subject.

Finally, establishing the derivation in (5) is more interesting.
An important new wrinkle is that first we must establish the `w-derivability

from the three premisses of the F ∧ Fw+1 → < |C|X→∇XC > G half, in
order to use it for the derivation of the other half. As usual, the “ite” nature
of |C|X→∇XC splits the task in two. Firstly we need to `w-derive from the
three premisses the wfd

F ∧ Fw+1 ∧ 0 < y → < x←: x + 1 ; z ←: 0 ; ∇Y E > G .

Consider the arrows

F ∧ Fw+1 ∧ 0 < y → y ≈ u ∧ x ≈ v ∧ 0 < y ∧ y + y ≈ w + 1 →

< x←: x+1 ; z ←: 0 > (z ≈ 0∧y ≈ u∧x ≈ v +1∧0 < y∧y +y ≈ w +1) →

< x←: x + 1 ; z ←: 0 > (H ∧Hw) → < x←: x + 1 >< z ←: 0 >< ∇Y E > G .

The required derivability follows from that of each of the arrows. The right-
most arrow on the top line comes from x ≈ v being logically equivalent
to substituting x + 1 for x in x ≈ v + 1, and the usual stuff. The last
arrow comes from a premiss. The rest are easy from the definitions of the
ingredients F, Fw, H and Hw.

The other needed derivation is quite trivial from those definitions, with
the occurrence of Fw+1 below being redundant. It is to `w-derive

F ∧ Fw+1 ∧ ¬0 < y → < bugga > G .
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It is tempting to think that we’re really finished, since this half gives
the one (re ∇XC) that we’re really after, rather than the subsidiary one
(re ∇Y E). But “rules is rules”, and of course the latter is essential. Again
the ite leaves us with `w-deriving the following pair of wfds, using the three
premisses, BUT USING ALSO WHAT WE JUST DERIVED !!

(A) H ∧Hw+1 ∧ 0 < z → < ∇XC > G ;

(B) H ∧Hw+1 ∧ ¬0 < z → < ‘y ←: y − 1’ ; z ←: 1 ; ∇Y E > G .

As for (A), consider the arrows

H ∧Hw+1 ∧ 0 < z → y ≈ u ∧ x ≈ v ∧ 0 < y ∧ y + y ≈ w + 1 →

F ∧ Fw+1 → < |C|X→∇XC > G → < ∇XC > G .

The final arrow uses the ‘other’ rule from above. The `w derivability from
the premisses of the penultimate arrow is exactly what we did in the previous
paragraph.

Finally and unfortunately, (B) presents the most fussiness, not unsurpris-
ing for those who did the exercise at the end of Section 3, or didn’t, but did
read that section carefully. Consider the arrows

H∧Hw+1∧¬0 < z → 0 ≈ z∧y ≈ u∧x ≈ v+1∧0 < y∧y+y ≈ w+1+1 →

< ‘y ←: y − 1’ > (y + 1 ≈ u ∧ x ≈ v + 1 ∧ y + 1 + y + 1 ≈ w + 1 + 1) →

< ‘y ←: y − 1’ >< z ←: 1 > (z ≈ 1 ∧ y + 1 ≈ u ∧ x ≈ v + 1 ∧ y + y ≈ w) .

The derivability of these is straightforward.
The next step is to take the 1storder formula in that last wfd, ‘∧’ it

separately with y ≈ 0 and with 0 < y, and show that each is `w-derivable,
when preceded as above by < ‘y ←: y − 1’ >< z ←: 1 > and followed by
“. . . →< ‘y ←: y − 1’ >< z ←: 1 >< ∇Y E > G”. Using the (UNAR)-rule, we
can drop the < ‘y ←: y − 1’ >< z ←: 1 >.

The first of these is easy, using the premiss in Ω2. It down comes to

z ≈ 1∧y+1 ≈ u∧x ≈ v+1∧y+y ≈ w∧y ≈ 0 → y ≈ 0∧1 ≈ u∧x ≈ v+1 →

< ∇Y E > (y ≈ 0∧x ≈ v+1∧1 ≈ u) → < ∇Y E > (y ≈ 0∧x ≈ v+u) → < ∇Y E > G .
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That premiss is used for the right-most arrow on the top line. Because
v + u 6= u + v (really!), the last arrow is not actually equality.

The other is done to begin with by observing the truth in N of

z ≈ 1 ∧ y + 1 ≈ u ∧ x ≈ v + 1 ∧ y + y ≈ w ∧ 0 < y → |H|y→y+1,v→v+1 ∧Hw .

It remains only to use our premiss (H ∧Hw →< ∇Y E > G) to `w-derive

|H|y→y+1,v→v+1 ∧Hw → < ∇Y E > G ,

or equivalently

|H|y→y+1,v→v+1 → (Hw → < ∇Y E > G) .

This is not surprising, given that G depends only on u + v, and adding 1 to
y is ‘sort of subtracting 1 from u’. It is immediate from the following lemma,
whose proof will finally complete the analysis of the example.

Lemma. Let `∗ be either `′ or `w. Let B be a wfd, with u and v
variables not in any subcommand of B, and |B|v→v+1 = |B|u→u+1 . Then

Γ `∗ (H → B) =⇒ Γ `∗ (|H|y→y+1,v→v+1 → B) .

Proof. Taking

A := (z ≈ 0∧ y + 1 ≈ u∧ x ≈ v + 1 + 1)∨ (0 < z ∧ y + 1 ≈ u∧ x ≈ v + 1) ,

we have (|H|y→y+1,v→v+1 → A) is ttN; and, of course, so is A → A ∧ 0 < u.
Thus it suffices to establish

Γ `∗ A ∧ 0 < u → B .

Consider the sequence of ‘arrows’

A ∧ 0 < u → < ‘u←: u− 1’ > |A|u→u+1

→ < ‘u←: u−1’ > (z ≈ 0∧y ≈ u∧x ≈ v+1+1)∨(0 < z∧y ≈ u∧x ≈ v+1)

→ < ‘u←: u−1’ > (|H|v→v+1∨¬0 < u) → < ‘u←: u−1’ > (|B|v→v+1∨¬0 < u) =

< ‘u←: u− 1’ > (|B|u→u+1 ∨ ¬0 < u) → B ∨ ¬0 < u .
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The usual arguments easily give the required `∗-derivability of each—that of
(H → B) being used for the penultimate line—and the very last arrow being
very nearly the contrapositive of

0 < u ∧ B → [‘u←: u− 1’]|B|u→u+1 .

The unwanted ¬0 < u at the end is easily eliminated in view of the start of
all these ’arrows’. So the lemma is proved.

5. The Conjecture.

An oddity of my progress on this business, of extending the Cook-completeness
proof so that simplicity need not be assumed, is that it had seemed to me
to be total correctness which presented all the problems; and yet now it
seems likely that my rule for total correctness of recursive commands was
already general enough (but I didn’t realize what was the best way to use
it!), whereas the one for partial correctness is in need of improvement.

So here we go: I suspect to be Cook-complete, for the entire command lan-
guage Rec (specialized for now to single, not mutual, recursion), the system
obtained merely by replacing the rule (RCN)[ ] by the displayed rule below
(but leaving all other rules the same in the single recursion specialization of
the system in [infocom]).

The whole discussion, when simpleness is abandoned, needs to be formu-
lated more carefully, as indicated earlier, to avoid variable-clash problems
when substituting for procedure variables. And that seems to require some
work on the semantics. But all the machinery for doing that is in [dpth]. So
we’ll just write the general form of the new rule in a state of ‘variable-clash
innocence’ :

` C ∀C ∈ Ω , Ω ∪ {Fi → [∇XiCi]Gi | i ∈ I} `′ ∧i∈I (Fi → [|Ci|Xi→∇XiCi ]Gi)

` ∧i∈I (Fi → [∇XiCi]Gi)
.

The sets I, of indices, and Ω, of wfd’s, are both finite, and none of the wfd’s
in Ω contains any subcommand of the form ∇XiCi.
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