Pure Mathematics Measure Theory and Fourier Analysis Qualifying Examination University of Waterloo September 19, 2023

Instructions

- 1. Print your name and UWaterloo ID number at the top of this page, and on no other page.
- 2. Check for questions on both sides of each page.
- 3. Answer the questions in the spaces provided. If you require additional space to answer a question, please use one of the overflow pages, and refer the grader to the overflow page from the original page by giving its page number.
- 4. Do not write on the Crowdmark QR code at the top of each page.
- 5. Use a dark pencil or pen for your work.
- 6. All questions are equally weighted.

- 1. Let λ be the Lebesgue measure on the interval [0, 1]. For $p \in [1, \infty)$, we denote by $(L^p(\lambda), \|\cdot\|_p)$ the associated Banach space of *p*-integrable functions on [0, 1].
 - (a) Let $p, q \in (1, \infty)$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. State Hölder's inequality concerning functions from the spaces $L^{p}(\lambda)$ and $L^{q}(\lambda)$.
 - (b) Prove that for $p_1 \leq p_2$ in $[1, \infty)$, one has the inclusion $L^{p_2}(\lambda) \subseteq L^{p_1}(\lambda)$, and the inequality of norms

$$||f||_{p_1} \le ||f||_{p_2}, \quad \forall f \in L^{p_2}(\lambda).$$

(c) Fix T > 1 and a function $f \in L^T(\lambda)$ and let $\varphi : [1, T] \to \mathbb{R}$ be defined by

$$\varphi(p) := ||f||_p, \quad \forall p \in [1, T].$$

Prove that φ is a continuous function. (Hint: Apply the Lebesgue Dominated Convergence Theorem).

2. In this problem we use the following definition:

Definition. Let (X, d) be a metric space, let \mathfrak{B} be the Borel sigma-algebra of (X, d), and let $\mu : \mathfrak{B} \to [0, 1]$ be a Borel probability measure. We say that μ is *closed regular* if the following holds:

(Cl-Reg)
$$\begin{cases} \text{for every } B \in \mathfrak{B} \text{ one has} \\ \\ \mu(B) = \inf\{\mu(G) \mid G \text{ open, } G \supseteq B\} = \sup\{\mu(F) \mid F \text{ closed, } F \subseteq B\}. \end{cases}$$

The aim of this problem is to prove that *every* Borel probability measure μ on (X, d) is automatically closed regular. To that end, let $\mathfrak{A} \subseteq \mathfrak{B}$ be the collection of subsets of X given by

$$\mathfrak{A} = \Big\{ A \in \mathfrak{B} \ \Big| \ \begin{array}{l} \mu(A) = \inf\{\mu(G) \mid G \text{ open, } G \supseteq A\} \text{ and } \\ \mu(A) = \ \sup\{\mu(F) \mid F \text{ closed, } F \subseteq A\} \end{array} \Big\}.$$

- (a) Prove that \mathfrak{A} contains every closed subset of X.
- (b) Prove that \mathfrak{A} is closed under complements.
- (c) You may assume, without proof, that \mathfrak{A} is closed under countable unions. Conclude that $\mathfrak{A} = \mathfrak{B}$, and that μ is closed regular.

- 3. Let \mathcal{X} be a Hilbert space over \mathbb{R} and let $(\xi_n)_{n\geq 0}$ be an orthonormal basis for \mathcal{X} .
 - (a) Let $\eta \in \mathcal{X}$. Define the Fourier coefficients of η with respect to the orthonormal basis $(\xi_n)_{n\geq 0}$, and state the Parseval identity concerning these coefficients.

For the remainder of this problem, we take $\mathcal{X} = L^2([-\pi,\pi])$, and we accept the fact that this Hilbert space has an *orthonormal system* $(\varphi_n)_{n\geq 0}$ defined as follows: φ_0 is the function identically equal to $\frac{1}{\sqrt{2\pi}}$, and then for every $k \geq 1$ we define φ_{2k-1} and φ_{2k} by putting

$$\varphi_{2k-1}(t) = \frac{1}{\sqrt{\pi}}\sin(kt)$$
 and $\varphi_{2k}(t) = \frac{1}{\sqrt{\pi}}\cos(kt), \quad \forall t \in [-\pi, \pi]$

We also consider the function $\eta \in L^2([-\pi,\pi])$ defined by putting $\eta(t) = t$ for all $t \in [-\pi,\pi]$.

- (b) Explain why the orthonormal system $(\varphi_n)_{n\geq 0}$ is in fact an orthonormal basis of \mathcal{X} . (Hint: Use the Stone Weierstrass Theorem)
- (c) Let $(c_n)_{n\geq 0}$ be the Fourier coefficients of η with respect to $(\varphi_n)_{n\geq 0}$. Prove that $c_n = 0$ for every even $n \geq 0$ and compute the explicit value of c_n for an odd $n \geq 1$.
- (d) By using your answers from above, determine, with justification, the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.